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Abstract: Aerosols significantly affect carbon dioxide (CO2) retrieval accuracy and precision by
modifying the light path. Hyperspectral measurements in the near infrared and shortwave infrared
(NIR/SWIR) bands from the generation of new greenhouse gas satellites (e.g., the Chinese Global
Carbon Dioxide Monitoring Scientific Experimental Satellite, TanSat) contain aerosol information for
correction of scattering effects in the retrieval. Herein, a new approach is proposed for optimizing the
aerosol model used in the TanSat CO2 retrieval algorithm to reduce CO2 uncertainties associated with
aerosols. The weighting functions of hyperspectral observations with respect to elements in the state
vector are simulated by a forward radiative transfer model. Using the optimal estimation method
(OEM), the information content and each component of the CO2 column-averaged dry-air mole
fraction (XCO2) retrieval errors from the TanSat simulations are calculated for typical aerosols which
are described by Aerosol Robotic Network (AERONET) inversion products at selected sites based on
the a priori and measurement assumptions. The results indicate that the size distribution parameters
(reff, veff), real refractive index coefficient of fine mode (ar

f) and fine mode fraction (fmf) dominate the
interference errors, with each causing 0.2–0.8 ppm of XCO2 errors. Given that only 4–7 degrees of
freedom for signal (DFS) of aerosols can be obtained simultaneously and CO2 information decreases
as more aerosol parameters are retrieved, four to seven aerosol parameters are suggested as the
most appropriate for inclusion in CO2 retrieval. Focusing on only aerosol-induced XCO2 errors,
forward model parameter errors, rather than interference errors, are dominant. A comparison of
these errors across different aerosol parameter combination groups reveals that fewer aerosol-induced
XCO2 errors are found when retrieving seven aerosol parameters. Therefore, the model selected
as the optimal aerosol model includes aerosol optical depth (AOD), peak height of aerosol profile
(Hp), width of aerosol profile (Hw), effective variance of fine mode aerosol (veff

f), effective radius
of coarse mode aerosol (reff

c), coefficient a of the real part of the refractive index for the fine mode
and coarse mode (ar

f and ar
c), with the lowest error of less than 1.7 ppm for all aerosol and surface

types. For marine aerosols, only five parameters (AOD, Hp, Hw, reff
c and ar

c) are recommended for
the low aerosol information. This optimal aerosol model therefore offers a theoretical foundation for
improving CO2 retrieval precision from real TanSat observations in the future.
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1. Introduction

The concentration of carbon dioxide (CO2) in the atmosphere has been rapidly increasing since
the 1750s, and CO2 has been recognized as one of the most significant greenhouse gases responsible for
global warming [1]. To understand and mitigate anthropogenic CO2 emissions, regional carbon flux
estimation is required for identifying CO2 sources and sinks. State-of-the-art data assimilation methods,
coupled with modern atmospheric transport modeling, can provide reliable estimates of CO2 surface
flux when using a high-quality measurement dataset [2]. Unfortunately, limits on our understanding
of CO2 emissions and uptake lead to large uncertainties in climate change research due to a lack of
accurate and continual measurements with global coverage. The cutting-edge technologies utilized in
the manufacturing of spectrometers onboard satellites provide an opportunity to improve the global
measurement coverage. The path finder instrument, Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY), which is onboard the European Space Agency’s (ESA)
ENVISAT, first detected CO2 signals in the atmosphere using near infrared (NIR) and shortwave
infrared (SWIR) bands which are sensitive to near surface CO2 concentration, providing reliable
observations of global CO2 column-averaged dry-air mole fractions (XCO2). The Japanese satellite,
Greenhouse Gases Observing Satellite (GOSAT), was successfully launched in 2009 and showed a good
performance in-orbit [3,4]. The XCO2 retrieved from GOSAT measurements indicated precision better
than 1% [5], which significantly enhanced the knowledge of regional CO2 surface fluxes [6,7]. In July
2014, NASA launched the Orbiting Carbon Observatory-2 (OCO-2), which started to provide XCO2

data products with high quality to the public [8,9]. The Chinese carbon dioxide observation satellite
mission (TanSat) began in 2010 and was launched on 22 December 2016 [10–12]. Recent studies have
released preliminary XCO2 maps produced from TanSat measurements [13].

Improvements in the accuracy and precision of XCO2 retrievals will significantly contribute to
reducing uncertainty in the estimation of CO2 fluxes. Ideally, the accuracy of XCO2 should be better than
0.3% (~1 ppm) to guarantee the accuracy of the regional surface carbon flux calculations [14]. Scattering
in the atmosphere from aerosols and clouds could introduce serious errors in retrievals because the
scattering changes the light path and results in different absorption by the gases. Aben, et al. [15]
concluded that uncertainty in the aerosol optical depth (AOD) should be controlled to within 0.05 to
maintain the total error in the CO2 column at less 0.5%. The simulations of OCO-2 observations and
the corresponding linear error analysis indicated that the uncertainties in the aerosols were among the
dominant error sources encountered in CO2 retrievals [16,17].

Additionally, according to error analyses of simulated GOSAT observations, imperfectly
characterized clouds and aerosols are the dominant sources of error encountered during XCO2

retrievals [18,19], meaning that to approach high-precision CO2 retrieval, a method of eliminating
uncertainty in aerosol property calculations is required, especially in heavily air-polluted areas.
Synchronous aerosol measurements have been highly recommended for several satellite missions
to reduce the retrieval errors from aerosol and cloud scattering. For instance, TanSat carries an
ancillary instrument, the Clouds and Aerosol Polarimetric Imager (CAPI), which aims to improve
the knowledge of aerosol and cloud contamination by obtaining simultaneous measurements with
the Atmospheric Carbon Dioxide Grating Spectrometer (ACGS). Previous studies have reported that
aerosol microphysical property information, e.g., aerosol volume concentration and size parameters,
can be obtained from CAPI measurements [20,21]. The a priori of aerosol model parameters in TanSat
CO2 retrieval will be improved by using CAPI measurements.

However, this simultaneous aerosol measurement depends on the mission budget and instrument
design and is not commonly achieved for each satellite. Under this circumstance, following the retrieval
by the optimal estimation method (OEM), the a priori assumption of aerosol parameters becomes
important when there is a lack of information in the measurements. A time- and location-specific
3D aerosol status provided by the chemical transport model (CTM) is an alternative option to obtain
first estimates of aerosol parameters that are close to reality to reduce retrieval errors from the aerosol
parameter uncertainty. For example, in the Japanese National Institute for Environmental Studies full
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physical (NIES-FP) retrieval algorithm of GOSAT, for every observed day, AOD computed through
the Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) is used as a priori value.
Additionally, during the XCO2 retrieval process, the AODs of both fine and coarse-mode aerosols
are retrieved synchronously, while aerosol type and size distribution data are provided by external
sources [5,22]. In the NASA Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm
for OCO-2 [19], three aerosol and profile parameters (AOD at 755 nm, peak height, and width of
profile) for five types of scattering particles, including liquid water and ice clouds, two dominant
tropospheric aerosols, and one stratospheric aerosol, have been corrected synchronously as the state
vector. Both tropospheric aerosols were selected from those available in the Modern-Era Retrospective
Analysis for Research and Applications (MERRA) reanalysis system, i.e., dust, smoke, sea salt, sulfate
aerosol, organic carbon, and black carbon, which constitute the two largest fractions of AOD based on
monthly averaged MERRA data. In general, there are two types of aerosol solutions which can be
used in CO2 retrieval algorithms. Both of them have advantages and disadvantages. One type uses a
combination of multiple types of aerosols and retrieves the profile and loading of each type, such as in
ACOS, NIES-FP and University of Leicester full physical (UoL-FP) algorithms [18,19,22,23], which are
more related to the CTM model simulation. The other aerosol combination is depicted by an empirical
aerosol model, namely, the wavelength dependence of aerosol optical properties (RemoTeC algorithm
from institutes in Netherland and Germany and Institute of Atmospheric Physics, Chinese Acedemy
of Sciences (IAPCAS)-TanSat algorithm from China), which show more dynamic ranges of aerosol
microphysical parameters (e.g., size distribution) [10,24,25]. Although Gamma distribution is used as
the aerosol size distribution in some CO2 algorithms (such as RemoTeC), the bimodal size distribution
aerosol model, which has been widely used in aerosol retrievals, has also been proven to describe a
realistic empirical aerosol model well [26,27].

Broad band measurements in NIR/SWIR, which are always used for aerosol remote sensing,
contain limited independent information on aerosol parameters for several reasons. Fundamentally,
aerosol parameters have no specific spectral structure that could be easily characterized from the
measured spectrum of interference of several gas absorption lines, e.g., CO2 and H2O. The continual
scattering of aerosols in a broad band shows a similar effect to surface reflectance, especially multiple
scatterings between aerosols and the surface and is the main issue in satellite remote sensing of
aerosols. However, hyperspectral measurements that describes the lines in NIR/SWIR are different.
Some studies have estimated aerosol information content from simulated GOSAT measurements,
indicating that hyperspectral measurements can support part of the aerosol parameters retrieval
independently [28]. The spectrum in the O2-A absorption band could also be used in aerosol height
retrieval [29]. However, when considering CO2 retrieval together with aerosols, the aerosol model
should be simplified. A Gamma distribution aerosol model with the three parameters shows positive
evidence of the correcting aerosol effect when the 550 nm AOD is lower than 0.3 [24]. In the TanSat
IAPCAS retrieval algorithm, we assume that the wavenumber dependence of aerosol extinctions with
a bimodal lognormal distribution is quadratic in the retrieval of the coefficients [30,31].

Questions regarding the amount of aerosol parameter information that can be extracted and
used for correction, as well as the determination of which aerosol parameters are most suitable for
corrections, have been largely overlooked. The purpose of this study is to optimize the aerosol model
used in the CO2 retrieval algorithm to minimize aerosol-induced XCO2 retrieval errors, using TanSat
as an example and applying an information content estimation and error analysis based on the optimal
estimation theory. The a posteriori errors of XCO2 can be derived without any real retrieval process and
can be used as the criteria for choosing an optimal aerosol model from simulated TanSat measurements.

In Section 2, the theoretical basis of the optimal estimation theory and the method used to
quantify the information content and retrieval errors of CO2 and aerosols are described. The numerical
simulation of the TanSat spectrum and the assumptions necessary for the analysis are introduced in
Section 3. In Section 4, we focus on estimating the information of the aerosol model in CO2 retrieval,
including the degree of freedom for signal (DFS) and interference in XCO2. Changes in the CO2
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information and the impact of aerosols on XCO2 retrieval errors for different aerosol models are
evaluated in Section 5. Based on these analyses, the aerosol property combination groups appropriate
for the synchronous retrieval of CO2 are selected, and the aerosol-induced XCO2 errors are minimized,
while large amounts of CO2 information remain available. The discussions about several limits and
more scenarios of this study are shown in Section 7. Finally, the concluding section summarizes the
new approach and explores the possible applications of this approach to future CO2 retrievals.

