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Abstract: A comprehensive interpretation of remote sensing images involves not only remote sensing
object recognition but also the recognition of spatial relations between objects. Especially in the case
of different objects with the same spectrum, the spatial relationship can help interpret remote sensing
objects more accurately. Compared with traditional remote sensing object recognition methods,
deep learning has the advantages of high accuracy and strong generalizability regarding scene
classification and semantic segmentation. However, it is difficult to simultaneously recognize remote
sensing objects and their spatial relationship from end-to-end only relying on present deep learning
networks. To address this problem, we propose a multi-scale remote sensing image interpretation
network, called the MSRIN. The architecture of the MSRIN is a parallel deep neural network based
on a fully convolutional network (FCN), a U-Net, and a long short-term memory network (LSTM).
The MSRIN recognizes remote sensing objects and their spatial relationship through three processes.
First, the MSRIN defines a multi-scale remote sensing image caption strategy and simultaneously
segments the same image using the FCN and U-Net on different spatial scales so that a two-scale
hierarchy is formed. The output of the FCN and U-Net are masked to obtain the location and
boundaries of remote sensing objects. Second, using an attention-based LSTM, the remote sensing
image captions include the remote sensing objects (nouns) and their spatial relationships described
with natural language. Finally, we designed a remote sensing object recognition and correction
mechanism to build the relationship between nouns in captions and object mask graphs using an
attention weight matrix to transfer the spatial relationship from captions to objects mask graphs.
In other words, the MSRIN simultaneously realizes the semantic segmentation of the remote sensing
objects and their spatial relationship identification end-to-end. Experimental results demonstrated
that the matching rate between samples and the mask graph increased by 67.37 percentage points,
and the matching rate between nouns and the mask graph increased by 41.78 percentage points
compared to before correction. The proposed MSRIN has achieved remarkable results.

Keywords: multi-scale; semantic segmentation; image caption; remote sensing; LSTM; U-Net;
upscaling; downscaling

1. Introduction

Deep neural networks [1,2] are gradually being applied to high-resolution remote sensing image
analysis [3], especially in scene classification [4–9], semantic segmentation [10], or single-scale remote
sensing object recognition [11,12], and they all have achieved good results. Unfortunately, most of
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the existing studies do not address the interpretation of spatial relationships between remote sensing
objects, which limits the understanding of remote sensing objects, especially when the phenomenon of
different objects with the same spectrum in remote sensing appears.

The phenomenon of different objects with the same spectrum in remote sensing is quite common.
It is difficult to identify objects only by their own textures, spectra, and shape information. Object
identification requires multi-scale semantic information and spatially adjacent objects to assist in
decision-making. The spatial relationship between remote sensing objects is of great significance to the
recognition of remote sensing objects when different objects have the same spectrum, for example, many
different types of buildings with similar shapes and spectral features, such as commercial buildings
and workshops. The traditional object recognition methods [13–15] can only identify the object by its
spectral, texture, and shape features without considering its adjacent objects. Therefore, it is impossible
to accurately distinguish the different objects with the same spectrum without additional information.
However, commercial buildings are often adjacent to green spaces and squares, and workshops are
more adjacent to other factories and warehouses. In this way, it is possible to effectively identify
commercial buildings and workshops through adjacent object categories.

According to existing research, scene classification describes the entire patch of the sample but
does not involve remote sensing objects. Although semantic segmentation can identify the location
and boundaries of remote sensing objects, it does not include the interpretation of complex spatial
relationships between remote sensing objects, which leads to a certain degree of incomplete semantic
understanding of remote sensing images. How to carry out a comprehensive semantic description of
remote sensing objects and their spatial relationships is an issue that still needs further study.

The prosperity of image captions based on recurrent neural networks (RNNs) [16], especially the
attention-based LSTM [17], can provide not only image description but also the attention location
corresponding to the currently generated word at different time steps, which provides a new way to
address the problems above. Chen et al. proposed a novel group-based image captioning scheme
(termed GroupCap) [18], which jointly models the structured relevance and diversity among group
images towards an optimal collaborative captioning. Previous works only used the global or local
image feature. A model with 3-Gated model [19] was proposed to fuse the global and local image
features together for the task of image captioning. In recent years, more studies have focused on the
relationship between generated words and corresponding regions in the image. An attribute-driven
attention model [20] was proposed to focus on training a good attribute-inference model via the RNN
for image captioning. The uniqueness of the model lied in the usage of an RNN with the visual
attention mechanism to observe the images before generating captions. Khademi et al. presented a
novel context-aware, attention-based deep architecture [21] that employed a bidirectional grid LSTM
for image captioning. The bidirectional grid LSTM took visual features of an image as the input and
learned complex spatial patterns based on two-dimensional context.

