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Abstract: Many methods have been proposed in the literature for estimating the number of
materials/endmembers in a hyperspectral image. This is sometimes called the “intrinsic” dimension
(ID) of the image. A number of recent papers have proposed ID estimation methods based on various
aspects of random matrix theory (RMT), under the assumption that the errors are uncorrelated,
but with possibly unequal variances. A recent paper, which reviewed a number of the better known
methods (including one RMT-based method), has shown that they are all biased, especially when
the true ID is greater than about 20 or 30, even when the error structure is known. I introduce two
RMT-based estimators (RMTG, which is new, and RMTKN , which is a modification of an existing
estimator), which are approximately unbiased when the error variances are known. However, they
are biased when the error variance is unknown and needs to be estimated. This bias increases as ID
increases. I show how this bias can be reduced. The results use semi-realistic simulations based on
three real hyperspectral scenes. Despite this, when applied to the real scenes, RMTG and RMTKN are
larger than expected. Possible reasons for this are discussed, including the presence of errors which
are either deterministic, spectrally and/or spatially correlated, or signal-dependent. Possible future
research into ID estimation in the presence of such errors is outlined.

Keywords: hyperspectral; linear mixture model; variance estimation; intrinsic dimension estimation;
random matrix theory

1. Introduction

There have been many papers which propose various methods for estimating the number
of materials/endmembers in hyperspectral images [1–9]. This is sometimes called “virtual
dimensionality” [2] and sometimes called “intrinsic dimension” (ID) [10,11]. I will use the latter
term. A number of recent papers propose ID estimation methods based on random matrix theory
(RMT) [11–14].

The ID concept is more important in some application areas than in others. It is particularly
important in the field of mineral exploration, where there is great interest in distinguishing between
minerals differing subtly in their chemistry or crystallinity. Often these differences can be detected
spectroscopically; see [15] (Figures 2 and 3), which respectively show subtle spectral differences
between different types of white mica (due to chemical substitutions) and different types of kaolin
(due to changes in crystallinity). Detecting these differences in mixtures can be quite challenging.
In such applications, when a spectral library is unavailable, and a blind unmixing approach is required
(e.g., [16–20]), it is useful to have a good estimate of the ID in order to decide on the number of
endmembers to use in the unmixing. Even when a library such as the U.S. Geological Survey’s
spectral library (http://speclab.cr.usgs.gov/spectral-lib.html) is available, it may be that there are
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some minerals in the scene which are not in the library. A good estimate of the ID can then be useful in
determining whether all the spectrally distinct minerals in the scene have been found.

All the above-mentioned ID estimation methods are based on the linear mixture model, which I
now outline. Let Xi, i = 1, ..., N denote the d-dimensional vector (d-vector for short) of observations
at pixel i (out of N) in a hyperspectral image. Under the linear mixture model, if there are M(< N)

spectrally distinct materials in the image, then

Xi =
M

∑
k=1

wikEk + εi, i = 1, . . . , N, (1)

where (i) Ek, k = 1, . . . , M (= ID) are the “endmember” d-vectors (i.e., pure materials); (ii) wik are
non-negative weights, and (iii) εi are d-vector error terms. The errors are typically a combination
of instrumental noise, natural variation in spectra representing the same material, and small
non-linearities in the mixing. I will usually use the term “error”, but sometimes it will be convenient
to use the term “noise”.

In all of the papers mentioned in the first paragraph, the errors are assumed to be spatially and
spectrally uncorrelated. The error variances are also assumed to be spatially constant. Methods proposed
in [1,3,6,7,9,12,13], assume that the errors at each wavelength/band have equal variances. This is
unrealistic; figures in two recent papers [21] (Figure 1a,b) and [22] (Figure 3) give estimates of the
error variances for the three scenes that I will consider in this paper: AVIRIS [23] Indian Pines and
Cuprite scenes, and a HyMapTM subscene [24] acquired near Mt. Isa, Queensland, Australia. These
estimates use the Regression method [25], which [22] (Section III) show is close to the best of three
spatial and two spectral error variance estimators considered in that paper. The plots show clearly
that the estimated error variances are unequal. Methods proposed in [2,4,5,8,11,14] assume that the
error variances are possibly unequal and use several methods to estimate them. The estimated error
variances or standard deviations (SDs) are then used to preprocess the data in various ways (e.g.,
by whitening), before applying the proposed ID method.

Using semi-realistic simulations of four scenes [21] (including the three that will be analysed
in this paper), Berman et al. [22] investigate the performance of five ID estimation methods: the
Harsanyi-Farrand-Chang method (HFC) [1], noise-whitened HFC (NWHFC) and noise subspace
projection (NSP) (both proposed by [2]), hyperspectral signal subspace identification by minimum
error (HySime) [4] and an RMT-method proposed by [11] (which I will henceforth refer to as RMTCN ,
after the lead author of that paper). They find that, even when the error variances are known and
used to preprocess the data, NSP consistently overestimates the ID by a large margin, while HySime
consistently underestimates the ID somewhat; see [22] (Figure 9a–d). The HFC estimates tend to
decrease as the true ID increases. This strange behaviour is probably related to the fact that estimated
error variances are not used to preprocess the data first. NWHFC and RMTCN perform better than the
other three methods. However, they tend to underestimate the true ID. The underestimation becomes
worse as the true ID increases, especially above about 20 or 30, depending on which of the four scenes
has been simulated.

As mentioned above, Berman et al. [22] also compare three spatial and two spectral error variance
estimators. The two spectral error variance estimators significantly outperform the three spatial
estimators for all four scenes. One of them, the Modified Regression (MR) estimator [26], is always the
best (It is closely followed by the Regression estimator [25]). However, the MR estimator is sometimes
a little biased (see [22] (Figure 8a–d)) and can sometimes be negative; see [22] (Figure 7). They provide
a simple correction, which they call the Positively Modified Regression (PMR) estimator, to ensure its
positivity (although it can still be a little biased). They use this estimator to whiten simulated versions
of the four scenes, and then apply the best ID estimator for each of the scenes when the error variances
are known (RMTCN in three cases and NWHFC in the fourth) to estimate the ID. Not surprisingly,
the ID estimates are usually a little worse when the error variances are estimated than when they are
known; see [22] (Figure 10a–d).
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In this paper, I will show (i) how to remove the bias in ID estimation when the error variances are
known, and (ii) how to reduce the bias further when the error variances are estimated by the slightly
biased PMR estimator. The first objective will be achieved by a more careful application of random
matrix theory. The second will be achieved by first whitening the data using the PMR estimators of the
error SDs, and then applying RMT to the first part of the “noise” eigenvalues, where RMT theory still
appears to hold reasonably well even though the error variances have been estimated.