2. Methodology

This research is underpinned by Rodgers’ optimal estimation theory [32]. The x is used as the
state vector consisting of n elements (such as the CO2 profile) to be retrieved from an observation
vector y, which contains m measurements (such as the hyperspectrum of the CO2 band); then, y and x
can be related as follows:

y = F(x) + ε (1)

where the forward model F describes the physical processes that link the measurements to the
atmospheric components. ε represents the errors from both the observation process and the forward
model. The purpose of retrieval is to resolve the state vector x from the satellite measurement vector y.
The retrieved state vector x̂ with the maximum the a posteriori probability can be obtained by making
the simulations (F(x)) closer and closer to the measurements (y) in iteration loops based on Bayes’
theorem. This full physical inversion algorithm has been applied to various greenhouse gas and aerosol
retrievals, both from space and the ground [5,18,30,33]. In this study instead of conducting any real
retrieval process, such as simulation retrieval, we simply apply information content and linear error
analysis, which was introduced by Rodgers [32].

2.1. Optimal Estimation Theory

Following the definition provided by [32], Sa is the error covariance matrix for the a priori state
vector, xa, Sε is the measurement error covariance matrix, and K is the weighting function matrix or
Jacobian matrix, comprised of the partial derivative of each forward model output with respect to each
retrieved parameter, i.e., Ki, j = ∂Fi/∂x j (where Ki,j represents the element in the ith row and the jth
column in matrix K, Fi is the ith simulated measurement, and xj is the jth element of the vector x).
The Jacobians identify the sensitivity of observations to the retrieved parameters. The sensitivity of the
retrieved state to the true state may be described by the averaging kernel matrix A, which is provided
by the gain function Gy:

A =
∂x̂
∂x

= GyK. (2)

Given Sa, Sε and K, the gain function Gy is specified as follows:

Gy =
(
KTS−1

ε K + S−1
a

)−1
KTS−1

ε . (3)

The trace of the matrix A represents the DFS (i.e., the number of independent pieces of information
yielded by the measurements). The closer A is to the identity matrix, the closer to perfect a retrieval will
be, which means that the retrieved state changes completely with the true state without any interference.
The averaging kernel matrix or DFS has been used to study the information content of the retrieved
elements for trace gases or aerosol remote sensing [33–39]. After assessing the averaging kernel matrix
A based on the a priori and measure error assumptions, the elements in x with greater information,
which could be better retrieved from satellite observations, are decided without the retrieval process.
In this study, the traces of the elements in matrix A corresponding to the CO2 profile and aerosol
parameters are called CO2 DFS and aerosol DFS, respectively. In addition to the information of each
retrieved element, all the a posteriori error components from different sources could be estimated by
this method, as described in the following subsection.
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2.2. Linear Error Analysis

For XCO2 retrieval, the state vector x consists of the CO2 profile u and non-CO2 elements e,
including the surface reflectance, water vapor, surface pressure and aerosol properties, which are
retrieved simultaneously:

x =

(
u
e

)
. (4)

XCO2 is defined as the retrieved CO2 profile weighted by the pressure weighting function h,
such that XCO2 = hTx̂. In fact, those elements of h corresponding to the non-CO2 profile (ê) are zero.
As shown in [16,17], the a posteriori error of XCO2 results from a list of sources, including the a priori
uncertainties of the CO2 profile, interference of the non-CO2 retrieved parameters, and inaccurate
observation processes. Thus, the uncertainty in XCO2 is expressed as follows:

∆XCO2 = hT(x̂− x) = hT(Auu − I)(u− ua) + hTAue(e− ea) + εu. (5)

Here, Auu and Aue are submatrices of A, denoting the CO2-only components, and components
characterized by the relationship between the CO2 profile u and non-CO2 elements e, respectively.
I is the identity matrix, and the subscript a represents the a priori uncertainty. The first term on the
righthand side of Equation (5) is the smoothing error derived from the CO2 profile uncertainty, and the
second term represents the interference error caused by non-CO2 components in the state vector.
εu includes all other errors. The corresponding covariance matrix for each error source can be specified
as follows. The smoothing error covariance matrix is as follows:

Ŝs = (A− I)Sa(A− I)T. (6)

The interference error is calculated using the following:

Ŝi = AueSecAue
T, (7)

where Sec describes the ensemble covariance for the non-CO2 elements, which is not necessarily equal
to the a priori error, Sa. If considering the error in XCO2 due to each state vector element (σXCO2e),
the expression is as follows:

σXCO2e, j =

{
hT(A− I)σ j, j = 1, q
hTAσ j, j = q + 1, n

, (8)

where σ j is the a priori uncertainty (or the square root of Sec for non-CO2 elements) of each state vector
element. The first q elements represent uncertainties related to the CO2 profile (i.e., the smoothing
errors) while the others are the interference error components.

Two further errors include measurement noise and the forward model parameter uncertainties,
which are not retrieved in the state vector. For measurement errors, the covariance matrix Ŝm is
described by the following:

Ŝm = GySεGT
y , (9)

where Sε is an estimation of the actual measurement errors. In our study, we only considered the
measurement noise based on the instrument signal-to-noise ratio (SNR) and the simulated spectra
of TanSat. Based on the errors of the forward model parameter Sb and the Jacobians with respect to
parameter Kb, we specified the forward model parameter error covariance as follows:

Ŝ f = GyKbSbKT
b GT

y . (10)

In fact, in some studies, the a posteriori error only includes the first three errors noted above.
The forward model and all the parameter inputs are as accurate as they can be; otherwise, we could
improve the forward model. However, for our research regarding aerosol effects, if all the parameters
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in the aerosol model are not retrieved with CO2, the uncertainties of those nonretrieved parameters
should be considered in the XCO2 retrieval error. Thus, the forward model parameter error related
to the nonretrieved aerosol parameter uncertainties is also included in our analysis. The errors in
other aerosol parameters, retrieved synchronously with CO2, are components of the interference error.
Finally, the total covariance matrix is the sum of each component:

Ŝ = Ŝs + Ŝi + Ŝm + Ŝ f . (11)

The a posteriori error variance in XCO2 is σ2
XCO2 = hTŜh, and the corresponding error variance

due to each error source can also be calculated in the same way by replacing Ŝ with another covariance
matrix, such as the XCO2 interference error σi, which is estimated by σ2

i = hTŜih. In other words,
the XCO2 a posteriori error σXCO2 is the sum of σs, σi, σm and σf. Generally, when focusing on the
XCO2 error due to aerosol parameters, those components related to aerosol parameters, both in the
interference error and the forward model parameter error, are evaluated and compared among different
aerosol models.

From the hyperspectra and Jacobians in the O2-A band, and two CO2 NIR absorption bands of the
TanSat, which is simulated by a vector linearized discrete ordinate radiative transfer model (VLIDORT),
the DFS values of both CO2 and aerosol properties in the state vector are calculated. After quantifying
4 components of the XCO2 retrieval errors, errors related to aerosol parameter uncertainties were
brought into focus. When the aerosol model in the CO2 retrieval algorithm is altered, the corresponding
DFS and retrieval errors differ, particularly those associated with aerosol properties. Accordingly,
we sought to identify the ensemble of aerosol parameters in the aerosol model that yielded the largest
amount of CO2 information with the fewest aerosol-induced XCO2 errors. Considering the complex
aerosol mixtures, four aerosol scenarios were compared according to different solar zenith angles
(SZAs). In adopting this new approach, the aerosol model is optimized to minimize the interference of
aerosols in XCO2 retrieval and could be applied to future retrievals from real data.

3. TanSat Simulations and Retrieval Assumptions

The application of the theory introduced in the preceding section initially requires measurement
and state vector definitions, as well as the error covariance matrices. Based on the characteristics
of the ACGS onboard TanSat, we used a forward model to simulate the ACGS spectra in three NIR
bands and their Jacobians with respect to each element in the state vector. For the TanSat, there are
three observation modes with different goals: nadir mode viewing nadir target, which is used for
over-land observations; sun-glint mode, which looks at the sun glint to obtain more reflected radiance
over the water body with low surface reflectance; and target mode, which is aimed at single point
observations with different angles. In this research, we only focus on CO2 retrieval in nadir mode
over land, so the satellite viewing zenith angle (VZA) is maintained at 0◦ (nadir), and the scattering
angle varies from only several SZAs. In this section, we briefly describe the instrument characteristics
and the forward model, particularly the details of the aerosol models. Subsequently, the necessary
assumptions regarding the a priori and measurement error covariance matrices are presented.

3.1. Simulation Input

The forward model used to simulate the TanSat observations consisted of a linearized
single-scattering code for spherical particles, a radiative transfer model called VLIDORT that can
compute analytical weighting functions [40], and a surface model calculating bidirectional reflectance
distribution function (BRDF), as well as modules computing the molecular Rayleigh scattering and trace
gas absorption. A similar model was used in the GOSAT and TanSat CO2 retrieval algorithms [5,30,41].
Before conducting a simulation using the forward model, some necessary inputs related to the
instrument characteristics, atmospheric states, surface and aerosol types, and observation geometry
must be understood. After inputting these parameters, the Stokes vector and their Jacobians with
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respect to each retrieved parameter (Kij), were computed, based on the radiative transfer equation
from the forward model.

For the TanSat, the hyperspectral instrument ACGS measures spectra in three bands: the O2-A
band, the CO2 weak absorption band, and the strong NIR absorption band (hereafter expressed as
the 1CO2 and 2CO2 bands). The key characteristics of ACGS are presented in Table 1. The spectral
resolution defined by the full width at half maximum (FWHM) and an instrument model are necessary
for simulating the spectrum detected by the instrument. After the line-by-line radiative transfer
calculations are completed, the original spectrum is convoluted by a Gaussian instrument line shape
described by FWHM. The atmospheric temperature, pressure, water vapor and trace gases profiles
originate from the US standard atmosphere profile of AFGL (1980). The CO2 profile is scaled by a
factor based on the near real-time CO2 data from the global CarbonTracker model [42], which also
serves as the a priori profile.

Table 1. Characteristics of Atmospheric Carbon Dioxide Grating Spectrometer (ACGS) on board
the TanSat.

Instrument Characteristics Value

Band name or number O2-A CO2 weak CO2 strong
Spectral range (nm) 758–778 1594–1624 2041–2081

Center wavelength (nm) 768 1610 2060
FWHM (nm) 1 0.04 0.12 0.16

SNR 1 360 250 180
Spatial resolution (km) 1 × 2

Scan range (o) −30~10
Swath (km) 20

1 SNR, signal-to-noise ratio; FWHM, full width at half-maximum.

For surface reflectance, we selected the BRDF model of the Moderate Resolution Imaging
Spectroradiometer (MODIS) [43,44] for typical land surfaces, including vegetation and bare soil, instead
of Lambertian albedo without angular dependence. As shown in previous studies [45], most land
surfaces could be regarded by a fraction as a linear combination of vegetation and soil. Therefore,
we believe the experiments over these two surface types are adequate for our research over land.
The three Ross-Li kernels in the MODIS BRDF describe the isotropic, volumetric, and geometric-optical
surface scatterings [46,47]. For our study, we selected one grid from the MODIS observations of
vegetation or soil as an example. The coefficients of each kernel were derived from MODIS products
and extrapolated to the center wavelength of each ACGS band, on the assumption that surface
reflectance underwent little change in each band (Table 2), which is similar to the CAPI research that
we have previously conducted [20]. The corresponding surface reflectivities implied by the BRDF
model evaluated in the direct beam, sun-surface-satellite geometries are shown in the Supplemental
Material (Figure S5).