In recent years, the application of reinforcement learning [20–23] in image caption has also been
a hot topic, which adjusts the generation strategies using the change of the reward functions in the
caption generation process to dynamic vocabulary generation.

However, most of the current studies focus on the scene semantic description of ordinary digital
images [24,25]. To use the deep RNN or LSTM to execute the semantic analysis [26–30] of remote
sensing objects, the following problems must be solved:

Location ambiguity: At different time steps, the attention mechanism is based on 14 × 14-sized
image features and corresponds to 196 spatial locations in remote sensing images. There are some
deviations [31], however, that limit the application in remote sensing object recognition.

Boundary ambiguity: the nouns (label of objects) in captions cannot accurately segment the
boundaries of remote sensing objects in an image; thus, it is impossible to identify the spatial relationship
between the objects.

Spatial scale ambiguity: Everything is related to everything else, but near things are more related
to each other [32]. The surroundings of objects are various, which makes it difficult to detect remote
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sensing objects using a uniform scale model. Sometimes we need a large scale to contain the neighboring
and context information to identify remote sensing objects accurately.

To solve the above problems, we present the MSRIN, which is based on an FCN, a U-net, and an
attention-based LSTM. The MSRIN can generate remote sensing image descriptions at multi-spatial
scales, segment objects in images, and recognize their spatial relationships from end-to-end. First,
a remote sensing image is semantically segmented through an FCN and a U-net on two spatial scales
such that each pixel in the original image is labelled with two semantic labels; therefore, a hierarchical
relationship of a multi-scale remote sensing object can be formed. Second, the features of the same
image obtained using a pre-trained Visual Geometry Group 19 (VGG-19) network are input for the
attention-based LSTM, which outputs the captions that describe the two-scale remote sensing objects
and their spatial relationships. Finally, the relationship between the nouns in the caption and the object
mask graphs is established through the attention weight matrix. In this way, the remote sensing objects
from the U-Net get their spatial relationship from captions. To overcome the spatial deviations of the
attention weight matrix from the LSTM, the MSRIN designs an attention-based multi-scale remote
sensing object identification and correction mechanism. Our method produces a complete semantic
interpretation of remote sensing images.

In summary, the main contributions of this paper are as follows:

1. A multi-scale semantic caption strategy is proposed. Based on this strategy, a parallel network (the
MSRIN) is designed to completely interpret the semantic information of remote sensing images.

2. We discuss the remote sensing object recognition and correction mechanism based on the
attention weight matrix and multi-scale semantic segmentation using the FCN and the U-Net,
simultaneously realizing the instance segmentation of the remote sensing images and the spatial
relationship identification from end-to-end.

The remainder of this paper is organized as follows: Section 2 discusses related work. Multi-scale
semantic segmentation and spatial relationship recognition of remote sensing images based on an
attention model is presented in Section 3. Experiments and analysis are listed in Section 4. Discussion
is presented in Section 5. Finally, the conclusion is presented in Section 6.

2. Related Work

2.1. Scene Classification

Because of the GPU memory limitations, high-resolution imagery must be segmented into patches
for Convolutional Neural Networks (CNN) models, and the label is always attached to a remote
sensing image sample [8,10,33–35] in scene classifications. To manage and retrieve patches easily, the
previous research studies modified the structure of traditional deep convolution neural networks into
two different forms, i.e., cascade and parallel models, according to the characteristics of remote sensing
images [36]. In the cascade model, the corresponding layer structure in a traditional CNN is transformed
to reduce the total parameters. For example, a global average pooling layer is used to replace the fully
connected network as the classifier [10] or to insert a region-based cascade pooling (RBCP) method
between the last normal down-sampling layer and the classifier to aggregate convolutional features
from both the pre-trained and the fine-tuned convolutional neural networks [36]. Parallel models try
to extract more abundant features for scene classification by designing parallel network structures [35].
All of the above methods achieved satisfactory results. However, the interpretation of remote sensing
images more than meets the needs of spatial operations of geographical objects; therefore, it is not
enough to obtain only the labels of remote sensing image patches.