The paper is structured as follows. Section 2.1 first discusses the three real hyperspectral scenes
and introduces simulated versions of them. Section 2.2 summarises relevant random matrix theory, all
of which is based on the behaviour of “noise” eigenvalues when two key assumptions are satisfied.
In Section 2.3, the simulations are used to compare five RMT-based estimators and NWHFC when
the error variances are known. This demonstrates that NWHFC and two of the RMT-based estimators
are significantly biased. The other three estimators appear to be unbiased or minimally biased.
In Section 2.4, I investigate the behaviour of the three remaining ID estimators when the simulated data
have been whitened using the PMR estimator. One of the three ID estimators is significantly affected
by the bias in the PMR estimator. The other two ID estimators (which I call RMTG and RMTKN) are
much less affected by the bias. Plots in Section 2.4 also suggest an adjustment to RMTG and RMTKN
which reduces their bias a little. This adjustment is introduced in Section 2.5. In Section 3, the five
RMT-based estimators (including the adjusted versions of RMTG and RMTKN), HySime and NWHFC
are calculated for the three real images. RMTG and RMTKN (and their adjusted versions) are much
larger than most of the other estimators for all three scenes. There is a detailed discussion in Section 4
about possible reasons for this. Section 5 summarises the paper and suggests possible future research.

The paper contains three innovations: (i) the introduction of the new RMTG estimator
(in Section 2.2.2), which overall performs best; (ii) the modification of the RMTKN estimator, by
the use of the PMR error variance estimator (in Section 2.4), rather than the error variance estimator
used previously [12], and (iii) the introduction of a method for reducing the bias in both estimators
caused by the bias in the PMR estimator (in Section 2.5).

2. Materials and Methods

2.1. Three Real Hyperspectral Scenes and Simulated Versions of Them

In this subsection, I summarise information about three real hyperspectral scenes and simulations
of them that I will use to (i) exemplify various technical issues and (ii) compare different ID estimation
methods. Each of these three scenes highlights different issues that will be discussed at various points
in the paper. A more detailed discussion about these three scenes (and a fourth scene, which is not
included in this paper because it doesn’t provide additional insights) can be found in [22] (Section II).
Relevant summary information about the three scenes is provided in Table 1.

Table 1. Summary information about three real scenes.

Scene d N

Indian Pines 193 21,025
Cuprite 185 314,368
Mt. Isa 124 294,460

I will use semi-realistic simulations of these three scenes. More realistic simulations of
hyperspectral scenes are being increasingly used [21,27–30]. Making simulations more realistic makes
it easier to check the many assumptions underlying the simulations, the variance estimation methods
and the ID estimation methods (e.g., scene type, image size, error/noise assumptions, interactions
between the signal and noise), which may subtly affect ID estimates.

At various points in the paper, for each scene, I will use simulations with a single “exemplar”
value of M to highlight particular technical issues. I will also use simulations with a range of values of
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M for each scene to compare different ID estimators. For each scene the chosen range of values has
mainly been determined by the range of the ID estimators HFC, NWHFC, NSP, HySime and RMTCN
for the real scenes on the assumption that the true ID value for that scene lies in that range. Four of
these estimators have been introduced in two highly-cited papers [2,4]. Further discussion of this issue
can be found in [22] (Section II.B).

2.2. Relevant Random Matrix Theory and a Review of Id Estimators Which Use This Theory

This section reviews random matrix theory that is relevant to various ID estimators (and
improvements to them) that will be discussed in Sections 2.3–2.5 and 3. Let εT

i = (εi1, . . . , εid),
i = 1, . . . , N. All the theory that will be reviewed in Section 2.2 makes the following key assumptions:

Assumption 1. Var(εij) = σ2, j = 1, . . . , d; i = 1, . . . , N, i.e., the band error variances are equal.

Assumption 2. All the errors are spatially and spectrally uncorrelated.

The review in this section is in (mostly) chronological order.

2.2.1. Marchenko-Pastur Law

This important law is concerned with the asymptotic behaviour of the eigenvalues of the sample
covariance matrix of independent noise observations. Let ε = (ε1, . . . , εN) denote the d× N noise
matrix, and let Σ̂ = εεT/N denote the sample noise covariance matrix. Then [31] show that, under
Assumptions 1 and 2, as d, N → ∞ with d/N → ρ, the empirical distribution of the eigenvalues of Σ̂

converges to the Marchenko-Pastur distribution, whose probability density function (pdf) is given by

f (w) =
√
(b− w)(w− a)/(2πσ2ρw), a ≤ w ≤ b,

= 0, otherwise, (2)

where
a = σ2(1−√ρ)2, b = σ2(1 +

√
ρ)2. (3)

I will denote this distribution by MP(σ2, ρ). The cumulative distribution function (cdf) of the MP
distribution does not have an analytic form.

The proof of the Marchenko-Pastur law requires the parameter ρ = limN,d→∞(d/N). In practice,
one sets

ρ = d/N. (4)

The Marchenko-Pastur Law also holds when there is signal present, with some minor
modifications. Usually one expects that the “signal” eigenvalues will be larger than the “noise”
eigenvalues. However, occasionally some signals in the data may be so weak as to be undetectable.
Under Assumptions 1 and 2 [12] (Equation (11)) and [11] (Equation (8)) state that there is a threshold
value (called the “asymptotic limit of detection” by the former), below which signal eigenvalues cannot
be successfully identified, at least asymptotically. This value is

τcrit = σ2
√

d/N. (5)

The proof of this result is contained in [32] (Theorem 1.1).
Hao et al. [21] (Section IV) define the Effective Intrinsic Dimension (EID) as the number of signal

eigenvalues greater than τcrit. EID is never greater than ID, but the simulations presented below
suggest that, for hyperspectral data, EID is sometimes a little less than ID. I believe that EID is the
quantity that a good ID estimator should aim to estimate. It will be included in all the plots comparing
various ID estimators with simulated data in Sections 2.3–2.5 and 3. Where appropriate, I will use the
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symbol L instead of EID. Note that, when signal is present, the Marchenko-Pastur Law only applies to
the (pure) noise eigenvalues, of which there are

dε ≡ d− EID = d− L. (6)

I will call dε the “pure noise” dimension.
How well does the MP distribution approximate the noise eigenvalues for simulated versions

of the three scenes? The first thing to note is that the noise/error variances for the three scenes do
not satisfy Assumption 1; see [21] (Figure 1a,b), which show the estimates of the error SDs for the
real and simulated Indian Pines and Cuprite scenes using the Regression method [25]. This is a little
worse than the PMR estimator, but not by much; see [22] (Figure 8a–d). Comparisons between the
Regression estimator and other error SD estimators for a simulated version of the Mt. Isa scene are
shown in [22] (Figure 5a–c). They also demonstrate that the error variances for this scene do not satisfy
Assumption 1. However, for simulated data, we can divide (“scale”) the data in each band by the known
error SD of that band to produce data whose error SDs do satisfy Assumption 1. In addition, we know
that for the scaled data, σ2 = 1. We can then compute the eigenvalues for the scaled data. I call these
the true-scaled eigenvalues.

Figure 1a–c plot the means +/−2 SDs for the noise eigenvalues among the true-scaled eigenvalues
for ten simulations of each of the three exemplar scenes respectively, as well as the MP approximation
to them, between EID + 1 and d. For each of the ten simulations per scene, the signal component is
the same. However, the errors vary, being Gaussian with band error variances given by the Regression
estimators of them in the corresponding real scenes. The ID and EID, as well as dε, for the three
exemplar scenes are given in Table 2. Note that in each case, EID < ID by a small amount. The reasons
behind choosing these exemplar values of ID are given in [22] (Section II-B). The values of EID have
not been chosen; they are a function of the simulated signal after ID has been chosen. I also plot the
line Y = 1 (the theoretical mean of the MP distribution after appropriate scale and offset adjustments)
for reference.