Table 2. Bidirectional reflectance distribution function (BRDF) coefficients of three kernels in each
ACGS band defined for both soil and vegetation.

Center Wavelength (nm) fiso(λ) 1 k1(λ) 1 k2(λ) 1

768 0.8632/0.2525 2 0.1747/0.1650 0.2569/0.0226
1610 0.2107/0.4197 0.1100/0.1670 0.0286/0.0550
2060 0.1052/0.3279 0.0305/0.0826 0.0236/0.0670

1 fiso(λ), k1(λ) and k2(λ) represent amplitude factors for the Lambertian, Ross-thick and Li-sparse kernels,
respectively. Details of the BRDF equation may be found in Equation (12) in [20]. 2 The value left of the symbol “/”
is for vegetation surface and the right value is for soil
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In the simulations, aerosol particles were assumed to be spherical with a bimodal lognormal
particle size distribution (PSD) function, characterized by effective radius reff and effective variance
veff for both fine and coarse modes [34,48,49]. To describe aerosol composition, the complex refractive
indices for both aerosol modes are required in addition to the PSD parameters. A Gaussian shape is
assumed for the aerosol extinction profile, which is described by peak height and width at the aerosol
extinction half maximum [39,50]. Because human activities near the surface are the main sources
of heavy haze or air pollution and under these circumstances CO2 retrieval is significantly affected,
our focus in this study is on tropospheric aerosols with low peak heights. Although stratospheric
aerosols could also result in CO2 retrieval uncertainties, as OCO-2 studies have shown [19], most are
related to less frequent volcanic eruption or smaller AODs.

Considering the various emission sources and mixtures of aerosol particles that exist, several typical
aerosol types with different microphysical properties were simulated and compared. Based on work by
Dubovik [51], multiyear, global data from the Aerosol Robotic Network (AERONET) of ground-based
observations were used to represent distinct aerosol optical properties at key locations. Daily averaged
inversion products from the last five years at similar AERONET sites used by Dubovik [51] were
included to obtain the representative properties for four main aerosol types: urban–industrial (UI),
biomass burning (BB), desert dust (DD) and marine aerosols (MA). According to the accuracy of
individual AERONET retrievals, a decrease in aerosol information content for low aerosol loading
could result in significant uncertainties in refractive index retrievals. Therefore, only those products
with AOD at 440 nm (AOD440) larger than 0.4 for UI and BB aerosols, AOD at 1,020 nm (AOD1020) larger
than 0.3, and an Ångström exponent (between 440 and 870 nm) smaller than 0.6 for DD are involved in
our analysis, similar to the AERONET products quality document. The variability of the screened
aerosol column volume concentration (Vf and Vc), reff

f and reff
c, and veff

f and veff
c, for fine and coarse

particles at the center wavelength are presented in Figure 1. Figure 2 shows the histograms of fitted mr

and mi, assuming little variation in each band. In addition to the Vf and Vc, and reff
f and reff

c of the UI
and BB aerosols, other parameters exhibit little relationship with the AOD. Consequently, the statistics
of the aerosol properties, expressed as means ± standard deviation, or as a linear relationship with
AOD, are presented in Table 3, which is similar to Table 1 in the study by Dubovik [51]. Considering
the AOD range for each aerosol type, we assumed 1.0 AOD440 for UI and BB aerosols, 0.7 AOD1020

for DD, and 0.15 AOD1020 for MA in our simulations, and we input the corresponding microphysical
parameters using the relationships presented in Table 3. Aside from the microphysical properties,
an aerosol extinction profile with a 2-km peak height was assumed for all aerosol types, indicating
aerosol concentrations at the top of the boundary layer.
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Figure 1. The scatter plot of aerosol column volume concentration (Vf and Vc), effective radius (refff 
and reffc) and effective variance (vefff and veffc) for fine and coarse particles. The x-axis represents aerosol 
optical depth (AOD) at 440 nm for urban–industrial (UI) and biomass burning (BB) aerosols and AOD 
at 1020 nm for desert dust (DD) and marine aerosols (MA) aerosols. The red, black, light blue and 
blue points (lines, equations) are data for UI, BB, DD and MA, respectively. The straight lines are the 
results of linear fitting described by the equations in the plots. 

Figure 1. The scatter plot of aerosol column volume concentration (Vf and Vc), effective radius (reff
f

and reff
c) and effective variance (veff

f and veff
c) for fine and coarse particles. The x-axis represents

aerosol optical depth (AOD) at 440 nm for urban–industrial (UI) and biomass burning (BB) aerosols
and AOD at 1020 nm for desert dust (DD) and marine aerosols (MA) aerosols. The red, black, light blue
and blue points (lines, equations) are data for UI, BB, DD and MA, respectively. The straight lines are
the results of linear fitting described by the equations in the plots.

The model primarily simulates TanSat nadir viewing observations with a 0◦ relative azimuth
angle. To compare the dependence on the scattering angle, cases with SZAs from 20◦ to 65◦ were
simulated. The corresponding Jacobians with respect to all parameters in the bimodal aerosol model
were also output and presented in Figure 3. The distinct patterns of the various aerosol parameters
illustrate the sensitivities of the ACGS measurements to the aerosol properties, which indicateds that
some aerosol properties are independent and their information may be obtained through observations.
The correlation coefficient matrix of these aerosol parameters is calculated from the posteriori error
covariance matrix, as shown in Figure S5 in the Supplement. The high correlations between several
parameters lead to their similar information content. The Jacobians of surface BRDF coefficients are
also shown in the Supplement and not analyzed here.
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Table 3. Summary of the aerosol optical properties for both fine and coarse modes based on the inversion products of the selected Aerosol Robotic Network
(AERONET) sites 1.

Aerosol Type Urban–Industrial Biomass Burning Desert Dust Marine Aerosol

AERONET site Beijing_RADI (China) Alta Floresta (Brazil) Capo Verde (Capo Verde) Lanai (Hawaii, USA)
Time and number of
measurements (total)

2012–2017 (Jun–Sep)
306 (1119) 2

2011–2016 (Aug–Oct)
163 (374) 2

2012–2017
1012 (1012) 2

1998–2004
1167 (1167) 2

Number of measurements
(chosen) 3 168 156 401 1167

AOD range 0.4 ≤ AOD440 ≤ 3.4 0.4 ≤ AOD440 ≤ 2.8 0.3 ≤ AOD1020 ≤ 1.7 0.007 ≤ AOD1020 ≤ 0.37
mr

4 1.459 ± 0.04/1.461 ± 0.05/1.461 ± 0.06 1.450 ± 0.04/1.462 ± 0.05/1.466 ± 0.05 1.452 ± 0.04/1.448 ± 0.04/1.446 ± 0.04 1.42 ± 0.05
mi

4 0.0081 ± 0.015 /0.0059 ± 0.015/0.0052 ± 0.015 0.0078 ± 0.015/0.0069 ± 0.015/0.0066 ± 0.015 0.0009 ± 0.003/0.0003 ± 0.011/0.0002 ± 0.016 0.0005 ± 0.008
reff

f (µm)/veff
f y = 0.04AOD440 + 0.15 ± 0.04/0.57 ± 0.24 y = 0.06AOD440 + 0.11 ± 0.035/0.96 ± 0.52 0.15 ± 0.04/y = 0.07AOD1020 + 0.24 ± 0.14 0.16 ± 0.03/0.75 ± 0.19

reff
c (µm)/veff

c y = 0.09AOD440 + 2.41 ± 0.30/0.32 ± 0.12 y = 0.22AOD440 + 2.21 ± 0.38/0.24 ± 0.14 1.64 ± 0.16/y = 0.11AOD1020 + 0.38 ± 0.12 1.99 ± 0.26/0.20 ± 0.10
Vf (µm3/µm2) y = 0.13AOD440 ± 0.02 y = 0.13AOD440 + 0.01 ± 0.02 y = 0.04AOD1020 + 0.01 ± 0.01 y = 0.13AOD1020 ± 0.007
Vc (µm3/µm2) y = 0.17AOD440 + 0.05 ± 0.06 y = 0.18AOD440 + 0.04 ± 0.06 y = 0.79AOD1020 − 0.03 ± 0.055 y = 0.74AOD1020 + 0.01 ± 0.009

1 Most values are accompanied by a standard deviation following the symbol “±”. The superscript f represents the parameter for fine mode and c represents that for coarse mode.
2 The numbers in brackets are the total numbers in the whole year, and those outside were collected over several months, following Dubovik [46]. 3 The numbers are those following
filtering to guarantee the accuracy of aerosol refractive index retrieval, using the criteria referenced in the main text. 4 The mr and mi are at 768 nm, 1610 nm and 2060 nm, respectively,
fitted by the products at four observed AERONET wavelengths, based on Equations (12) and (13).
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Figure 3. The simulated weighting functions of each aerosol parameter at three ACGS bands. The rows from top to bottom represent different aerosol parameters:
AOD, peak height of aerosol profile (Hp), width of aerosol profile (Hw), effective radius for fine particles (reff

f), effective variance for fine particles (veff
f), effective

radius for coarse particles (reff
c), effective variance for coarse particles (veff

c), fine mode fraction (fmf), real part of refractive index for fine particles (mr
f), imaginary

part of refractive index for fine particles (mi
f), real part of refractive index for coarse particles (mr

c), and imaginary part of refractive index for coarse particles (mi
c).

Three columns from left to right show different bands: O2 A band, 1.6 µm CO2 absorption band (1CO2) and 2.06 µm CO2 absorption band (2CO2). Four colors
represent four types of aerosols: UI, BB, DD and MA.
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3.2. The State Vector Defination

The state vector x for CO2 retrieval consists of the CO2 mixing ratio profile (u) and non-CO2

elements (e), including the H2O scaling factor, surface pressure, aerosol parameters, and surface BRDF
factors. The H2O mixing ratio profile is scaled by a factor to describe the variation in the H2O column
amount while ignoring changes in profile shape, as in Chen, Yang, Cai, Liu and Spurr [21]. Table 4
summarizes all possible elements included in the state vector, where the aerosol parameters were
composed of the 14 parameters used in our previous analysis [20] and two further aerosol profile
parameters. In fact, for different aerosol models, different parts of these aerosol parameters are chosen
for the state vector, while the remainder serve as the forward model parameters.

Table 4. The state vector for TanSat CO2 retrieval and the corresponding a priori uncertainty.

Parameter Number of
Parameters a priori Uncertainty (1σ)

CO2 (ppm) Mixing ratio profile 15
(21.28, 16.7, 13.3, 9.86, 8.0,

7.09, 6.5, 6.0, 5.53, 4.79, 3.87,
2.75, 1.96, 1.84, 3.72)

H2O (ppm) Scaling factor of mixing ratio profile 1 50%
Surface pressure (hPa) Pressure at surface layer 1 1%

Aerosol

Aerosol optical depth (AOD) 1 100%
The effective radius (reff) of particle size

distribution (PSD) for each mode 1 × 2 From AERONET

The effective variance (veff) of PSD for
each mode 1 × 2 From AERONET

The peak height of aerosol profile (Hp) 1 100%
The half width of aerosol profile (Hw) 1 100%

Fine mode fraction (fmf) 1 100%
Parameters for real part of refractive

index for each mode (ar, br) 1 2 × 2 From AERONET

Parameters for imaginary part of
refractive index for each mode (ai, bi) 1 2 × 2 From AERONET

Surface BRDF coefficient of Lambertian kernel in
each band 1 × 3 20%

1 ar, br, ai and bi correspond to those parameters in Equations (12) and (13).