2.2. Semantic Segmentation

Semantic segmentation algorithms assign a label to every pixel in an image and are the basis of
instance segmentation. The research includes two cases: CNN series and RNN series.
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2.2.1. CNN Series

A CNN is used not only to label the samples but also to classify the pixels to achieve semantic
segmentation [37]. Meanwhile, semantic segmentation has been applied to the remote sensing
recognition of buildings and other objects [38,39]. High-resolution imagery must be segmented into
patches for CNNs due to Graphics Processing Unit (GPU) memory limitations, thus in a limited
area, to make full use of the output features of different convolution layers to achieve a better
semantic segmentation effect, the researchers often use a multi-depth network model [40] or design
a multiple-feature reuse network in which each layer is connected to all the subsequent layers of
the same size, enabling the direct use of the hierarchical features in each layer [41]. Emerging new
networks, such as U-Net [42] and DenseNet [43], have also been applied in remote sensing image
semantic segmentation [44]. The application scenario also extends from surface geographic objects
to continuous phenomena such as highly dynamic clouds [45]. Some studies introduce the attention
mechanism [46,47] to achieve an ideal segmentation effect by suppressing low-level features and noise
through high-level features.

In general, semantic segmentation of remote sensing images based on a CNN has been developed
from a simple transplanting network structure to the design of a creative network structure [48]
according to the characteristics of remote sensing and has achieved good results. Application scopes
are expanded from building extracting [49], built-up area extracting [48], and mapping impervious
surfaces [50] to oil palm tree detection [51].

2.2.2. RNN Series

RNNs [52] are an important branch of the deep learning family, which are widely used for sequence
analysis. In hyperspectral remote sensing images, there are tens of hundreds of spectral bands, which
can be regarded as a related spectral sequence. Therefore, an RNN is proposed for hyperspectral
image classification and achieves excellent classification performance [53,54]. With further research,
the RNN model, which takes both spatial and spectral features into account [55], has also been applied
to hyperspectral remote sensing semantic segmentation. In this way, the comprehensive utilization of
spectral-spatial information is realized and good results are achieved. Another method is to input
bands information into an LSTM network as an l-length sequence [56], which also achieves good
results. The ability of an RNN to process time series data can also be used to process synthetic aperture
radar (SAR) images [57]. The fine structure of SAR images can be retained as much as possible by
filtering noise from multi-temporal radar images.

Most of researchers regard the spectral features of each individual pixel as one sequential feature
for the RNN input layer. Recently, a novel strategy for constructing sequential features is proposed [58],
and similar pixels collected from the entire image are used to construct the respective sequential
features and the strategy achieves significant improvements in classification.

2.3. Remote Sensing Image Captioning

Remote sensing image captioning aims to generate comprehensive captions that summarize the
image content at a semantic level [26]. Relevant research originated from natural language descriptions
of images [16,24] in the field of computing. More recently, attention-based LSTMs [17] have emerged
to describe not only the semantic information of images but also the image region corresponding to the
words generated at the current moment through a 14 × 14 weight matrix. Because the image captions
and image features are input into the RNN at the same time, there is a debate about whether it focuses
on captions or on images at each time step (i.e., at each time step the model decides whether to attend
to the image or to the visual sentinel) [25]. Although image captioning of ordinary digital images has
achieved good results, it has encountered many difficulties in remote sensing fields. Compared with
ordinary digital images, the remote sensing images from satellites or aircraft have a unique “view of
God,” which makes the remote sensing images have no directional distinction and lack a focused object
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or centre. All of these factors increase the difficulty of obtaining natural language descriptions of remote
sensing images. Despite these difficulties, some researchers have made useful advances. Qu et al. [26]
used an RNN to describe remote sensing images using a natural language. Shi et al. [27] proposed a
remote sensing image captioning framework that leverages the techniques of a convolutional neural
network (CNN). Both methods used a CNN to represent the image and to generate the corresponding
captions from recurrent neural networks or pre-defined templates. To better describe the remote
sensing images, and after a comprehensive analysis of scale ambiguity, category ambiguity and rotation
ambiguity, a large-scale benchmark dataset of remote sensing images is presented to advance the task
of remote sensing image captioning [28]. Wang et al. [29] used semantic embedding to measure the
image representation and the caption representation. The captioning performance is based on CNNs,
and the authors regarded caption generation task as a latent semantic embedding task, which can
be solved via matrix learning. Zang et al. [30] presented a new model with an attribute attention
mechanism for the description generation of remote sensing images by introducing the attributes
from the fully connected layer of CNN, where the attention mechanism perceives the whole image
while knowing the correspondence between regions and words, and the proposed framework achieves
robust performance. Then, various image representations and caption generation methods were tested
and evaluated. This work made a great step forward in the research on remote sensing image captions.