Before discussing the adequacy of the MP approximation, it is worth explaining how the
approximations in the plots relate to the theoretical results. First, the true-scaled noise eigenvalues
need to be thought of as an empirical distribution function. Like a cdf, these normally increase.
However, the noise eigenvalues are clearly decreasing. Let F(w) denote the cdf of the MP(1, ρε)
distribution, where

ρε ≡ dε/N = (d− EID)/N, (7)

by (6). As mentioned earlier, F(w) doesn’t have an analytic form, so we obtain a good approximation
by numerically integrating (2) using Simpson’s rule at dε equally spaced points between (and including)
the endpoints, given by (3). Denote these points by wi, i = 1, . . . , dε. These points lie along the Y
axis. For the X axis, we need to plot 1− F(wi), i = 1, . . . , dε (because the noise eigenvalues decrease
rather than increase), with suitable offset and gain adjustments. Because F(w) is a cdf, we must have
0 ≤ 1− F(w) ≤ 1. However, the X axis doesn’t satisfy this. We need to plot EID + dε(1− F(wi)),
i = 1, . . . , dε along the X axis to make the scaling correct.

For the Indian Pines and Cuprite scenes, the MP distribution approximates the eigenvalue means
very well, with a little variation about them. For the Mt. Isa scene, the approximation is not quite
so good for the largest noise eigenvalues because dε (=84) is a lot smaller than it is for the other two
scenes (174 and 153 respectively). It is however good for the smaller noise eigenvalues. Although the
adequacy of the MP approximation will also depend to some extent on the signal component of any
scene, these simulations suggest that d > 150 and N > 20,000 will usually allow these two distributions
to provide reasonable approximations to the distribution of the true-scaled noise eigenvalues.
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(a) Indian Pines: ID = 20, EID = 19, dε = 174
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(b) Cuprite: ID = 36, EID = 32, dε = 153
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(c) Mt. Isa: ID = 41, EID = 40, dε = 84

Figure 1. Means +/−2 SDs of true-scaled noise eigenvalues for ten simulations of each of three scenes,
plus the MP approximations to them.

Table 2. ID, EID and dε for three exemplar simulated scenes.

Scene ID EID dε

Indian Pines 20 19 174
Cuprite 36 32 153
Mt. Isa 41 40 84

2.2.2. The Largest Noise Eigenvalue

In this section, I give some relevant results about the asymptotic behaviour of the largest noise
eigenvalue under Assumptions 1 and 2. Let l1 > l2 > . . . > ld denote the eigenvalues.

Under Assumptions 1 and 2, certain mild moment conditions and when no signal is present,
Geman [33] shows that
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l1 → σ2(1 +
√

ρ)2 (8)

almost surely as N → ∞. Note that the right hand side of (8) is also the upper limit of the range of the
(limiting) MP distribution, given as b in (3). So we expect that in large samples, l1 < σ2(1 +

√
ρ)2.

The extension of (8) when signal is present and EID = L is:

lL+1 → σ2(1 +
√

ρε)
2, (9)

where ρε is given by (7). I will call the right hand side of (9) the Geman limit, after the author of [33].
An obvious asymptotic estimator of EID is then:

RMTG = max(k : lk > σ2(1 +
√
(d− k)/N)2), (10)

by (7). Somewhat surprisingly, this estimator does not appear to have been suggested before.
Several authors give the limiting distribution of l1 when no signal is present. Specifically,

following [34], Ref. [12] (Theorem 1) give the following result. Under Assumptions 1 and 2, assuming
that the errors are Normally distributed and when no signal is present:

Pr(
l1/σ2 − µN,d

ξN,d
< s)→ H(s), (11)

as d, N → ∞ with d/N → ρ, where

µN,d = {(1− 1/2N)
1
2 + (d/N − 1/2N)

1
2 }2, (12)

ξN,d = (µN,d/N)
1
2 {(N − 1/2)−

1
2 + (d− 1/2)−

1
2 }

1
3 , (13)

and H(s) is the cdf of the Tracy-Widom distribution of order 1, given in [34] (Section 1.3). The formulae
for µN,d and ξN,d given by [34] (Equations (1.3) and (1.4)) are slightly different to those above, given
by [12] (Theorem 1), although asymptotically equivalent. However, I use (12) and (13) because they are
also used by [11] when estimating the ID assuming that the error variances are unequal and unknown.
I will further discuss the approach adopted by [11] shortly.

The limiting result (11) suggests the following RMT-based estimator of the EID:

RMTKN = max(k : lk > σ2(µN,d−k + s(α)ξN,d−k)), (14)

where s(α) is chosen so that the test has a false alarm (Type I error) with asymptotic probability α, i.e.,

H(s(α)) = 1− α. (15)

Unfortunately, H(s) doesn’t have an explicit closed form expression. However, Ref. [12] (Equation (7)
give the following approximate formula for s(α):

s(α) ≈ (−3log(4
√

πα)/2)
2
3 , (16)

which they assert is good when α � 1. Both [11,12] use α = 0.005. I will use the same value in
this paper.

The test (14) is also known as Roy’s largest root test [35].
Note that µN,d/(1 +

√
d/N)2 → 1 as d, N → ∞ with d/N → ρ, so that, provided N and d

are large enough, the right hand side of the test (10) is less than the right hand side of the test (14).
This is what happens for all the combinations of N, d − k and α presented in this paper. Hence,
because the eigenvalues are decreasing, for all the real and simulated data sets discussed in this paper,
RMTKN ≤ RMTG.
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2.2.3. The Difference between the Largest and Second Largest Noise Eigenvalues

Let δk = lk − lk+1, k = 1, . . . , d − 1 denote the differences between successive eigenvalues.
Passemier and Yao [13] propose the following ID estimator:

RMTPY = max(k : δk ≥ cN and δk+1 < cN). (17)

They show [13] (Theorem 3.1) that, under Assumptions 1 and 2, and provided that d/N → ρ, cN → 0
and N

2
3 cN → ∞, RMTPY → EID almost surely as N → ∞.

The authors tested various choices of cN and ultimately chose

cN = 4
√

2log(log(N))(1 +
√

ρ)(1 +
√

ρ−1)
1
3 /N

2
3 . (18)

I will also use this value of cN in this paper.
As we shall see shortly, when Assumptions 1 and 2 hold, RMTPY is quite a good estimator of

EID. However, as we shall also see, it is not robust to even small departures from this assumption.
The “max” in (17) means that sometimes RMTPY chooses an estimate which is far too large. I will
investigate an alternative estimator, which replaces “max” with “min”:

RMTPY2 = min(k : δk ≥ cN and δk+1 < cN). (19)

2.3. Comparison of Different Id Estimators

In Section 2.3.1, I compare six ID estimators (including five based on various aspects of RMT
theory) when the error variances are known. Simulations demonstrate that only three of these estimators
are unbiased or minimally biased. So I exclude the other three estimators from further consideration.
In Section 2.3.2, I discuss two estimators, introduced under the unrealistic assumption that the variances
are equal but unknown. In Section 2.3.3, I discuss two estimators, which modify the two estimators
in Section 2.3.2 to deal with the situation where the variances are unequal. I point out that the
preprocessing method that they use does not make Assumption 1 hold, which is the fundamental
reason for their bias.