As is consistent with previous analyses, the wavelength dependence of the real and imaginary
parts of the refractive index (mr, mi) are also assumed to be exponent functions, following Dubovik
and King [52]:

mr(λ) = ar ∗ λ
br , (12)

mi(λ) = ai ∗ λ
bi . (13)

where the ar, br, ai and bi values are the fitting coefficients and were included in the state vector.
The derivations of the Jacobians were presented in a previous study [53]. The Jacobians of these
coefficients, rather than the Jacobians of the refractive index, were involved in CO2 retrieval.

3.3. The A Priori and Measurement Error Assumptions

In addition to the simulated spectra, error analysis requires characterization of the a priori error
covariance matrix Sa and the measurement error covariance matrix S∈. The a priori uncertainty of each
retrieved parameter, described as a standard deviation (1σ), is summarized in Table 4. To prevent any
unreasonable perturbation of the retrieved CO2 profile, we imposed smoothness constraints on the
CO2 profile via nonzero off-diagonal elements in the a priori error covariance matrix, SaCO2 . The square
roots of the diagonal elements of SaCO2 from the surface to the top of atmosphere (TOA) are presented in
Table 4 and expressed as a vector σaCO2. Figure 4 presents the correlation coefficient matrix (R) of the
CO2 concentrations in 15 layers, similar to [18]. In other words, SaCO2 is calculated by RσaCO2σaCO2

T.
Overall, the total a priori uncertainty of XCO2 is scaled to approximately 5.6 ppm. The a priori error of
water vapor column concentration is assumed to be 50% to describe its large uncertainty. The higher
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accuracy of the surface pressure results in a smaller uncertainty. While the a priori uncertainties of
AOD, aerosol profile parameters, and fine mode fraction (fmf) (100%) for different aerosol types were
assumed to be equivalent, and the standard deviation of the inversion products from four AERONET
sites (Table 4) were used as the a priori uncertainties of the refractive index coefficients (ar, br, ai and
bi) and PSD parameters (reff and veff). Considering the crucial role of the Lambertian kernel in the
three-kernel BRDF surface model, we only retrieved the BRDF coefficient for the Lambertian kernel at
each band, and the a priori uncertainty was assumed to be 20%. Further analysis of the influences of
different surface reflectances on aerosol interference are shown in the Supplemental section and not
presented in the main text. Similar to the assumptions in Dubovik, et al. [54], Xu and Wang [33] and
Chen, Wang, Liu, Xu, Cai, Yang, Yan and Feng [20], we believe that the a priori errors for non-CO2

retrieved parameters are independent from one another, so SaCO2 is defined as a diagonal matrix.
Combined with SaCO2 , which is defined in Table 4 and Figure 4, the total a priori error covariance matrix
Sa may be expressed as follows:

Sa =

[
SaCO2 0

0 Saother

]
. (14)
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Because the calibration and systematic errors could be removed from the retrieval algorithm to
some extent, only measurement noise was considered in this study, which is calculated by the spectra
signal and corresponding SNR in each band as follows:

Noise =
SpectraACGS

SNRACGS
. (15)

The corresponding SNR could be interpolated from the SNR curves provided by the experiments
conducted in the laboratory (SNR curves for all bands are shown in the Supplement). Similarly,
measurement noise was also assumed to be noncorrelated, so the error covariance matrix Sε is a
diagonal matrix with the square of noise as the diagonal elements.
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4. Aerosol Parameters in CO2 Retrieval

Based on the method detailed in Section 2 and the assumptions presented in Section 3,
the information of aerosol parameters described as DFS and their resulting XCO2 retrieval errors were
calculated. In this section, we first include all 16 parameters of the aerosol model in the state vector of
CO2 retrieval, and therefore, the aerosol property uncertainties only resulted in interference errors
rather than in forward model parameter errors for XCO2. The interference errors caused by each
aerosol parameter were estimated and compared. In addition to the XCO2 error analysis, we also
considered how many independent aerosol parameters may be retrieved simultaneously with CO2.
To address this question, the DFS of all aerosol parameters for the four aerosol types and different
SZAs were calculated. As a result, the aerosol parameters with significant information from the TanSat
observations were selected. This conclusion is also available concerning the aerosol model parameters
that result in greater errors in the XCO2 retrieval.

4.1. Aerosol-Induced XCO2 Retrieval Errors

The interference errors in XCO2 for each aerosol parameter of the four aerosol types (calculated
by Equation (8)) are presented in Figure 5a. These errors from different aerosol parameters range from
less than 0.1 to 0.8 ppm. Overall, the interference errors due to reff and veff for both fine and coarse
modes, as well as fmf and ar for fine mode, exceed those for the other parameters, reaching 0.2 ppm
or more at 20◦ SZA. Because of the dominance of large particles, the coarse mode PSD parameters of
DD result in larger uncertainties than the fine particle parameters, while the opposite is the case for
UI and BB aerosols, where smaller particles predominate. Regarding the refractive index coefficients,
their interference errors were less than 0.2 ppm at 20◦ SZA, and even less than 0.1 ppm for MA. These
refractive index-related errors ranged from 0.1 to 0.2 ppm for DD aerosols, which was slightly more
than for the other aerosol types. When the interference errors at different SZAs were compared, it was
observed that at a smaller SZA, the errors from most aerosol parameters were larger. The reason for
this is that more information is allocated to the CO2 profile than to the aerosol properties for longer
light paths at larger SZAs, so there is a reduction in the impact of the aerosol parameter uncertainties
on XCO2 retrieval (Equation (8)).

When the interference errors (σi) from all aerosol parameters are summed (σ2
i = hTŜih), the aerosols

will induce a 0.2 to 1.0 ppm error in the XCO2 retrievals, depending on the aerosol type and the
observation geometry (Figure 5b). Comparison of the four aerosol types reveals that the UI, DD and
BB aerosols have greater effects on XCO2 retrieval due to their larger AODs, with an interference error
of greater than 0.3 ppm. The MA only cause interference errors of 0.2 to 0.3 ppm, as MA has the lowest
aerosol loading. When the SZA is increased, the interference of the aerosols with XCO2 is weakened,
except for MA, owing to the longer light paths. For DD, this pattern changes when the SZA is 65◦,
which is related to the scattering phase matrix. Furthermore, for a soil surface with a larger reflectance,
the interference errors in XCO2 caused by aerosol parameters are slightly smaller (Figure S2 in the
Supplement), indicating that aerosol scattering has a larger impact due to a lower reflected radiation
signal from the satellite.
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Figure 5. The interference errors in XCO2 from the aerosol parameters. (a) Interference error from
each aerosol parameter for four aerosol types (different colors) at 20◦ (star lines) and 50◦ solar zenith
anlge (SZA) (dot lines) over vegetation. The x-axis is the interference error and the y-axis represents
16 aerosol parameters. (b) Total interference error from all aerosol parameters at four SZAs for different
aerosol types over vegetation.

In summary, the aerosol parameter uncertainties constitute a significant component of XCO2

retrieval uncertainty, depending on the aerosol type and observation geometry, or the scattering phase
matrix in different scattering angles. This finding presents a challenge that must be overcome before
XCO2 retrieval precision can be improved.
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4.2. Aerosol Information

Although all 16 aerosol parameters were included in the CO2 retrieval for our analysis, it is
possible that TanSat NIR hyperspectral measurements only contain sufficient information for certain
aspects of these parameters. Therefore, we verify the DFS of each aerosol parameter in the CO2 retrieval
shown in Figure 6 to determine the parameters that could be retrieved simultaneously with CO2.
The total DFS of the aerosol parameters for the UI, BB, and DD is six to seven, indicating that around
six or seven independent aerosol parameters may be retrieved together with CO2. For MA, only four
to five retrievable aerosol parameters exist. A comparison of the DFS among the aerosol parameters
reveals that the DFSs of the AOD, Hp, and Hw (i.e., the first three) are large (mostly close to 1.0) for all
aerosol types at any viewing geometry, while the information concerning the other parameters varies
significantly according to aerosol type and observation geometry. In any case, it appears that AOD, Hp,
and Hw can be retrieved from the ACGS hyperspectral observations. Additionally, the aerosol DFS
over soil only has a 0.1–0.2 difference from that of a vegetation surface. There is almost no distinction in
the decision of how much aerosol parameter information could be derived from satellite measurements
over different surface types. Therefore, the figures over soil are not shown in the main text, but are
provided in the Supplementary Materials.

Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 30 

 

lowest aerosol loading. When the SZA is increased, the interference of the aerosols with XCO2 is 
weakened, except for MA, owing to the longer light paths. For DD, this pattern changes when the 
SZA is 65°, which is related to the scattering phase matrix. Furthermore, for a soil surface with a 
larger reflectance, the interference errors in XCO2 caused by aerosol parameters are slightly smaller 
(Figure S2 in the Supplement), indicating that aerosol scattering has a larger impact due to a lower 
reflected radiation signal from the satellite. 

In summary, the aerosol parameter uncertainties constitute a significant component of XCO2 
retrieval uncertainty, depending on the aerosol type and observation geometry, or the scattering 
phase matrix in different scattering angles. This finding presents a challenge that must be overcome 
before XCO2 retrieval precision can be improved. 

4.2. Aerosol Information 

Although all 16 aerosol parameters were included in the CO2 retrieval for our analysis, it is 
possible that TanSat NIR hyperspectral measurements only contain sufficient information for certain 
aspects of these parameters. Therefore, we verify the DFS of each aerosol parameter in the CO2 
retrieval shown in Figure 6 to determine the parameters that could be retrieved simultaneously with 
CO2. The total DFS of the aerosol parameters for the UI, BB, and DD is six to seven, indicating that 
around six or seven independent aerosol parameters may be retrieved together with CO2. For MA, 
only four to five retrievable aerosol parameters exist. A comparison of the DFS among the aerosol 
parameters reveals that the DFSs of the AOD, Hp, and Hw (i.e., the first three) are large (mostly close 
to 1.0) for all aerosol types at any viewing geometry, while the information concerning the other 
parameters varies significantly according to aerosol type and observation geometry. In any case, it 
appears that AOD, Hp, and Hw can be retrieved from the ACGS hyperspectral observations. 
Additionally, the aerosol DFS over soil only has a 0.1–0.2 difference from that of a vegetation surface. 
There is almost no distinction in the decision of how much aerosol parameter information could be 
derived from satellite measurements over different surface types. Therefore, the figures over soil are 
not shown in the main text, but are provided in the Supplementary Materials. 
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DFS of all aerosol parameters.
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Overall, four to seven pieces of independent aerosol information could be retrieved from the
TanSat observations for the different aerosol types. In other words, the simultaneous retrieval of four
to seven aerosol parameters during CO2 retrieval is more reasonable than retrieving all 16 aerosol
parameters. If the aerosol parameters in the CO2 retrieval state vector are combined in different ways,
the induced interference errors may also change; additionally, the forward model parameter errors
from the nonretrieved aerosol parameters should be considered. Therefore, even though the number
of retrievable aerosol parameters is determined, the requirement to select and retrieve four to seven
aerosol parameters simultaneously is also a significant problem. The impact of changing the aerosol
models used in the XCO2 retrieval is analyzed in the next section.