Although research on remote sensing image captioning has recently made some achievements,
there are still some limitations, such as words in image captions that cannot correspond to remote
sensing objects one by one, and relatively weak descriptions of the spatial relationships. In particular,
the image region corresponding to the attention weight matrix often does not match the remote
sensing object corresponding to the word at the same time step [31]. To better understand the semantic
information of remote sensing images, further research is still needed.

3. Methodology

The MSRIN was defined first as a multi-scale remote sensing image caption strategy. A parallel
network structure was designed to identify multi-scale remote sensing objects and spatial relationships
based on attention.

3.1. Strategy of Multi-Scale Caption Design

According to Tobler’s first law of geography, everything is related to everything else, but near
things are more related to each other [32]. We propose a strategy for multi-scale captioning:

1. Each caption consists of small-scale remote sensing objects and their spatial relationships,
which implicitly constitute a large-scale object, as shown in Figure 1 and Table 1.

2. Usually, one object is selected as the main object in a small-scale image caption, while other
objects are subordinate to it through spatial relationships. In this way, each class of small-scale
objects will not repeat within one large-scale object.

3. If there are two or more large-scale objects, the corresponding number of captions are joined by
the word “with.”

Table 1 shows the multi-scale classification system in our experiment. Large-scale and small-scale
categories are encoded in 1X and 2x respectively, where 1 and 2 represent large-scale and small-scale
information respectively, X represents a large-scale category number, and x represents a small-scale
category number. In our system, there are 9 large-scale categories and 10 small-scale categories.
Each large-scale category has a one-to-many relationship with the small-scale categories.

Following the caption strategy, the multi-scale image caption output from the LSTM looks like this:

noun1 R12 noun2, . . . , with nouni Rij nounj, . . . , nounn
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In the example above, two large-scale objects, which are composed of small-scale objects and
their spatial relationship, are on both sides of “with.” Thus, the caption contains two scales of spatial
semantic information. The nouni describes a remote sensing object Oi, and Rij describes the spatial
relationship between the remote sensing objects Oi and Oj (e.g., “road cross residence with road next
to service”). Nouni and nounj are always different in one clause.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 22 
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Figure 1. Multi-spatial scale semantic segmentation and image caption. It shows a two-scale hierarchy
of one image. An image contains many large-scale objects, each large-scale object contains many
small-scale objects, and there are spatial relationships between objects of the same scale. Our strategy
of captioning is to describe both information of scale and spatial relationship contained in an image as
completely as possible.

Table 1. Classification of multiscale remote sensing objects.

Value 10 11 12 13 14

large-scale residence region industry region service region village region forest region

value 15 16 17 18

large-scale uncompleted region road region other region Green-space region

value 20 21 22 23 24

small-scale residence industry service village forest

value 25 26 27 28 29

small-scale uncompleted road other Green-space waterbody

Our strategy is still valid when generating captions for more complex scenes, as shown in Figure 2.
We use small-scale objects and spatial relationships between them to describe the large-scale objects,
and then connect each clause with “with.” When there are more large-scale objects in an image, we use
this method to iterate to form a complete caption containing multi-scale semantic information.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 22 
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Figure 2. Sample with complex scenes. It shows an image with more complex scenes that contain four
large-scale objects. (a) is the input image; (b) is the large-scale segmentation map of (a); (c–f) are the
small-scale objects contained in each large-scale object. (c) corresponds to the clause “green_space
next_to service,” (d) to the clause “road cross waterbody,” (e) to the clause “service next_to uncompleted
and road,” and (f) to the clause “road next_to green_space and uncompleted and service.”.
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The advantages of a multi-scale semantic caption strategy are as follows:
Hierarchically describing the spatial relationship between objects according to scale effect can

simplify the type of spatial relationship (including “next_to”, “near”, “cross”, “surround” and
“surround_by”). Due to the scope limitation of sample patch, only the spatial neighbourhood
relationship between large-scale objects is considered and described using “with” such that the network
training is facilitated.

3.2. Multi-Scale Network Structure

Corresponding to the multi-scale semantics caption strategy, the MSRIN consists of three
different deep neural networks: an FCN and a U-Net for multi-scale semantic segmentation, and
an attention-based LSTM for image caption, both the FCN and the U-Net are used to semantically
segment the same remote sensing image at two different spatial scales. The output of FCN and U-Net
are masked to obtain the location and boundaries of remote sensing objects.