2.3.1. ID Estimation When the Band Error Variances Are Known

In this section, I compare the ID estimators RMTG, RMTKN , RMTPY and RMTPY2, when the
error variances are known. I also include two other ID estimators found to be the best among five
other estimators by [22] (Section IV-A), called NWHFC and RMTCN . NWHFC was one of three ID
estimators proposed by [2]. The other two estimators, HFC and NSP, do not work nearly as well as
NWHFC (see [22] (Figure 9a–d)) and so have been excluded from the comparison here. NWHFC first
divides (“scales”) each band by an estimator of its error SD and successively tests the equivalence
of corresponding (scaled) eigenvalues of a scene with and without mean correction. The NWHFC ID
estimator is the number of corresponding eigenvalues which are significantly different from each other.
The tests require a false alarm probability, Pf . In most papers, Pf is set to 10−3, 10−4 or 10−5. In [22]
(Section IV-A) we chose the middle value 10−4. It produced ID estimates which were always too small.
So in the comparison here, I will use 10−3, which will produce larger ID estimates. Because the error SDs
are known, I will first divide each band by its error SD to preprocess RMTG, RMTKN , RMTPY, RMTPY2
and NWHFC.

RMTCN [11] does not do this. It first estimates the difference between corresponding eigenvalues
of the data (signal plus noise) and the signal alone. This requires estimation of the band error variances
(In the simulations discussed below, we will use the true error variances). It then uses the theory
underlying RMTKN to produce an estimator of ID. However, its preprocessing does not involve
division of each band by the (estimated or true) error SD, and hence as we shall see shortly, the critical
Assumption 1 is not satisfied!
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I have produced semi-realistic simulations of the three scenes mentioned above for a range of ID
values: 17–29 for Indian Pines; 22–37 for Cuprite; and 25–45 for Mt. Isa. The reasons for choosing these
particular ranges are given in [22] (Section II-B). As before, ten simulations have been generated for
each scene/ID combination, with the same signal component, but different error components. Further
details can be found in [21].

Figure 2a–c plot the mean +/−2 SDs for the six ID estimators (plus ID and EID) against the true
ID for the Indian Pines, Cuprite and Mt. Isa scenes, respectively. A number of common results are
apparent for the three scenes. First, EID = ID for smaller ID values, but becomes a little less than ID for
larger values. Second RMTG, RMTKN and RMTPY track EID quite well, with RMTG being the closest
to EID, followed by RMTKN and then RMTPY. Indeed the error bars for RMTG always include EID
for the larger Cuprite and Mt. Isa scenes. However, for the the much smaller Indian Pines scene and
larger ID values, the error bars for RMTG do not quite include EID. I speculate that this is primarily
due to the small image size (N) and secondarily due to the decreasing pure noise dimension (dε) as
EID increases.
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Figure 2. Mean (+/−2 SDs) for six ID estimates (after preprocessing by true error SDs) versus true ID
for simulated Indian Pines, Cuprite and Mt. Isa scenes.
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For the smaller Indian Pines image, RMTPY2 is quite similar to RMTPY for ID ≤ 22. However,
for larger ID values, it is significantly smaller than RMTPY, with the difference increasing as ID
increases. It is also more variable for the larger ID values. For the larger Cuprite and Mt. Isa scenes,
RMTPY2 generally tracks RMTPY better. However, occasionally, its mean is much smaller than the
corresponding mean of RMTPY, and also much more variable (ID = 30 for Cuprite, and ID = 39, 43, 44
and 45 for Mt. Isa).

RMTCN and NWHFC give much poorer estimates of EID (especially when it is larger) than the
best estimators, the former because it does not satisfy Assumption 1 after preprocessing, and the latter
because testing the statistical equivalence of corresponding scaled eigenvalues with and without mean
correction is not nearly as powerful as RMT, when Assumption 1 is satisfied. Because, RMTPY2, RMTCN
and NWHFC perform more poorly when the error variances are known, I will exclude them from
consideration when the error variances are unknown, and just focus on RMTG, RMTKN and RMTPY.

2.3.2. ID Estimation When the Band Error Variances Are Equal

Two papers [12,13] consider the performance of RMTKN and RMTPY, respectively, when the
band error variances are equal (i.e., Assumption 1 holds) but are unknown and must be estimated.
This requires replacing σ2 in (14) and (17), respectively, by an estimator of it. Both [12,13] use the same
estimator. However, it varies with k:

σ̂2
k =

d

∑
j=k+1

lj/(d− k). (20)

Under Assumption 1, this is the maximum likelihood estimator of σ2 [36] (Equation (13b)).
Both [12,13] analyse the performance of RMTKN and RMTPY, respectively, with the aid of

simulations only. Because they do not analyse real world data, they are unaware that Assumption 1 is
unrealistic for such data, especially hyperspectral remote sensing data. If one uses the best of the error
variance estimators found in [22], the PMR estimator (which can be a little biased), to make the error
variances approximately equal, and then use (20) to estimate σ2 in (14), it can happen that the inequality
in (14) is never satisfied. This happens for both the real and simulated Mt. Isa scenes. We will obtain
an insight into why this is so in Section 2.4. I have not investigated whether the same happens to the
inequalities in (17) when the PMR estimator is used to preprocess any of the real or simulated scenes.

2.3.3. ID Estimation When the Band Error Variances Are Unequal

Two other papers [11,14] both assume that the band error variances are (possibly) unequal,
and estimate them. Cawse-Nicholson et al. [11] use a method based on finding homogeneous areas [37]
to estimate them. Berman et al. [22] (Figures 3a, 4a, 5a and 6a) demonstrate that these estimators are
far more biased than the PMR estimators. However, the more fundamental issue, mentioned above,
is that their preprocessing does not make Assumption 1 hold, even approximately; see Figure 2a–c
and [22] (Figure 10a–d). Error variance estimation just increases the bias of the ID estimates.

Halimi et al. [14] use the same preprocessing approach as [11]. They use an extension of the
Regression method [25] to estimate a full error covariance matrix. This is known to be biased [26].
However, more fundamentally because it uses the same preprocessing as [11], it does not make
Assumption 1 hold, and so suffers from similar problems.

2.4. Combining the Best Preprocessing and Id Estimation Methods

As mentioned in the Introduction, of the five error variance/SD estimators investigated by [22]
(Section III), the one that consistently showed the smallest bias was the MR estimator [26]. However,
for the real and simulated Mt. Isa data sets, the MR estimator is sometimes negative; see [22] (Figure 7).
So [22] introduced a small modification, called the PMR estimator, to guarantee positivity. Figure 3a–c
plot the mean +/−2 SDs for RMTG, RMTKN and RMTPY (plus ID and EID) against the true ID for the
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simulated Indian Pines, Cuprite and Mt. Isa scenes, respectively, when the data have first been divided
by the PMR estimators of the band error SDs. These should be compared with Figure 2a–c, which
respectively show those ID estimators plus three others, when the data have been divided by the true
band error SDs.
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(a) Indian Pines
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Figure 3. Mean (+/−2 SDs) for three ID estimates (after preprocessing by PMR estimates of the error
SDs) versus true ID for simulated Indian Pines, Cuprite and Mt. Isa scenes.