5. The Impact of Different Aerosol Models

As stated in the previous section, the retrieval of different parameters for the aerosol model will
affect XCO2 retrieval, which can be quantified as the CO2 information and the aerosol-induced retrieval
errors in the XCO2. In this section, the CO2 information is first estimated for the synchronous retrieval
of different aerosol models with different parameters. Furthermore, all components of the XCO2

retrieval error, including the smoothing, measurement, interference, and forward model parameter
errors (as in Section 2.2), are discussed when the aerosol parameters included in the state vector change.
To underline the errors caused by aerosols, the interference errors and forward model parameter errors
associated with the aerosol parameters are compared among the different retrieval scenarios. Finally,
the guiding principle for optimizing the aerosol model for correction of the aerosol effects on XCO2

retrieval is determined.

5.1. DFS of CO2

Based on the theory and equations set out in Section 2, the averaging kernel matrix A of CO2

retrieval is calculated. The diagonal elements of A correspond to the DFS of each parameter in the state
vector; then, those elements related to the CO2 profile are summarized as CO2 DFS. The dependence of
CO2 DFS on the number of aerosol parameters to be retrieved is shown in Figure 7 for the different
aerosol types. When the number of aerosol parameters to be retrieved is fixed, various combination
groups of parameters are available. Each whisker-box in Figure 7 represents the statistical distribution
of DFS for all groups, with a constant number of retrieved aerosol parameters.



Remote Sens. 2019, 11, 1061 19 of 29Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 30 

 

 
Figure 7. XCO2 DFS for four types of aerosols when the number of retrieved aerosol parameters ranges 
from 1 to 16. The SZA is 20° and the surface type is vegetation. For each box, the central mark indicates 
the median, and the bottom and top edges of the box indicate the 25th (q1) and 75th (q3) percentiles, 
respectively. The whiskers extend from q3+4×(q3−q1) to q1−4×(q3−q1), and the remaining data 
extending this range are plotted as outliers using the ‘+’ symbol. 

Figure 7 shows that the DFS of CO2 ranges from 1.4 to 1.9 when different aerosol parameters are 
retrieved, suggesting that fewer than two CO2 profiles could be retrieved. A comparison of the four 
aerosol types reveals that the CO2 DFS for DD was the largest, at 1.6–1.9 DFS, while slightly less CO2 

DFS for UI and BB shows the scramble for more aerosol DFS due to the larger AOD. As the number 
of aerosol parameters involved in the CO2 retrieval changes from 1 to 16, the mean CO2 DFS 
decreases, especially in the case of DD with a reduction of approximately 0.3 DFS. In contrast, the 
CO2 DFS for MA is only slightly reduced, by approximately 0.1. Because the range of the CO2 DFS 
expands when there are more aerosol parameter combination groups with the same number of 
parameters, careful consideration must be given to the selection of parameters. In conclusion, if more 
aerosol parameters are added during the retrieval, the CO2 information will decrease to the detriment 
of the XCO2 retrieval. Therefore, in combination with the aerosol information analysis presented in 
Section 4.2, it is more appropriate for the CO2 retrieval to be limited to four to seven simultaneous 
aerosol parameters. The question of which aerosol parameters are most appropriate for retrieval will 
be discussed in the following section. 

5.2 Components of XCO2 Retrieval Errors 

To assess the impact of different aerosol combination groups while maintaining a constant 
number of parameters, all components of the XCO2 retrieval error are compared in Figure 8; the 
number of aerosol parameters to be retrieved varied from four to seven, which was in accordance 
with the findings above. Each subfigure illustrates the distribution of the errors for all retrieved 
aerosol parameter combination groups. Both the forward model parameter error and the interference 
error are assumed to be aerosol-related only.

Figure 7. XCO2 DFS for four types of aerosols when the number of retrieved aerosol parameters
ranges from 1 to 16. The SZA is 20◦ and the surface type is vegetation. For each box, the central mark
indicates the median, and the bottom and top edges of the box indicate the 25th (q1) and 75th (q3)
percentiles, respectively. The whiskers extend from q3+4×(q3−q1) to q1−4×(q3−q1), and the remaining
data extending this range are plotted as outliers using the ‘+’ symbol.

Figure 7 shows that the DFS of CO2 ranges from 1.4 to 1.9 when different aerosol parameters
are retrieved, suggesting that fewer than two CO2 profiles could be retrieved. A comparison of the
four aerosol types reveals that the CO2 DFS for DD was the largest, at 1.6–1.9 DFS, while slightly
less CO2 DFS for UI and BB shows the scramble for more aerosol DFS due to the larger AOD. As the
number of aerosol parameters involved in the CO2 retrieval changes from 1 to 16, the mean CO2

DFS decreases, especially in the case of DD with a reduction of approximately 0.3 DFS. In contrast,
the CO2 DFS for MA is only slightly reduced, by approximately 0.1. Because the range of the CO2

DFS expands when there are more aerosol parameter combination groups with the same number of
parameters, careful consideration must be given to the selection of parameters. In conclusion, if more
aerosol parameters are added during the retrieval, the CO2 information will decrease to the detriment
of the XCO2 retrieval. Therefore, in combination with the aerosol information analysis presented in
Section 4.2, it is more appropriate for the CO2 retrieval to be limited to four to seven simultaneous
aerosol parameters. The question of which aerosol parameters are most appropriate for retrieval will
be discussed in the following section.

5.2. Components of XCO2 Retrieval Errors

To assess the impact of different aerosol combination groups while maintaining a constant number
of parameters, all components of the XCO2 retrieval error are compared in Figure 8; the number of
aerosol parameters to be retrieved varied from four to seven, which was in accordance with the findings
above. Each subfigure illustrates the distribution of the errors for all retrieved aerosol parameter
combination groups. Both the forward model parameter error and the interference error are assumed
to be aerosol-related only.
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Figure 8. The histograms of the smoothing errors (a–d), measurement errors (e–h), forward model parameter errors (i–l) and interference errors (m–p) for four to seven
retrieved aerosol parameters (columns from left to right), as well as the comparison of the interference error and forward model parameter error in corresponding
cases (q–t). When a different number of retrieved aerosol parameters is selected, the three parameters of AOD, the peak height and width of aerosol profile (Hp and
Hw) are always included. Different colorful bars and circles represent the four aerosol types. The dashed lines in (q–t) illustrate the interference errors equal to the
forward model parameter errors.
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Generally, the smoothing, measurement, and interference errors fall within a similar range that
is smaller than the forward model parameter error. Although the total number of possible aerosol
combination groups (shown in Figure 8) increases as the number of retrieved aerosol parameters
changes from four to seven, there is a greater fraction of groups with larger smoothing, measurement
and interference errors. In contrast, the number of groups increases similarly in all error bins in terms
of the forward model parameter error, due to the larger error range.

When the number of retrieved aerosol parameters is held constant among the different aerosol
parameter combination groups, most show smaller errors, particularly in the case of MA. In contrast,
in the DD case, more group errors are close to the median, especially for the forward model parameter
error (Figure 8i–l). On average, all error types are smaller for MA than for other aerosol types,
owing to the low AOD. For UI and BB aerosols, the errors are slightly larger, while in the DD case,
more groups have larger forward model parameter errors. That is, the distribution of the CO2 forward
model parameter error for DD is more uniform. The distinction of the forward model parameter
errors between different aerosol parameter combination groups is more pronounced than other error
components (Figure 8i–l). Additionally, the interference errors exhibit significantly more differences
in response to changes in the retrieved aerosol parameters than other errors, especially when more
parameters are retrieved (Figure 8p). Overall, the distribution of the interference error changes the
most when the number of retrieved aerosol parameters increases.

We also identified errors related to aerosol parameter uncertainties, i.e., the forward model
parameter and interference errors, and compared these errors among the parameter combination
groups (Figure 8q–t). The interference error was always lower than 2 ppm, whereas the forward model
parameter error ranged from less than 1 ppm to more than 12 ppm. The forward model parameter error
always far exceeds the corresponding interference error, except in some cases when six or seven aerosol
parameters are retrieved. Therefore, the total retrieval error of XCO2 induced by aerosols depends
primarily on the forward model parameter error. Although more cases show larger interference
errors when retrieving more aerosol parameters, there remain more aerosol parameter combination
groups with small forward model parameter errors. Thus, the retrieval of seven aerosol parameters is
better for reducing the total XCO2 retrieval error associated with aerosols (five for MA). Additionally,
the forward model error exhibits a larger range for DD and UI than other aerosol types, indicating a
greater impact on CO2 retrieval.

In conclusion, the effect of DD on CO2 retrieval exceeds that of other aerosol types. The stronger
scattering of DD results in larger interference for CO2 retrieval error. To reduce the aerosol effect
on CO2 retrieval, we sought to identify an aerosol model that would permit a large amount of CO2

information while simultaneously minimizing the total XCO2 errors generated from the aerosol
parameters, which include both the forward model error and interference error. Considering that
fewer aerosol-induced retrieval errors of XCO2 occur in cases with more retrieved aerosol parameters,
the retrieval of seven aerosol parameters is recommended for UI, BB and DD, but only five parameters
are recommended for MA due to the lower amounts of aerosol information. When the number of
aerosol parameters to be retrieved has been determined, the selection of different aerosol parameter
combination groups depends on the comparison of the sum of the forward model parameter errors
and the interference errors.

6. Optimization of the Aerosol Model

Considering the large amounts of AOD, Hp, and Hw information in all cases (Section 4.2),
these three parameters were retrieved, and the other parameters remained to be determined. To derive
the aerosol model with the most appropriate seven parameters for retrieval (five for MA), the forward
model parameter and interference errors for the different aerosol parameter combination groups
including AOD, Hp, and Hw were compared (Figure 9). Given the small range of CO2 DFS in these
groups (Figure 7), the XCO2 retrieval error is used as the selection criteria. We sought to select those
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aerosol parameter groups with the lowest XCO2 errors; thus, only the XCO2 aerosol-induced errors
under 4 ppm are presented in Figure 9.
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Figure 9. Comparison of interference and forward model parameter errors for different aerosol
parameter groups in Figure 8 when the number of retrieved aerosol parameters is maintained at seven
for UI, BB and DD aerosol, and five for MA, with the total errors from aerosol parameters being smaller
than 4 ppm. The left column is for vegetation (a,c,e,g) and the right column is for soil (b,d,f,h). The four
rows represent the four types of aerosols. The x-axis represents the index of different aerosol parameter
groups and the numbers at the end of the x-axis are the total number of groups.

In Figure 9, for vegetation, it can be seen that although the forward model parameter errors
of most of the aerosol parameter combination groups exceed the corresponding interference errors
(Figure 8q–t), there are still some groups with errors that are close to the interference errors, particularly
in the cases of UI and BB aerosols. However, with regard to DD and MA, the total XCO2 errors are
dominated by the forward model parameter error in nearly all groups (Figure 9c,d). The number of
aerosol parameter combination groups showing lower total XCO2 aerosol-induced errors for DD is
207, which is significantly less than for the UI (n = 537) and BB (n = 515) aerosols. The total number of
combination groups for MA is only 78, which is less than that for the other three aerosol types, due to
only five aerosol parameters being retrieved. In other words, the aerosol-induced XCO2 errors of all
MA groups are smaller than 4 ppm, and most of the errors are under 2 ppm. Additionally, the lowest
error of DD combination groups is under 2 ppm, and those for UI and BB aerosols are close to 2 ppm.