Meanwhile, the same sample is input into one attention-based LSTM network, with the output
captions following the principles of multi-scale remote sensing captioning. To match nount with the
remote sensing object via attention and to overcome the location deviation of attention, we designed a
multi-scale remote sensing object recognition and correction mechanism. The structure of the MSRIN
is shown in Figure 3.
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Figure 3. Network structure. It shows the overall network structure of the MSRIN. In our network, one
remote sensing image is input into three branch networks. (a) is the large-scale segmentation map of
the FCN output, (b) is the small-scale segmentation map of the U-Net output, and they are masked to
obtain the location and boundaries of remote sensing objects. The LSTM outputs image captions and
attention areas. The process of identification and correction is given in Section 3.3. The multi-scale
objects recognition and correction mechanism attaches the object (the mask graphs from U-Net) to
nount through the weight matrix at time step t.

The FCN [37] can achieve pixel-to-pixel classification by using full convolution, up-sampling,
and jump structure. The U-Net [42] follows the idea of FCN for image semantic segmentation and
combines the features of coding–decoding structures and jumping networks. From the encoder to
the decoder, there is usually a direct information connection to help the decoder recover the target
details better. Considering the features of small-scale objects are more complex and large-scale objects
are more abstract, we used a U-Net to segment small-scale objects and a FCN to segment large-scale
objects, and the segmentation effect is shown in Figure 4.
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Figure 4. Segmentation effect of FCN and U-Net. It shows three examples of FCN and U-Net
segmentation effect comparison. (a,e,i) are the input images. (b,f,j) are corresponding ground truth of
the images. (c,g,k) are segmentation maps of FCN. (d,h,l) are segmentation maps of U-Net. It was
found that FCN performed better at segmenting large objects, while smaller objects were easier to
aggregate into blocks, so FCN was more suitable for large-scale segmentation. U-Net worked well
when smaller objects were segmented but tended to misclassify some small fragments of the large-scale
objects when it was being segmented, so U-Net was more suitable for small-scale segmentation.

The core of the networks is the multi-scale objects recognition and correction mechanism, which
attaches the object (the mask graphs from U-Net) to nount through the weight matrix at time step t.
In this way, the remote sensing objects get their spatial relationship from captions. In other words,
the MSRIN will output not only a series of the remote sensing objects (the mask graphs) but also the
spatial relationships between them from image captions.

Unfortunately, the attention weights were computed from a 14 × 14 size feature map. Thus, the
spatial location accuracy was relatively low, leading to a mismatch between nount in the caption
and objects in the image at some time step t, as shown in Figure 5. To solve this problem, our paper
proposes a multi-scale remote sensing object recognition and correction mechanism.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 22 
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Figure 5. Attention weight matrix error. It shows mismatches between nouns in the caption and objects
in the image. (a) is the input image; (b–d) are the attention maps for generating “green_space,” “service,”
and “waterbody,” respectively; (e) is a small-scale segmentation map of (a); (f–h) are overlaid maps
of (b–d), respectively, with (e). As shown in the figure, the attention area of the first generated noun
“green_space” corresponds to the object “waterbody” in the image, which resulted in mismatch. Of the
three nouns contained in the generated image caption, only the third noun matched the right object.
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3.3. Remote Sensing Objects Recognition and Correction Mechanism

Attention-based LSTM provides a 14 × 14 weight matrix at different time steps, which is the basis
for implementing the remote sensing object recognition and correction.

3.3.1. Remote Sensing Object Recognition

The remote sensing object recognition is based on the attention weight matrix and U-Net mask
graphs. First, we resample the 14 × 14 attention weight matrix to a 210 × 210 size. Then, we denote the
attention map (weight matrix) at location (i, j) ∈ L × L(L = 210) at time step t as at

i j, and the U-Net
mask graphs at location (i, j) ∈ L× L as mi j. In the mask graphs, the area where the object is located
has a pixel value of the class label C and the rest is 0:

m =
{

C,(i, j)∈object
0,(i, j)<object

(1)

The values of intersect areas can be computed using:

vi j =
1
C
αt

i j.mi j (2)

where C is the normalization factor such that vi j sums to 1. The mean value of the intersect areas
(weight mean value) can be computed using:

vmean =
1
n

∑
i j

vi j (3)

where n is the total number of pixels of the remote sensing object. Then, the mask graph with the
largest mean value will be selected. If the class label of the selected mask graph (object) is consistent
with the nount in the caption at current time step t, it means the mask graph represents the nount of
current time t, and the location and boundary of the remote sensing object will be identified using the
selected mask graph.