For Indian Pines, there is not much difference between Figures 2a and 3a. When dividing the data
by the PMR SD estimators, typically RMTG > RMTKN > RMTPY. Note however that for ID ≤ 20,
the mean of RMTG is a little positively biased, while the means of the other two estimators are a little
negatively biased. For ID > 20, the means of all three estimators are negatively biased. Things however
are different for Cuprite and Mt. Isa. First, note that for both scenes the error bars for some values
of RMTPY are very large. Indeed, for Cuprite, the means of RMTPY for the four ID values with very
large error bars lie between 43 and 90, while for Mt. Isa, the means of RMTPY for all values of ID > 27
lie between 47 and 121. We shall see why this is so shortly. For Cuprite and Mt. Isa, both RMTG and
RMTKN are better behaved. However, for both scenes, their negative bias increases significantly as
ID increases. This does not happen when the data have been divided by the true error SDs; compare
Figure 2b,c with Figure 3b,c respectively.
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To obtain a better understanding of the various behaviours of RMTG, RMTKN and RMTPY when
the data have been divided by the PMR estimators of the band error SDs, Figure 4a–c show the
means (+/−2 SDs) of the tail eigenvalues after division by the true error SDs (in black), and the
Regression (in red) and PMR (in green) estimators of them for ten simulations of each of the three
exemplar scenes respectively. I will call the three sets of scaled eigenvalues in each plot the true-scaled,
Regression-scaled and PMR-scaled eigenvalues respectively. As well as plotting the noise eigenvalues,
I have included the last few signal eigenvalues before them, so that one can see the transition behaviour
between the signal and noise eigenvalues. The true-scaled noise eigenvalues (in black) in Figure 4a–c
are the same as the eigenvalues in Figure 1a–c respectively. The broken horizontal line in each plot is
the Geman limit (the right hand side of (9) with σ2 = 1), while the broken vertical line is Y = EID + 0.5.
For RMTG to give the correct estimate of EID, it is necessary (but not quite sufficient) that the first
noise eigenvalue lies in the top left hand corner of the bottom right hand quadrant defined by these
two lines. This happens 10, 9 and 8 (out of 10) times for the exemplar Indian Pines, Cuprite and Mt.
Isa scenes respectively.
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Figure 4. Mean (+/−2 SDs) of true-, Regression- and PMR-scaled tail eigenvalues for ten simulations
of three scenes.
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The first thing to note from the three figures is that, for all three scenes, the PMR-scaled noise
eigenvalues are much closer to the true-scaled noise eigenvalues than the Regression-scaled noise
eigenvalues are, demonstrating the value of the first order bias correction provided by the MR
method [26]. For the Indian Pines scene, the PMR-scaled noise eigenvalues are slightly positively
biased, which explains why RMTG is usually positively biased for this value of ID (=20); see Figure 3a.
On the other hand, for the Cuprite and Mt. Isa scenes, the PMR-scaled noise eigenvalues are more
significantly negatively biased, explaining why RMTG is negatively biased for these ID values (36 and
41 respectively); see Figure 3b,c, respectively.

A plausibility argument for the larger bias in the Cuprite and Mt. Isa scenes follows from
theoretical and empirical arguments in [21] (Section II-C). These arguments suggest that, on average,
the bias of the Regression estimator [25] is mainly a function of M/d. This value is 0.104, 0.195 and 0.331
for the Indian Pines, Cuprite and Mt. Isa simulated exemplar scenes respectively. The MR estimators [26]
are linear combinations of the Regression estimators, which provide first order corrections to those
estimators. Although the MR (and PMR) estimators significantly reduce the bias, the empirical evidence
is that their average bias is also mainly a function of M/d. This translates to the average relative bias of
the PMR-scaled noise eigenvalues; it also appears to be mainly a function of M/d.

Also note that the magnitude of the relative bias of the PMR-scaled noise eigenvalues for the
exemplar Cuprite and Mt. Isa scenes (Figure 4b,c respectively) increases dramatically in the extreme
tail. This explains the large error bars for RMTPY for certain ID values for these two scenes; see
Figure 3b,c. Note that the rate of change of the PMR-scaled noise eigenvalues in the extreme tail is
comparable to the rate of change of those eigenvalues just before the true ID in those figures. Hence,
because the definition of RMTPY (17) is based on the last occurrence of a difference larger than cN
followed by a difference smaller than cN , there is a reasonable chance of this occurring in the extreme
tail of the eigenvalues rather in the vicinity of the true ID value. It is for this reason that I investigated
RMTPY2 (19), which finds the first occurrence of the same event. However, this has its own problems,
even when using the true-scaled eigenvalues; see Figure 2a–c.

The increasing magnitude of the relative bias of the PMR-scaled noise eigenvalues for the exemplar
Mt. Isa scene (Figure 4c) is also the reason why the inequality in (14) is never satisfied for both the real
and simulated Mt. Isa scenes, when (20) is used to estimate σ2 in (14), even after the data have been
scaled by the PMR estimates of the error SDs.

The bias in the PMR-scaled eigenvalues has less effect on RMTG and RMTKN than it does on
RMTPY, because they are based on the largest noise eigenvalue, which is the least biased of all the noise
eigenvalues, as can be seen in Figure 4a–c. Nevertheless, both RMTG and RMTKN become increasingly
biased as the ID increases. In the next section, I show how to reduce this bias further.

2.5. Further Reducing the Bias in RMTG and RMTKN

In order to reduce the bias in RMTG and RMTKN further, it is worth examining more carefully
the relative bias of the PMR-scaled noise eigenvalues. Figure 5a–c plot the means (+/−2 SDs) of the
PMR-scaled tail eigenvalues divided by the corresponding true-scaled tail eigenvalues for the three
exemplar scenes; a few signal eigenvalue ratios have again been included for comparison with the
noise eigenvalue ratios. In each plot, a broken vertical red line has been included at Y = EID + 0.5 to
separate the signal eigenvalue ratios from the noise eigenvalue ratios. For the Indian Pines exemplar
scene (with a smaller value of M/d), the means of the ratios are fairly constant. However for the
Cuprite and Mt. Isa scenes, the ratio increases as the eigenvalue index increases, at first slowly but
dramatically in the extreme tail. The basic idea for further reducing the bias is to obtain an initial
estimate of the EID (L̂) using either RMTG or RMTKN , and then to assume that the eigenvalue ratio
changes linearly (including an offset) for the first few indices beyond the (estimated) ID. Note however
that for the Cuprite and Mt. Isa exemplar scenes, RMTG and RMTKN are typically a little too small
(see Figure 3b,c respectively), and the eigenvalue ratios just after RMTG and RMTKN are somewhat
different to those after the true EID; see Figure 5b,c. So we need enough eigenvalues (say a proportion
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p) beyond the true EID to counteract those before the true EID when estimating the straight line needed
to adjust the thresholds. Of course, we don’t know what the true-scaled eigenvalues are. However, they
are well approximated by the MP(1, ρε) distribution; see Figure 1a–c. As mentioned in the discussion
of these figures, I noted that the X axis values are given by EID + dε(1− F(wi)), i = 1, . . . , dε, where
dε = d − EID, F is calculated via numerical integration of (2) and the wi, i = 1, . . . , dε are equally
spaced points between the endpoints of the distribution (3). Of course, in the above calculation, we
replace EID by L̂. The X axis values are typically not equally spaced. However, they need to be to
correspond to the eigenvalue indices. I have just linearly interpolated the values of F(wi) to make them
equally spaced. Also note that, because we will be adjusting the Y values, we only need to regress the
PMR-scaled eigenvalues on the interpolated values of 1− F(w), rather than on the interpolated values
of EID + dε(1− F(w)). Once a proportion p of the PMR-scaled eigenvalues beyond L̂ have been fitted
to the corresponding points on 1− F(w), they can be readjusted to better fit the theoretical distribution.
The details of the adjusted algorithm are given in Algorithm 1.
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Figure 5. Mean (+/−2 SDs) of ratios of scaled noise eigenvalues for ten simulations of three scenes.
The PMR-scaled eigenvalues have been divided by the true-scaled eigenvalues.
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Algorithm 1 Adjusted EID estimation algorithm