Comparing two surface types, the aerosol-induced XCO2 errors over soil are apparently lower than
those over vegetation for the BB, DD and MA aerosols at only half. Additionally, regarding the value
of the total error, a greater number of groups with low errors is found over soil than over vegetation.
However, for UI aerosol, most groups have similar XCO2 errors over soil as those over vegetation,
which is approximately 1.5 to 3.5 ppm. Furthermore, for the soil surface, the number of groups with
errors that are lower than 4 ppm is also less at only 407. Notably, the lowest XCO2 error over soil is
lower than that over vegetation at only approximately 0.5 ppm (Figure 9a,b). This finding means that
for the UI aerosol over soil, the choice of the aerosol parameter combination group is more important
for reducing the XCO2 error. For the other three aerosol types, the XCO2 errors over vegetation still
serve as the main criteria for selecting aerosol groups that are suitable for all land surfaces.
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As Figure 9 illustrates, we sought to select the aerosol parameter combination group with the
lowest number of XCO2 aerosol-induced errors for all aerosol types and all surface types. All of
the aerosol parameter combination groups shown in Figure 9 were sorted from low to high by the
total number of XCO2 aerosol-induced errors for each aerosol type. The first combination group was
chosen as the best aerosol model for the CO2 retrieval algorithm. Table 5 summarizes the first few
combination groups and their total aerosol-induced XCO2 retrieval errors for all aerosol types and
both surfaces. For MA, it would evidently be better to retrieve five aerosol parameters, namely, AOD,
Hp, Hw, reff

c, ar
c, for the CO2 retrieval algorithms with an aerosol-induced XCO2 error of less than

0.5 ppm. For the other three types of aerosols, three aerosol parameter combination groups with low
errors were selected as Groups 1, 2, and 3 (Table 5). In these groups, six of the seven aerosol parameters
were identical: AOD, Hp, Hw, reff

c, ar
f and ar

c; this finding indicates that in addition to the AOD
and the aerosol profile, the size parameter of the coarse aerosol and the real part parameter of the
refractive index of both modes should also be retrieved. There was a little difference among the groups
in the remaining aerosol parameters, which were fmf, size parameter of fine mode, and the other
refractive index coefficient. In a comparison of the total aerosol-induced XCO2 errors, the differences
in UI and DD among Groups 1–3 were less than 0.1 ppm and more than 0.1 ppm for BB. Comparing
different surface types, the errors over soil for the three groups are apparently smaller than those over
vegetation except for UI. As we demonstrated in Figure 9, the XCO2 error caused by the UI aerosol
over soil shows a larger difference to even more than 0.8 ppm among Groups 1–3 when the aerosol
group changes. Despite the lower error of Group 2 for UI and DD over soil than Group 1, BB aerosol
leads to greater XCO2 uncertainty for the vegetation surface, whcih exceeds 2 ppm. Considering the
generality, we recommend Group 1 as the optimal aerosol modelto maintain the aerosol-induced XCO2

error below 1.7 ppm for all three aerosol types and both surface types.
If additional information concerning aerosol size or optical properties are obtained prior to retrieval,

such as from CAPI measurements or MODIS inversion products, so that DD may be distinguished
from UI and BB, Group 4 is recommended. In this group, two different aerosol parameters, including
the size and refractive index parameter, are selected for DD and the other two aerosol types, as shown
in Table 5. Consequently, the parameters pertaining to fine mode aerosols for UI and BB, such as br

f

and veff
f, are replaced by similar parameters but of coarse mode for DD as the optimal model, which is

mainly due to the large particle size of the DD aerosol. Accordingly, the total aerosol-induced XCO2

errors are clearly reduced for DD and UI.

Table 5. The aerosol parameter combination groups for each aerosol type with the lowest total
aerosol-induced XCO2 retrieval and corresponding errors.

Aerosol Types Group 1 Group 2 Group 3 Group 4

Retrieved
aerosol

parameters 1

UI
(AOD, Hp, Hw, veff

f,
reff

c, ar
f, ar

c)
(AOD, Hp, Hw, reff

c,
ar

f, br
f, ar

c)
(AOD, Hp, Hw, reff

c,
fmf, ar

f, ar
c)

(AOD, Hp, Hw, veff
f,

ar
f, br

f, ar
c)BB

DD
(AOD, Hp, Hw, reff

c,
ar

f, ar
c, br

c)
MA (AOD, Hp, Hw, reff

c, ar
c)

Total
aerosol-induced
XCO2 retrieval

errors (ppm)

UI 1.1986/1.3702 2 1.2907/0.5883 1.2463/1.4326 1.1998/0.7986
BB 1.5241/0.7762 2.0871/0.9462 1.9109/0.9569 1.6671/1.0424
DD 1.6421/1.1227 1.5595/1.0250 1.6371/1.1246 1.0138/0.9929
MA 0.4821/0.4836

1 The aerosol parameter abbreviations are consistent with those in Figure 5a. 2 The values front of the symbol “/”
represent results for vegetation surface and those behind are for soil surface.

Finally, AOD and two aerosol profile parameters (Hp and Hw), as well as one particle size parameter
(reff

c) and one real part coefficient of refractive index (ar
c) for coarse particles are recommended for the

CO2 retrieval state vector for all aerosol types to minimize aerosol-induced errors. Owing to a larger
amount of aerosol information for the other three aerosol types except MA, two more parameters of
fine particles including size and real refractive index parameters (veff

f and ar
f) could also be retrieved.

If additional aerosol information can be obtained from other satellites or instruments to distinguish



Remote Sens. 2019, 11, 1061 24 of 29

coarse dust aerosols, the optimal aerosol parameter combination for DD contains the size parameter
and real refractive index coefficient for coarse mode (reff

c and br
c) rather than fine particles (veff

f

and br
f) for the other three types. Under these circumstances, a further decrease is observed in the

aerosol-induced XCO2 retrieval errors for DD.

7. Discussions

In this paper, we only consider the mean aerosol loading with constant AOD for each aerosol
type, according to the statistical analysis of AERONET inversion products. Would the change in
AOD describing different air pollution levels for one aerosol type influence the optimal aerosol model
selection for CO2 retrieval? To address this issue, the information and a posteriori error are compared
when AOD ranges from 0.1 to 2.0 at 440 nm (Figure 10). The aerosol DFS becomes larger as the
AOD increases, whereas there is a threshold of aerosol DFS. As soon as the aerosol DFS reaches the
threshold, increasing the AOD could add little DFS (8.0 DFS in Figure 10f). Generally, the change in the
aerosol DFS caused by AOD variation is not more than 1.0 (Figure 10f). Furthermore, comparing the
DFSs of different aerosol parameters (Figure 10a–e), each parameter has a larger DFS when the AOD
increases, whereas those parameters with larger DFSs change little with AOD. Therefore, although,
adding one more retrieved aerosol parameter is more appropriate in those cases with 1.0 more DFS,
the optimal aerosol model in this study has already accounted for the most greatest amount of XCO2

retrieval errors from aerosols. If the AOD is small and shows thin aerosol pollution, the interference of
aerosol uncertainties for CO2 retrieval does not require much focus. Considering the generality of the
aerosol model, the variation in AOD would not interfere with the selection of the retrieved aerosol
parameters group.
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Figure 10. The DFS of each aerosol parameter (a–e) for different AODs over vegetation similar to Figure 6.
(f) shows the variation in the total aerosol DFS with the change in AOD from 0.1 to 2.0 at 440 nm.

Similarly, the aerosol vertical profile mainly affects the total aerosol DFS and the profile parameter
information. Given that the height of the aerosol layer changes the absorption of O2, the measurements
in the TanSat O2-A band always contain a large amount of information about aerosol profile parameters,
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no matter where the aerosol is concentrated. Different aerosol profiles have less impact on microphysical
parameters information than different aerosol types and their interference errors in XCO2, meaning
that not much attention to the aerosol profile is required when choosing the optimal aerosol model.
Considering the limited aerosol information contained in the spectra, an aerosol model with a fixed
vertical distribution shape is used instead of retrieving aerosol loading at each layer, and thus,
more information would be distributed to the microphysical parameters. In addition, this research
focuses on TanSat nadir observations over land, which is assumed to be a combination of both soil and
vegetation surfaces. There are still a few areas of land covered by snow or ice with higher reflectances,
especially at high latitudes. Based on comparisons of vegetation and soil surfaces, uncertainties in XCO2

caused by aerosols decrease as surface reflectance increases. Thus, over snow or ice, the interference
from aerosols in CO2 retrieval is so small that this interference would not affect our decision to use the
optimal aerosol model. For some water surfaces on land with lower surface reflectance, the radiation
reflected by the surface is so small that it is not used to retrieve CO2. Furthermore, only observations
under clear sky are considered in this study, which is a simple assumption for real atmosphere.
Based on the cloud contamination model involving cirrus, which has been implemented in the TanSat
CO2 retrieval algorithm, we do not consider complex situations involving thin clouds here.

With the methodology used in our study, we analyzed the information content in measured
spectra and estimated the retrieval errors directly from the spectrum residual and the status of the
measurements and atmosphere, without a practical retrieval process. Compared with previous
studies [24,55], the aerosol DFS in our study is larger depending on our the a priori and measurement
error assumption, as well as the fixed aerosol model. The sensitivities of the spectrum to the
microphysical aerosol parameters included in this study show distinct patterns with CO2, also causing
larger information of aerosol parameters. The strong constrain and low uncertainty of surface model is
another reason for large aerosol DFS. Even though, we believe our research still caught the relationship
between aerosol model and CO2 retrieval. One the other hand, although this optimal estimation
method has a limitation of an approximately linear assumption within the region bounded by its
uncertainty, this method has been used in many studies related to trace gases and aerosol retrieval
and has achieved a good performance in algorithm design and error analysis, and these previous
studies include those of Hasekamp and Landgraf [34], Connor et al. [17], Martynenko et al. [36],
Frankenberg et al. [37], and Connor et al. [16]. Similar to Connor et al. [16], an additional kind of error,
namely, the forward model parameter error, is added in our analysis to depict the distinction between
the simulation and retrieval setup.