However, at time step t, the label of the selected mask graph often does not match nount in the
captions, as shown in Figure 5. To solve this problem, we propose a multi-scale remote sensing object
correction algorithm.

3.3.2. Remote Sensing Correction Algorithm

If the mismatch happens, the correction algorithm needs to upscale and search for the large-scale
object, which the current weight matrix pays attention to first. The detailed method is shown below:

The MSRIN first scales up to the large-scale objects region that are large-scale mask graphs
output from the FCN, then calculates the weights mean value in each large-scale object and takes the
maximum one as a candidate object. In the candidate object, the MSRIN downscales to small-scale
mask graphs and selects the remote sensing object whose class label corresponds to nount using a
one-to-one relationship, thus completing the correction.

The key to the above process is that the strategy of multi-scale captions made of small-scale objects
of each class will not be repeated within each large-scale object such that in the large-scale object region,
the small-scale object that matches to nount can be selected. The Algorithm 1 is shown as follows:
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Algorithm 1. For Multi-Scale Remote Sensing Objects Recognition and Correction

Input: noun, weight matrix at time step t.
Small scale object set o = {oi}, i ∈ 1, n], n is the number of mask graphs from U-Net in one sample patch,
Large scale object set O = {Oj}, j ∈ [1, m], m is the number of mask graphs from FCN in the same sample patch
with the U-Net.
weight_graph is a visual graph of the weight matrix generated at the current moment.
Output: oselected.

1 For i = 1 to n; step = 1; do //search the small-scale object that the current weights graph pay attention to
2 { weight_graph intersect with oi; //determine the area of attention on a small-scale object
3 Calculate mean value of intersect area; //basis for selecting small-scale candidate
4 Update oi to small_candidate when weights mean value is the current maximum mean; //update

candidate based on the mean value
5 }
6 If the class label of the small_candidate is equal to nount; //the generated noun matches the object
7 Then oselected = small_candidate; //the object was recognized.
8 Else //there is a mismatch between nount and the candidate, so a correction process will start
9 {//upscale, search the candidate large-scale object that the current weights graph pay attention to
10 For j = 1 to m; step = 1; do //search the large-scale object that the current weights graph pay attention to
11 {weight_graph intersect with Oj; //determine the area of attention on a large-scale object

12 Calculate mean value of intersect area; //basis for selecting large-scale candidate
13 Update Oj to large_candidate when weights mean value is the current maximum mean; //update

candidate based on the mean value
14 }
15 Downscaling in large_candidate; //downscale, determine small-scale object based on the

large-scale candidate
16 search the small-scale object oi which class label is corresponded to nount in large_candidate; //the target

small scale object in the large-scale candidate
17 oselected = oi; //thus the object was recognized and corrected.
18 }

3.3.3. Case Analysis

The following example analyzes the process of multi-scale remote sensing object recognition
and correction, as shown in Figures 6–8. The generated caption is “service with green_space next_to
service and surround residence.” The reference caption is “service with green_space next_to service
and surround residence.” The mean value of remote sensing objects at each time is shown in Table 2.

Table 2. Mean value of remote sensing objects.

The Mean Value of Weight at
Every Object When Generating

the First “Service”

The Mean Value of Weight at
Every Object When Generating

the Second “Service”

service_0 0.000061702 (correct) 0.000016412
service_1 0.000015618 0.000019851

road_0 (with) 0.000029001 0.000027496
green_space _0 0.000015094 0.000023904

residence_0 0.000021753 0.000046018 (incorrect)
service_region 0.000061702 0.000016288

residence_region 0.0000164134 0.0000265598



Remote Sens. 2019, 11, 1044 11 of 22

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 22 

 

 

Figure 6. Remote sensing object recognition and correction. It shows the process of multi-scale remote 

sensing object recognition. (a) is the input image; (b–e) are the attention maps for generating “service,” 

“green_space,” “service,” and “residence,” respectively; (f) is a small-scale segmentation map of (a); 

(g–j) are overlaid maps of (b–e), respectively, with (f); (k) is a large-scale segmentation map of (a); (l–

o) are overlaid maps of (b–e), respectively, with (k). As shown in (I,n), when generating the second 

“service,” the spatial location of attention weights is incorrect at the small scale, but it is correct at the 

large scale. 