1. Divide each band by the PMR-estimator of its SD. Denote the (decreasing) PMR-scaled eigenvalues
by l̂i, i = 1, . . . , d.

2. Obtain an initial estimate of EID (L̂), either RMTG (10) or RMTKN (14) with σ2 = 1.
3. Linearly fit l̂i, i = L̂ + 1, . . . , L̂ + p(d− L̂) (rounded to the nearest integer) to the corresponding

points of the linearly interpolated values of 1− F(w), where F(w) is the cdf of the MP(1, (d− L̂)/N)
distribution. Let A and B denote the offset and gain of the linear regression.

4. The final estimate of EID is given by applying either RMTG (10) or RMTKN (14) with σ2 = 1 to
(l̂i − A)/B, i = 1, . . . , d.

Figure 6a–c plot the mean +/−2 SDs for the original RMTG and RMTKN estimates plus adjusted
versions of them using Algorithm 1 against the true ID for the simulated Indian Pines, Cuprite and Mt.
Isa scenes respectively, when the data have first been divided by the PMR estimators of the band error
SDs. The values of p used are p = 0.10 (with the estimators denoted by RMTG(10) and RMTKN(10)
respectively) and p = 0.50 (RMTG(50) and RMTKN(50) respectively). As before, ID and EID have also
been included. The values for RMTG and RMTKN are the same as those in Figure 3.

Overall, RMTG(50) appears to perform best, followed by RMTKN(50). For the Indian Pines data,
for ID ≤ 20, whereas the mean of RMTG is a little positively biased, the mean of RMTG(50) is a little
negatively biased. However, its error bars do include EID. For larger values of ID, there is not much
difference between RMTG and RMTG(50). However, for the highest ID values considered, the error
bars just miss EID. On the other hand, for the larger Cuprite and Mt. Isa scenes, the means of both
RMTG and RMTG(50) are very close to ID (= EID) for smaller values. However, for larger ID, the bias
of the mean of RMTG(50) is less than that of RMTG.

Nevertheless, even though RMTG(50) is less biased than RMTG is for larger ID values for these
two scenes, the error bars are a long way from including EID. To understand why this is so, in Figure 7,
I plot true-scaled eigenvalues 29 to 100 for a single simulation of the exemplar Cuprite scene for which
ID = 36 and EID = 32. For this scene, RMTG = RMTKN = 29. I also plot the corresponding adjusted
PMR-scaled noise eigenvalues with L̂ = 29 (the estimate provided by either RMTG or RMTKN) and
L̂ = 32 (the true EID value). I have also drawn horizontal lines corresponding to the Geman limit
when EID = 29 and EID = 32 respectively. These values are not very different (1.0450 and 1.0446
respectively). True-scaled eigenvalues 29 to 32 (but not 33) lie above both these thresholds, so that,
if we knew the true error variances RMTG = 32, the correct value. In this case, RMTKN = 31. If we
adjust the PMR-scaled eigenvalues using L̂ = 32 (with p = 0.5), we see that the adjusted eigenvalues
follow the true-scaled eigenvalues quite well from index 34 onwards. However, for indices below
34, the approximation is not so good, and becomes worse as the index becomes smaller. In this case,
adjusted eigenvalues 29 and 30 lie above both thresholds (while 31 does not), so that RMTG(50) = 30,
while RMTKN(50) = 30 also. However, in reality, L̂ = 29. When we use this value to adjust the
PMR-scaled eigenvalues (again with p = 0.5) the fit is a little worse, with the fitted values lying a
little below those using L̂ = 32. The difference however is not enough to change the values of the
two estimators. The behaviour that we see in Figure 7 is fairly typical of the other simulations, and
explains why the improvement in the ID estimates is generally small when the adjustment described
in Algorithm 1 is applied; see Figure 6a–c.

I am unaware of an RMT-based theory that deals with the bias of the PMR-estimators of the error
variances, and the fact that the bias is variable; see [22] (Figure 8a–d). The more likely route to reducing
the bias in the ID estimators probably lies in further reducing the bias in error variance estimation.
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Figure 6. Mean (+/−2 SDs) for original RMTG and RMTKN , and after applying the 10% and 50% MP
adjustment to the PMR-scaled eigenvalues, versus true ID for simulated Indian Pines, Cuprite and Mt.
Isa scenes.

●

●

●

●

●

●

● ● ●
● ● ●

● ● ●
● ●

●
● ● ● ● ●

● ● ● ● ●
● ● ●

●
● ● ●

● ●
● ●

● ● ● ●
● ●

● ● ●
● ● ● ● ● ●

● ● ● ●
● ●

● ● ●
●

●
● ● ●

● ●
● ●

30 40 50 60 70 80 90 100

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

Index

E
ig

en
va

lu
e 

an
d 

F
it

● True−Scaled Eigenvalues

Adjusted PMR−Scaled Eigenvalues (EID = 29)

Adjusted PMR−Scaled Eigenvalues (EID = 32)

Geman limit (EID = 29)

Geman limit (EID = 32)

Figure 7. True- and adjusted PMR-scaled noise eigenvalues (p = 0.5) for one simulation of the Cuprite
Scene (ID = 36, EID = 32, RMTG = RMTKN = 29, RMTG(50) = RMTKN(50) = 30).



Remote Sens. 2019, 11, 1049 17 of 24

3. Results

In Table 3, I give various ID estimators for the three real scenes. These include the estimators
compared and introduced previously (NWHFC, RMTCN , RMTPY, RMTPY2, RMTG and RMTKN),
as well as the adjusted versions of RMTG and RMTKN introduced in Section 2.5. I have also included
HySime, because the paper in which it was introduced [4] is widely cited. It was excluded from
comparison in this paper, because in simulations reported in [22] it always significantly underestimated
EID, even when the true error variances were known. For all estimators except HySime, the PMR
estimators are used to preprocess the data before applying the ID estimator. For HySime, the Regression
estimators (which are intrinsic to the method) are used. Among the other estimators, all except RMTCN
preprocess the data by dividing/scaling each band by the PMR error SD estimator of that band.
RMTCN uses a different preprocessing procedure; see [11] (Algorithm 1). For NWHFC, I give the
values for the usual three false alarm probabilities 10−3, 10−4 and 10−5. The adjusted RMTG and
RMTKN estimators are given for p = 0.1, 0.3 and 0.5.