8. Conclusions

In this study, we have focused on optimizing the aerosol model for the CO2 retrieval algorithm
based on TanSat observations, which was in accordance with information estimation and error
analysis. The hyperspectra of TanSat’s three NIR bands, and the corresponding weighting functions
with respect to the retrieved parameters, were simulated by a forward radiative transfer model,
VLIDORT. Our simulations considered four types of aerosols, comprising fine and coarse particles
with different microphysical properties over two types of land with different surface reflectance,
vegetation and soil. These aerosol microphysical properties were obtained from the most recent
five-year AERONET inversion products for several sites, similar to our previous study. The surface
reflection was characterized by the Ross–Li BRDF model using MODIS products. The information
content of the parameters retrieved from observations was represented by the DFS. The a posteriori
error in XCO2 was composed of four components, including the smoothing error, measurement error,
forward model parameter error, and interference error, which could be calculated from the a priori
assumptions by applying the optimal estimation theory. To reduce the effects of aerosols on CO2

retrieval, the aerosol-related components of the XCO2 retrieval error were given focus.
If all 16 aerosol parameters are retrieved synchronously with CO2 information, two size distribution

parameters for fine and coarse particles (reff, veff), real refractive index coefficient of fine mode (ar
f)
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and fmf cause the largest interference errors in the XCO2, reaching 0.2–0.8 ppm. The total interference
errors of all aerosol parameters range from 0.2 to 1.0 ppm and increase with smaller SZAs due to the
shorter light path. MA parameters cause the fewest interference errors with no more than 0.3 ppm.
The lower surface reflectance for vegetation indicates the larger impact of aerosols on XCO2 retrieval.
However, not all aerosol parameters could be retrieved from the TanSat hyperspectral observations,
as there were only 4–7 DFSs serving as aerosol parameters over both surface types. When more aerosol
parameters in the algorithm were simultaneously retrieved, the CO2 information decreased with the
lower DFS. The principle of optimization is to minimize the aerosol-induced XCO2 error components
while retaining a large amount of CO2 information. Combined with the estimated aerosol information,
retrieval of four to seven aerosol parameters is more reasonable.

Of the four XCO2 retrieval error components, the forward model parameter and interference errors
are associated with uncertain aerosol parameters. Overall, aerosol-induced XCO2 errors are dominated by
the forward model parameter error rather than the interference error, due to the larger values of the former.
When the number of retrieved aerosol parameters increases from four to seven, more aerosol parameter
combination groups have fewer forward model parameter errors, despite hte CO2 DFS decreasing slightly.
Considering a greater reduction in the aerosol-induced XCO2 error, seven aerosol parameters are deemed
the most appropriate for XCO2 retrieval. For MA, the number of retrieved aerosol parameters should be
five because of the low amounts of aerosol information. The XCO2 errors of different aerosol parameter
combination groups vary, even when the number of retrieved aerosol parameters is constant. To minimize
aerosol impact, the total aerosol-induced XCO2 retrieval errors of different groups with seven retrieved
aerosol parameters (five for MA) were compared and sorted from low to high. Ultimately, the aerosol
parameter combination group with the lowest aerosol-induced XCO2 errors was selected. Considering
the feasibility and generality of the aerosol model for all aerosol types and land surface types, the aerosol
parameters of AOD, Hp, Hw, veff

f, reff
c, ar

f and ar
c are recommended to be retrieved simultaneously with

CO2, except in the case of MA, which only requires the retrieval of five parameters (AOD, Hp, Hw, reff
c

and ar
c). If additional information on aerosol properties could be added from other sources to initially

distinguish DD from other aerosol types, two microphysical parameters of coarse mode aerosol (reff
c

and br
c) could be retrieved with fewer XCO2 errors for DD, which would be in place of the fine particle

parameters (veff
f and br

f) for UI and BB.
Overall, the retrieved aerosol parameters in the optimal aerosol model for CO2 retrieval are

determined with fewer aerosol-induced XCO2 errors and still yield large amounts of CO2 information.
In the next step, the performance of this optimal aerosol model will be verified by running the actual
CO2 retrieval based on the IAPCAS algorithm structure from GOSAT, OCO-2 or TanSat observations.
The methods and rules applied to optimize the aerosol model in this study may also be applicable
to CO2 retrieval from other satellites. This research forms a basis for enhancing the accuracy of
high-precision CO2 retrieval algorithms. The optimal aerosol model proposed here may be applied to
future CO2 retrievals based on realistic TanSat data.
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different observation geometries.

Author Contributions: Conceptualization, X.C. and D.Y.; Methodology, Y.L. and D.Y.; Software, Z.C. and D.Y.;
Validation, X.C. and D.Y.; Formal Analysis, X.C.; Investigation, X.C. and D.Y.; Resources, M.W.; Data Curation,
X.C.; Writing-Original Draft Preparation, X.C.; Writing-Review & Editing, D.Y.; Visualization, X.C.; Supervision,
H.C.; Project Administration, M.W.; Funding Acquisition, Y.L.

Funding: This research was funded by the National Key R&D Program of China (No. 2017YFB0504001), the Key
Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2019-1), the China Postdoctoral Science
Foundation, the National Key R&D Program of China (No. 2016YFA0600203), and the External Cooperation
Program of the Chinese Academy of Sciences (Grant No. GJHZ1507).

http://www.mdpi.com/2072-4292/11/9/1061/s1


Remote Sens. 2019, 11, 1061 27 of 29

Acknowledgments: The authors would like to thank PI and CI of AERONET four sites: Zhengqiang Li of
Beijing_RADI site, Brent Holben and Brent Holben of Alta_Floresta site, Didier Tanri of Capo_Verde site and Brent
Holben, Chuck McClain and Robert Frouin of Lanai site, for providing measurement data. They also thank TanSat
mission and team for supporting this work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Team, C.W.; Pachauri, R.K.; Meyer, L.A. Climate Change 2014: Synthesis Report; IPCC Press Office: Geneva,
Switzerland, 2014; p. 151.

2. Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M.
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013.

3. Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation
Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring.
Appl. Opt. 2009, 48, 6716. [CrossRef] [PubMed]

4. Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global Concentrations of
CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. SOLA 2009, 5, 160–163. [CrossRef]

5. Nobuta, K.; Morino, I.; Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Tran, H.; Yokota, T. Retrieval algorithm for
CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse
gases observing satellite. Atmos. Meas. Tech. 2011, 4, 717–734.

6. Maksyutov, S.; Takagi, H.; Valsala, V.K.; Saito, M.; Oda, T.; Saeki, T.; Belikov, D.A.; Saito, R.; Ito, A.;
Yoshida, Y.; et al. Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2

observations. Atmos. Chem. Phys. Discuss. 2013, 13, 9351–9373. [CrossRef]
7. Deng, F.; Jones, D.B.A.; O’Dell, C.W.; Nassar, R.; Parazoo, N.C. Combining gosat xco2 observations over land

and ocean to improve regional CO2 flux estimates. J. Geophys. Res. Atmos. 2016, 121, 1896–1913. [CrossRef]
8. Eldering, A.; O’dell, C.W.; Wennberg, P.O.; Crisp, D.; Gunson, M.R.; Viatte, C.; Avis, C.; Braverman, A.;

Castano, R.; Chang, A.; et al. The Orbiting Carbon Observatory-2: first 18 months of science data products.
Atmos. Meas. Tech. 2017, 10, 549–563. [CrossRef]

9. Eldering, A.; Wennberg, P.O.; Crisp, D.; Schimel, D.S.; Gunson, M.R.; Chatterjee, A.; Liu, J.; Schwandner, F.M.;
Sun, Y.; O’Dell, C.W.; et al. The Orbiting Carbon Observatory-2 early science investigations of regional
carbon dioxide fluxes. Science 2017, 358, eaam5745. [CrossRef]

10. Liu, Y.; Yang, D.; Cai, Z. A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using
GOSAT data. Chin. Sci. 2013, 58, 1520–1523. [CrossRef]

11. Li, Z.; Lin, C.; Li, C.; Wang, L.; Ji, Z.; Xue, H.; Wei, Y.; Gong, C.; Gao, M.; Liu, L. Prelaunch spectral calibration
of a carbon dioxide spectrometer. Meas. Sci. Technol. 2017, 28, 6. [CrossRef]

12. Zhang, H.; Zheng, Y.; Lin, C.; Wang, W.; Wang, Q.; Li, S. Laboratory spectral calibration of TanSat and the
influence of multiplex merging of pixels. Int. J. Sens. 2017, 38, 3800–3816. [CrossRef]

13. Yang, D.; Liu, Y.; Cai, Z.; Chen, X.; Yao, L.; Lu, D. First Global Carbon Dioxide Maps Produced from TanSat
Measurements. Adv. Atmos. Sci. 2018, 35, 621–623. [CrossRef]

14. Rayner, P.J.; O’Brien, D.M. The utility of remotely sensed CO2 concentration data in surface source inversions.
Geophys. Lett. 2001, 28, 175–178. [CrossRef]

15. Aben, I.; Hasekamp, O.; Hartmann, W. Uncertainties in the space-based measurements of CO2 columns due
to scattering in the Earth’s atmosphere. J. Quant. Spectrosc. Radiat. Transf. 2007, 104, 450–459. [CrossRef]

16. Connor, B.; Boesch, H.; McDuffie, J.; Taylor, T.; Fu, D.; Frankenberg, C.; O’dell, C.; Payne, V.; Gunson, M.;
Pollock, R.; et al. Quantification of Uncertainties in OCO-2 Measurements of XCO2: Simulations and Linear
Error Analysis. Atmos. Meas. Tech. Discuss. 2016, 9, 1–30. [CrossRef]

17. Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting Carbon Observatory: Inverse method
and prospective error analysis. J. Geophys. Res. Biogeosci. 2008, 113. [CrossRef]

18. O’dell, C.W.; Connor, B.; Bosch, H.; O’brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.;
Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm – Part 1: Description and validation against
synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [CrossRef]

http://dx.doi.org/10.1364/AO.48.006716
http://www.ncbi.nlm.nih.gov/pubmed/20011012
http://dx.doi.org/10.2151/sola.2009-041
http://dx.doi.org/10.5194/acp-13-9351-2013
http://dx.doi.org/10.1002/2015JD024157
http://dx.doi.org/10.5194/amt-10-549-2017
http://dx.doi.org/10.1126/science.aam5745
http://dx.doi.org/10.1007/s11434-013-5680-y
http://dx.doi.org/10.1088/1361-6501/aa6507
http://dx.doi.org/10.1080/01431161.2017.1306142
http://dx.doi.org/10.1007/s00376-018-7312-6
http://dx.doi.org/10.1029/2000GL011912
http://dx.doi.org/10.1016/j.jqsrt.2006.09.013
http://dx.doi.org/10.5194/amt-2016-128
http://dx.doi.org/10.1029/2006JD008336
http://dx.doi.org/10.5194/amt-5-99-2012


Remote Sens. 2019, 11, 1061 28 of 29

19. O’dell, C.W.; Eldering, A.; Wennberg, P.O.; Crisp, D.; Gunson, M.R.; Fisher, B.; Frankenberg, C.; Kiel, M.;
Lindqvist, H.; Mandrake, L.; et al. Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2
with the version 8 ACOS algorithm. Atmos. Meas. Tech. 2018, 11, 6539–6576. [CrossRef]

20. Chen, X.; Wang, J.; Liu, Y.; Xu, X.; Cai, Z.; Yang, D.; Yan, C.-X.; Feng, L. Angular dependence of aerosol
information content in capi/tansat observation over land: Effect of polarization and synergy with a-train
satellites. Remote Sens. Environ. 2017, 196, 163–177. [CrossRef]

21. Chen, X.; Yang, D.; Cai, Z.; Liu, Y.; Spurr, R.J.D. Aerosol Retrieval Sensitivity and Error Analysis for the Cloud
and Aerosol Polarimetric Imager on Board TanSat: The Effect of Multi-Angle Measurement. Remote. Sens.
2017, 9, 183. [CrossRef]

22. Yoshida, Y.; Kikuchi, N.; Morino, I.; Uchino, O.; Oshchepkov, S.; Bril, A.; Saeki, T.; Schutgens, N.; Toon, G.C.;
Wunch, D.; et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their
validation using TCCON data. Atmos. Meas. Tech. 2013, 6, 1533–1547. [CrossRef]

23. Boesch, H.; Baker, D.; Connor, B.; Crisp, D.; Miller, C. Global Characterization of CO2 Column Retrievals
from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission. Remote. Sens.
2011, 3, 270–304. [CrossRef]

24. Butz, A.; Hasekamp, O.P.; Frankenberg, C.; Aben, I. Retrievals of atmospheric CO_2 from simulated
space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects. Appl. Opt.
2009, 48, 3322. [CrossRef]

25. Butz, A.; Guerlet, S.; Hasekamp, O.; Schepers, D.; Galli, A.; Aben, I.; Frankenberg, C.; Hartmann, J.-M.;
Tran, H.; Kuze, A.; et al. Toward accurate CO2 and CH4 observations from GOSAT. Geophys. Lett. 2011,
38, 38. [CrossRef]

26. Torres, O.; Bhartia, P.K.; Herman, J.R.; Gleason, J.; Ahmad, Z. Derivation of aerosol properties from satellite
measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. Biogeosci. 1998, 103,
17099–17110. [CrossRef]

27. Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.;
Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity
in remote sensing of desert dust. J. Geophys. Res. Biogeosci. 2006, 111, 111. [CrossRef]

28. McGarragh, G.R. Combined Multispectral/hyperspectral Remote Sensing of Tropospheric Aerosols for
Quantification of Their Direct Radiative Effect. Ph.D. Thesis, Colorado State University, Fort Collins, CO,
USA, 2013.