 

Figure 7. Small-scale objects. It shows the small-scale objects of the image. (a) is service_0 (in order to 

distinguish between different objects of the same class, we number each object); (b) is road_0; (c) is 

service_1; (d) is green_space _0; and (e) is residence_0. 

 

Figure 8. Large-scale objects. It shows the large-scale objects of the image. We divided the image into 

two large-scale objects by the road. (a) is service_region, which contains small-scale object service_0; 

(b) is residence_region, which contains small-scale object service_1, green_space_0, and residence_0. 

Figure 6. Remote sensing object recognition and correction. It shows the process of multi-scale remote
sensing object recognition. (a) is the input image; (b–e) are the attention maps for generating “service,”
“green_space,” “service,” and “residence,” respectively; (f) is a small-scale segmentation map of (a);
(g–j) are overlaid maps of (b–e), respectively, with (f); (k) is a large-scale segmentation map of (a);
(l–o) are overlaid maps of (b–e), respectively, with (k). As shown in (I,n), when generating the second
“service,” the spatial location of attention weights is incorrect at the small scale, but it is correct at the
large scale.
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Figure 7. Small-scale objects. It shows the small-scale objects of the image. (a) is service_0 (in order to
distinguish between different objects of the same class, we number each object); (b) is road_0; (c) is
service_1; (d) is green_space _0; and (e) is residence_0.
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Figure 8. Large-scale objects. It shows the large-scale objects of the image. We divided the image into
two large-scale objects by the road. (a) is service_region, which contains small-scale object service_0;
(b) is residence_region, which contains small-scale object service_1, green_space_0, and residence_0.
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Table 2. The mean value of weight at every object when two “service” words are generated.
The object of concern on the small scale was correct when generating the first “service” and it was
incorrect when generating the second “service”.

The caption “service with green space next to next_to service and surround residence” was divided
into two parts using “with” (representing a road in the image). “Service” can describe both remote
sensing objects “service_0” and “service_1.” The optimal case is that the attention object of the first
generated “service” corresponds to the object “service_0” and the second corresponds to “service_1.”
The sub-optimal case is that the two attention regions of the “service” are both aimed at “service_1.”
By comparing the mean value of small-scale objects, it was found that the object of concern was correct
when the first generated “service” aimed at object “service_0” and it was incorrect when the second
“service” aimed at “residence_0.” Thus, the correction algorithm upscaled, comparing the mean value
of large-scale objects; the attention region of the second generated “service” was “residence_region,”
and it contained the object “service_1.” It is noted that the attention was correct in the case of the large
scale. At this time, the original incorrect object of concern was corrected, and the optimal situation
was achieved.

4. Data and Experiments

4.1. Introduction of Experiment Area and Sample

To better integrate professional and research ideas, we selected 1835 patches with the longitudes
ranging from 114

◦

23′50′′E to 114
◦

25′7′′E, the latitudes ranging from 30
◦

27′50′′N to 30
◦

30′37′′N, and a
total area of 9.06 km2 of remote sensing images in Guanggu in 2009. To make the number of samples in
the verification set and training set sufficient and the results reasonable, we allocated 1167 samples to
the training set and 668 samples to the verification set. For each sample image, we gave three captions
that were as different as possible.

4.2. Network Parameters and Experiment

The basic functions of the MSRIN include image segmentation and image caption. The function
of semantic segmentation of the original images is obtained based on a pre-trained FCN and a
pre-trained U-Net.

In general, when fine-tuning network parameters, in order to reduce the learning cost, we first
adjusted the number of iterations of the network. For example, in FCN, we first set a larger number
of iterations and observed the loss function change during the iterations, where the trend is shown
in Figure 9. Then, according to this, we selected an appropriate number of iterations required for
the network to reach stability and kept it unchanged during the subsequent tuning process. When
adjusting other parameters, we followed the principle of single factor experiments: fine-tune a certain
parameter while keeping other parameters unchanged until the parameter is optimal, and then adjust
other parameters one by one. For example, when adjusting the batch size of LSTM, we set the initial
value to 25 according to experience and gradually adjusted the value according to the trend of Bleu_1,
where the change process of Bleu_1 is shown in Figure 10. Finally, we selected the batch size when
Bleu_1 was the highest.