Table 3. Various ID estimates for the three real data sets.

Estimator Indian Pines Cuprite Mt. Isa

HySime 11 16 17
NWHFC 19, 19, 18 29, 28, 24 32, 27, 25
RMTCN 20 33 61
RMTPY 24 180 119
RMTPY2 24 39 56
RMTG 56 46 65

RMTKN 54 46 65
Adj. RMTG 53, 52, 52 46, 48, 48 65, 65, 65

Adj. RMTKN 49, 46, 46 45, 47, 48 63, 63, 63

The ranges of true ID values used in the simulations summarised in Figures 2a–c, 3a–c and
6a–c were largely based on the assumption that, for each of the real scenes, the true EID value lies in
the range covered by the estimates HFC, NWHFC and RMTCN for those scenes; NSP was excluded
because it always seemed too large, while HySime was excluded because it usually seemed too small.
The HySime estimates are indeed the smallest ID estimates for each of the three real scenes given in
Table 3, followed by the NWHFC estimates and then RMTCN , except for Mt. Isa, where it is very much
larger. For Indian Pines, RMTPY and RMTPY2 are a little larger again. However, for Cuprite and Mt.
Isa, RMTPY is much larger (in each case a little smaller than d, the number of bands). This behaviour
was also observed in the simulated versions of these two data sets (see Figure 3b,c) and is explained by
the behaviour of the PMR-scaled eigenvalues in the extreme tail (see Figure 4b,c). RMTPY2 is robust to
this behaviour, but can be highly variable, even when the error variances are known; see Figure 2a–c.

Ignoring the anomalous behaviour of RMTPY for the real Cuprite and Mt. Isa scenes, RMTG and
RMTKN (and their adjusted versions) are considerably larger than the other estimators. In the next
subsection, I discuss possible reasons why this might be so.

4. Discussion

I can think of six possible explanations for why RMTG and RMTKN are much larger than the
other ID estimators; see Table 3. I will now discuss each of these in turn.

4.1. Endmember Variability

The first possibility is that the RMTG and RMTKN ID estimates are indeed close to the true EID
values. After all, they were found to be unbiased or slightly biased (for EID) when the true error
variances are known (see Figure 2a–c), with a slightly greater bias when PMR is used to estimate the
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true error variances (see Figure 3a–c). In the latter case, RMTG and RMTKN underestimate EID! So if
these values are close to the true EID values, how does one explain such large values?

Clark et al. [38] analysed the composition of the full 1995 AVIRIS Cuprite scene; in this paper,
I have analysed a 1997 subscene. Apart from the fact that ours is a subscene, one expects the identifiable
minerals from the two scenes to be similar. They used their Tetracorder software (which is based on
feature identification rather than a mixture model) to identify various minerals from this scene. If one
counts the number of mineral “classes” in their two maps (see their Figure 9a,b), there are 40 distinct
colours in the two legends, which is a little less than 46, the RMTG and RMTKN estimates for the
subscene. One of the labels associated with individual colours in the legends includes terms such
as “amorphous and other iron oxides, hydroxides” (which suggests a single colour covering several
minerals which may be spectrally distinct). Four types of hematite, three types of K-alunite, two types
of Na-alunite and three types of muscovite are also listed. These last four groupings are an example of
what is sometimes called “endmember variability” [39–41], which describes the spectral variability of
materials with the same label. There are several causes of such variability including variable grain sizes
(in the case of minerals) and chemical substitutions. If one ignores endmember variability, the number
of minerals with distinct labels in the legends decreases significantly, and is closer to ID estimates
found by many of the other ID estimation methods. This suggests that RMTG and RMTKN may be
more sensitive to endmember variability than the other methods.

The Indian Pines scene is an agricultural scene with 16 “groundtruth” classes (http://www.ehu.
eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes), with labels such as “Grass-pasture”,
“Grass-trees” and “Grass-pasture-mowed”. These are also likely to contain different types of grasses
and trees, some of which may be spectrally distinct, and so endmember variability is almost certainly
present in the scene. Also, the map at this website showing the spatial variability of the 16 classes has
significant unclassified sections. The materials present in them will add to the true ID of the scene.

The Mt. Isa scene is also dominated by minerals, and so the endmember variability issues relevant
to the Cuprite scene will also apply to the Mt. Isa scene.

Given the presence of endmember variability, it is perhaps not so surprising that, when one
assumes the linear mixture model (1) with uncorrelated errors, the number of spectrally distinct
materials is as high as is suggested by RMTG and RMTKN in Table 3 for all three scenes.

4.2. Deterministic Errors

Many hyperspectral scenes contain deterministic errors. Often they can be incorporated into
model (1); see [22] (Equation (16)) which includes a single horizontal stripe within this model. Such
deterministic errors will then contribute to the ID of the scene. The Mt.Isa scene contains obvious
deterministic errors, caused by an orthorectification process; see [22] (Figure 1a). The Indian Pines
scene contains more subtle deterministic errors; see [21] (Figure 6a). Deterministic errors are not
obvious in the Cuprite scene.

Ref. [22] (Section V-D) discuss the issue of deterministic errors in some detail, with a particular
focus on striping noise. Their analysis highlights the difficulty of estimating the contribution to the ID
of deterministic errors such as striping. None of the numerous papers on “destriping” (some of which
are referenced during that discussion) use ID as a measure of the adequacy of the proposed destriping
method. This area requires further research with the aid of simulations. The simulation methodology
proposed in [21] and used in this paper can be readily adapted to include deterministic errors.

4.3. Spectrally Correlated Errors

Spectrally correlated errors are actually quite common in hyperspectral images. Often these occur
because parts of the spectra have been smoothed, either because they are locally noisy or because the
sensors actually consist of several spectrometers whose wavelength ranges overlap and the overlapping
spectra measured at each pixel need to be joined into a single spectrum that appears continuous and
locally smooth. For instance, AVIRIS and HyMap are both built on four spectrometers [23] (p. 231), [24]

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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(p. 39). An error correlation matrix estimation method that I will shortly describe shows distinct peaks
in the correlation structure at about the join points of the AVIRIS spectrometers for both the real Indian
Pines and Cuprite scenes (both measured by AVIRIS). The method also shows distinct peaks in the
correlation structure for the Mt. Isa scene (measured by HyMap), but not near the join points of the
HyMap spectrometers. I don’t know why this is so.

In theory, dealing with spectrally correlated errors is straightforward. Let ΣT and Σε denote
the theoretical data and error covariance matrices respectively. We just need to whiten the data by
simultaneously diagonalising ΣT and Σε. The estimated error covariance matrix of the transformed data
is then the identity matrix, and all the random matrix theory in Section 2.2 applies. The transformation
just described is the Minimum Noise Fraction (MNF) transform [42]. However, these matrices need
to be estimated. The observed data covariance matrix is the obvious (and unbiased) estimator of ΣT .
When the MNF transform is used, Σε is usually estimated using spatial information, rather than spectral
information. Using spatial information leads to much less accurate estimators of Σε than using spectral
information does; see [22] (Figures 3b, 4b, 5b and 6b).