29. Xu, X.; Wang, J.; Yi, W.; Jing, Z.; Torres, O.; Yang, Y.; Marshak, A.; Reid, J.; Miller, S. Passive remote sensing of
altitude and optical depth of dust plumes using the oxygen A and B bands: First results from EPIC/DSCOVR
at Lagrange-1 point. Geophys. Res. Lett. 2017, 44, 7544–7554. [CrossRef]

30. Yang, D.; Liu, Y.; Cai, Z.; Deng, J.; Wang, J.; Chen, X. An advanced carbon dioxide retrieval algorithm for
satellite measurements and its application to GOSAT observations. Sci. Bull. 2015, 60, 2063–2066. [CrossRef]

31. Yang, D.; Zhang, H.; Liu, Y.; Chen, B.; Cai, Z.; Lü, D. Monitoring carbon dioxide from space: Retrieval
algorithm and flux inversion based on GOSAT data and using CarbonTracker-China. Adv. Atmos. Sci. 2017,
34, 965–976. [CrossRef]

32. Rodgers, C.D. Inverse Methods for Atmospheric Sounding-Theory and Practice; World Scientific Pub Co Pte Lt:
Singapore, 2000.

33. Xu, X.; Wang, J. Retrieval of aerosol microphysical properties from AERONET photopolarimetric
measurements: 1. Information content analysis. J. Geophys. Res. Atmos. 2015, 120, 7059–7078. [CrossRef]

34. Hasekamp, O.P.; Landgraf, J. Retrieval of aerosol properties over the ocean from multispectral
single-viewing-angle measurements of intensity and polarization: Retrieval approach, information content,
and sensitivity study. J. Geophys. Res. Biogeosci. 2005, 110, 1–16. [CrossRef]

35. Holzer-Popp, T.; Schroedter-Homscheidt, M.; Breitkreuz, H.; Martynenko, D.; Klüser, L. Improvements of
synergetic aerosol retrieval for envisat. Atmos. Chem. Phys. 2008, 8, 7651–7672. [CrossRef]

36. Martynenko, D.; Holzer-Popp, T.; Elbern, H.; Schroedter-Homscheidt, M. Understanding the aerosol
information content in multi-spectral reflectance measurements using a synergetic retrieval algorithm.
Atmos. Meas. Tech. Discuss. 2010, 3, 2579–2602. [CrossRef]

37. Frankenberg, C.; Hasekamp, O.; O’dell, C.; Sanghavi, S.; Butz, A.; Worden, J.; O’Dell, C. Aerosol information
content analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy
greenhouse gas retrievals. Atmos. Meas. Tech. 2012, 5, 1809–1821. [CrossRef]

http://dx.doi.org/10.5194/amt-11-6539-2018
http://dx.doi.org/10.1016/j.rse.2017.05.007
http://dx.doi.org/10.3390/rs9020183
http://dx.doi.org/10.5194/amt-6-1533-2013
http://dx.doi.org/10.3390/rs3020270
http://dx.doi.org/10.1364/AO.48.003322
http://dx.doi.org/10.1029/2011GL047888
http://dx.doi.org/10.1029/98JD00900
http://dx.doi.org/10.1029/2005JD006619
http://dx.doi.org/10.1002/2017GL073939
http://dx.doi.org/10.1007/s11434-015-0953-2
http://dx.doi.org/10.1007/s00376-017-6221-4
http://dx.doi.org/10.1002/2015JD023108
http://dx.doi.org/10.1029/2005JD006212
http://dx.doi.org/10.5194/acp-8-7651-2008
http://dx.doi.org/10.5194/amtd-3-2579-2010
http://dx.doi.org/10.5194/amt-5-1809-2012


Remote Sens. 2019, 11, 1061 29 of 29

38. Geddes, A.; Bosch, H. Tropospheric aerosol profile information from high-resolution oxygen A-band
measurements from space. Atmos. Meas. Tech. 2015, 8, 859–874. [CrossRef]

39. Wang, J.; Xu, X.; Ding, S.; Zeng, J.; Spurr, R.; Liu, X.; Chance, K.; Mishchenko, M. A numerical testbed for
remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary
satellite constellation of GEO-CAPE and GOES-R. J. Quant. Spectrosc. Radiat. Transf. 2014, 146, 510–528.
[CrossRef]

40. Spurr, R. LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative
transfer models for use in remote sensing retrieval problems. Light Scatt. Rev. 3 2008, 229–275.

41. Liu, Y.; Wang, J.; Yao, L.; Chen, X.; Cai, Z.; Yang, D.; Yin, Z.; Gu, S.; Tian, L.; Lu, N.; et al. The TanSat mission:
Preliminary global observations. Sci. Bull. 2018, 63, 1200–1207. [CrossRef]

42. Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Kenneth, M.; Miller, J.B.;
Bruhwiler, L.M.P.; Gabrielle, P.; Hirsch, A.I. An atmospheric perspective on north american carbon dioxide
exchange: Carbontracker. Proc. Natl. Acad. Sci. USA 2007, 104, 18925–18930. [CrossRef]

43. Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.;
et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83,
135–148. [CrossRef]

44. Schaaf, C.; Strahler, A.; Lucht, W. An algorithm for the retrieval of albedo from space using semiempirical
BRDF models. IEEE Trans. Geosci. Sens. 2000, 38, 977–998.

45. Von Hoyningen-Huene, W.; Freitag, M.; Burrows, J.B. Retrieval of aerosol optical thickness over land surfaces
from top-of-atmosphere radiance. J. Geophys. Res. Biogeosci. 2003, 108, 4260. [CrossRef]

46. Wanner, W.; Strahler, A.H.; Li, X. On the derivation of kernels for kernel-driven models of bidirectional
reflectance. J. Geophys. Res. Biogeosci. 1995, 100, 21077. [CrossRef]

47. Wanner, W.; Strahler, A.H.; Lewis, P.; Muller, J.-P.; Schaaf, C.L.B.; Barnsley, M.J.; Hu, B.; Muller, J.; Li, X.
Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory
and algorithm. J. Geophys. Res. Biogeosci. 1997, 102, 17143–17161. [CrossRef]

48. Waquet, F.; Cairns, B.; Knobelspiesse, K.; Chowdhary, J.; Travis, L.D.; Schmid, B.; Mishchenko, M.I.
Polarimetric remote sensing of aerosols over land. J. Geophys. Res. Biogeosci. 2009, 114, 114. [CrossRef]

49. Mishchenko, M.I.; Cairns, B.; Kopp, G.; Schueler, C.F.; Fafaul, B.A.; Hansen, J.E.; Hooker, R.J.; Itchkawich, T.;
Maring, H.B.; Travis, L.D. Accurate Monitoring of Terrestrial Aerosols and Total Solar Irradiance: Introducing
the Glory Mission. Am. Meteorol. Soc. 2007, 88, 677–692. [CrossRef]

50. Ding, S.; Wang, J.; Xu, X. Polarimetric remote sensing in oxygen A and B bands: sensitivity study and
information content analysis for vertical profile of aerosols. Atmos. Meas. Tech. 2016, 9, 2077–2092. [CrossRef]

51. Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of
Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci.
2002, 59, 590–608. [CrossRef]

52. Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun
and sky radiance measurements. J. Geophys. Res. Biogeosci. 2000, 105, 20673–20696. [CrossRef]

53. Hou, W.; Wang, J.; Xu, X.; Reid, J.S.; Han, D. An algorithm for hyperspectral remote sensing of aerosols: 1.
Development of theoretical framework. J. Quant. Spectrosc. Radiat. Transf. 2016, 178, 400–415. [CrossRef]

54. Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments
of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance
measurements. J. Geophys. Res. Biogeosci. 2000, 105, 9791–9806. [CrossRef]

55. Guerlet, S.; Butz, A.; Schepers, D.; Basu, S.; Hasekamp, O.P.; Kuze, A.; Yokota, T.; Blavier, J.-F.; Deutscher, N.M.;
Griffith, D.W.T.; et al. Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT
shortwave infrared measurements. J. Geophys. Res. Atmos. 2013, 118, 4887–4905. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5194/amt-8-859-2015
http://dx.doi.org/10.1016/j.jqsrt.2014.03.020
http://dx.doi.org/10.1016/j.scib.2018.08.004
http://dx.doi.org/10.1073/pnas.0708986104
http://dx.doi.org/10.1016/S0034-4257(02)00091-3
http://dx.doi.org/10.1029/2001JD002018
http://dx.doi.org/10.1029/95JD02371
http://dx.doi.org/10.1029/96JD03295
http://dx.doi.org/10.1029/2008JD010619
http://dx.doi.org/10.1175/BAMS-88-5-677
http://dx.doi.org/10.5194/amt-9-2077-2016
http://dx.doi.org/10.1175/1520-0469(2002)059&lt;0590:VOAAOP&gt;2.0.CO;2
http://dx.doi.org/10.1029/2000JD900282
http://dx.doi.org/10.1016/j.jqsrt.2016.01.019
http://dx.doi.org/10.1029/2000JD900040
http://dx.doi.org/10.1002/jgrd.50332
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Optimal Estimation Theory 
	Linear Error Analysis 

	TanSat Simulations and Retrieval Assumptions 
	Simulation Input 
	The State Vector Defination 
	The A Priori and Measurement Error Assumptions 

	Aerosol Parameters in CO2 Retrieval 
	Aerosol-Induced XCO2 Retrieval Errors 
	Aerosol Information 

	The Impact of Different Aerosol Models 
	DFS of CO2 
	Components of XCO2 Retrieval Errors 

	Optimization of the Aerosol Model 
	Discussions 
	Conclusions 
	References