Mahmood et al. [26] extend their MR method to deal with data with spectrally correlated errors.
Details will not be given here. However, although it looks promising, it has three shortcomings. First,
one needs to assume which of the errors have non-zero covariances. In what follows, I will use the time
series term “lag” to describe the distance between two bands, and the parameter max.lag will be used
to give the maximum lag between bands with correlated errors. max.lag = 0 corresponds to spectrally
uncorrelated errors. In work that will be published elsewhere, I have applied the extension of the MR
method to the three real data sets assuming that max.lag = 0, 1, 2, 3, 4 and 5, used the estimated error
covariance matrix, Σ̂ε, to whiten the data, and then calculated RMTG and RMTKN .

For the whitening procedure to work, it is necessary that Σ̂ε be positive definite. Unfortunately,
for the real Mt. Isa data set, this matrix is never positive definite for any of the values of max.lag
investigated. I have fixed this second shortcoming using a modification of the PMR method, which is
applicable to the eigenvalues of the MNF transform. Applying this modification to the three real data
sets demonstrates that (i) for the real Indian Pines and Mt. Isa data sets, RMTG and RMTKN decrease
as max.lag increases, (ii) for the real Cuprite scene, both RMTG and RMTKN increase initially to
max.lag = 2 and then gradually decrease, (iii) the percentage relative difference between the minimum
and maximum values of RMTG over the six values of max.lag are 29%, 25% and 12% for the real
Indian Pines, Cuprite and Mt. Isa scenes respectively (the percentages for RMTKN are similar). A more
detailed description of the work summarised in this paragraph will be given elsewhere.

Given the significant percentage variability in the estimates of RMTG and RMTKN for the
three scenes as max.lag varies, it becomes important to develop a test of the true value of max.lag.
In Section 2.4, I have demonstrated that, when the errors are uncorrelated, the small relative bias of the
PMR method induces a bias in RMTG and RMTKN . It is likely that the extension of the PMR method
to the case of correlated errors will also be biased (although I have yet to confirm this with the aid of
simulatons). This is the third (potential) shortcoming. The existence of this bias will make it difficult to
develop an estimate of the true value of max.lag with good theoretical properties.

4.4. Spatially Correlated Errors

Spatially correlated errors are common in images. There have been some papers published on the
estimation of error variances in the presence of such errors (e.g., [43,44]). However, to my knowledge,
nobody has investigated the impact of spatially correlated errors on ID estimation. A suitable model
would probably involve an extension of (1) to include nearby pixels, and the cross-correlations between
both signal and noise across pixels. An approach generalising the Regression method [25] to include
nearby pixels is the most obvious starting point. This has been used to estimate the noise directly
(which is different from estimating the second order statistics of the noise) by [27] and others. However,
its properties would need to be carefully analysed under the suggested extension of (1). Ideally,
an extension of the MR method [26] could also be proposed under such a model.
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4.5. Signal-Dependent Errors

In reality, the instrumental noise in many hyperspectral sensors is better modelled as a linear
combination of two types of noise: signal-independent (SI) noise, which typically uses the same model
as has been used in this paper (i.e., uncorrelated Gaussian noise with a possibly different variance in
each band); and signal-dependent (SD) noise, which is typically modelled as Poisson noise [45–47].
These three papers use different methods to estimate the parameters of the SI and SD noise components
in each band. However, regardless of the parameter estimation method used, it is not clear that RMT
can be applied to data with a combination of both these types of noise. This is because, unlike for
spectrally and/or spatially correlated errors, the error structure varies from pixel to pixel, and hence
the concept of an error covariance matrix for the full image (which can somehow be converted to the
identity matrix) does not even exist!

4.6. Non-Linear Mixing

There is also likely to be some non-linear mixing in most hyperspectral images. The linear
model (1) can be thought of as a Taylor series approximation to a more accurate non-linear model,
and hence the ID of the linear model is likely to be an overestimate of the number of “spectrally distinct”
materials in the image. Note that, in the model (1), ID = M. This is also the number of parameters in
this linear model. This provides a natural way to define the ID in non-linear models. There have been
a number of non-linear mixture models published in recent years [48–53]. There needs to be further
research on (i) how to estimate the ID for these models, and (ii) the advantages and disadvantages
of using them compared with the basic linear mixture model (1). In particular, ID estimation for
non-linear mixture models is likely to be difficult, because as far as I am aware, there is no comparable
theory to random matrix theory for non-linear models.

5. Summary and Conclusions

Random matrix theory provides a powerful and elegant set of theoretical tools relevant to ID
estimation. I have shown that when Assumptions 1 and 2 hold (or when the band error variances
are known), RMTG, RMTKN and RMTPY track EID quite well, with RMTG being the closest to EID,
followed by RMTKN and then RMTPY; see Figure 2a–c. Most of my focus in this paper has been on
violations of Assumption 1, i.e., that the band error variances are equal. When we use the best estimator
of the error variances that we know of, the PMR estimator, to whiten the data before calculating these
ID estimators, we observe that both RMTG and RMTKN are somewhat biased, especially for larger
ID values, and that RMTPY performs much more poorly; see Figure 3a–c. The biases in RMTG
and RMTKN are due to the small bias in the PMR estimator. The explanation of the much poorer
performance of RMTPY is revealed in Figure 4a–c. These figures show how, when estimated error
variances are used, the bias is much greater in the extreme tail eigenvalues, which has a bigger impact
on RMTPY than on either RMTG and RMTKN , which both seek to identify the largest noise eigenvalue.
Figure 4a–c also suggest a method (Algorithm 1) for reducing the bias in RMTG and RMTKN .

All the above results are based on simulated data. When RMTG and RMTKN are applied to real
data, they are much larger than most of the more widely used ID estimates; see Table 3. Possible reasons
for this are discussed, including endmember variability, deterministic errors, spectrally correlated
errors, spatially correlated errors, signal-dependent errors and non-linear mixing.

The research presented in this paper has also raised the following research questions: (i) can the
bias in the MR method be reduced, so that the bias in RMTG and RMTKN is also reduced? (ii) how
does one estimate the ID of deterministic errors? (iii) how can the “extent” of spectrally correlated
errors (effectively max.lag) be reliably estimated? (iv) how can spatially correlated errors be reliably
estimated? (v) how can the ID be reliably estimated in the presence of signal-dependent errors, (vi) how
can the ID of a non-linear model be reliably estimated?
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Finally, it is worth mentioning that the three scenes that have been simulated in this paper have
been chosen because each displays different characteristics relevant to ID estimation. The Cuprite
scene was chosen because, at first glance, it had few (if any) artefacts. However, it does appear to have
spectral correlation (due to the interpolation and smoothing of spectra from its four spectrometers).
The Indian Pines scene was chosen because it is much smaller than the other two scenes, and yet
the (asymptotic) random theory is still applicable to it; see Figure 1a. It was also chosen because,
unlike the other two scenes, it exhibits subtle spatially correlated errors. It is unclear whether these
errors are deterministic or stochastic. The Mt. Isa scene was chosen because the MR estimators of it
and its simulated versions produce error covariance estimates which are not positive definite, and so
require modification.
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