After adjusting the sub-networks of the MSRIN one by one, we determined the basic parameters
of each network. In FCN, we set the learning rate to 1 × 10−5, the batch size to 1, and the number of
iterations to 60,000. In U-Net, we set the learning rate to 1 × 10−4, the batch size to 20, and the number
of iterations to 120. The function of image caption was obtained based on an attention-based LSTM.
The original image was input into a pre-trained VGG-19 and the features of conv5_3 were extracted.
The size of the feature map was 14 × 14 × 512, which was used as a part of the input of the LSTM.
In the LSTM, we set the hidden layers to 1024, the embedding dimension of the word vector to 512,
the learning rate to 0.001, the batch size to 20, the number of iterations to 120, and we used the softmax
function as the nonlinear activation function.
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Figure 9. The loss value of FCN during training. It shows the trend of loss values during training.
From the figure, we can see that in the early period of the iteration (about before 5000 times), the loss
value violently oscillated and then dropped sharply. In the medium term (around 5000–50,000), the
loss value decreased slightly and tended to be stable. In order to ensure that the network has stabilized,
we chose 60,000 as the number of iterations.
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Figure 10. Bleu_1 of different batch sizes. It shows the trend of Bleu_1 when the other parameters
were constant and only the batch size was changed. As the batch size increased, Bleu_1 increased
first and then decreased, and the effect of batch size on Bleu_1 was obvious, so a suitable batch size
was necessary.

4.3. Experiment Evaluation

We randomly allocated the total samples to the training set and validation set according to the
sample set sizes in Section 4.1. After an image caption experiment, we obtained a set of satisfactory
experimental results, in which Bleu_1 was 0.893, Bleu_2 was 0.744, Bleu_3 was 0.655, and Bleu_4 was
0.587. Then, we kept the number of training sets and validation sets unchanged, randomly allocated
samples, and performed nine independent Monte Carlo runs. We compared the Bleu_1, Bleu_2, Bleu_3,
and Bleu_4 of those 10 experiments, where the trend of Bleu is shown in Figure 11. In these ten
experiments, the mean values of Bleu_1, Bleu_2, Bleu_3, and Bleu_4 was 0.8982, 0.7466, 0.6521, and
0.5866, respectively, and the standard deviations were 0.004, 0.009, 0.011, and 0.012, respectively, which
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proved the stability and reliability of the experimental results. We selected the results of the first
experiment as the basis for the subsequent experiments and analyses.
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Figure 11. Bleu trend of ten experiments. It shows the trend of Bleu. From the figure, we can see that
in ten experiments, the variation amplitudes of Bleu_1, Bleu_2, Bleu_3, and Bleu_4 are small, which can
prove the randomness of data distribution and the robustness of the algorithm.

Next, we selected 200 samples from the remote sensing image captioning data set (RSICD) [28] as
a validation set to test our experimental model. As shown in our test result, compared with using
the VGG-19+LSTM model from the original paper [28], our model outperformed in all the evaluation
metrics, where the comparison result of metrics is shown in Table 3. Bilingual Evaluation Understudy of
n gram (Bleu_n) calculates the matching degree between n-dimensional phrases and reference captions
(GT) [59]; Metric for Evaluation of Translation with Explicit Ordering (METEOR) adds synonym
matching on the basis of Bleu to make it more strongly correlated with manual discrimination [60];
Recall-Oriented Understudy for Gisting Evaluation of Longest Common Subsequence (ROUGE_L)
and Consensus-based Image Description Evaluation (CIDEr) evaluate the similarity between the
generated caption and the GT using the recall rate and cosine similarity, respectively [61,62]. In general,
these metrics calculate the matching degree between the generated caption and the GT in different
ways, and the larger the metrics values are, the better the generated caption is.

Table 3. Results comparison using VGG-19+LSTM.

Bleu_1 Bleu_2 Bleu_3 Bleu_4 METEOR ROUGE_L CIDEr

Ours 0.774 0.535 0.406 0.314 0.359 0.663 2.745
RSICD 0.583 0.423 0.331 0.270 0.261 0.519 2.033

Table 3 shows the comparison of the results of our model and the model (VGG-19+LSTM) from
Reference [28]. Our metrics are higher than that from Reference [28].

There are two reasons for our network performing better on the RSICD:

1. The multi-scale caption design strategy makes the spatial relationship more concise such that the
vocabulary size is relatively small, which makes it easier for the network training.

2. The RSICD is a shared test dataset such that the purpose of their experiment is to verify the
credibility of the dataset. Therefore, in their test experiment, accuracy is not the main indicator.
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We made statistical comparisons between the evaluation metrics and similar work in existing
studies, and the results are shown in Table 4:

Table 4. Comparing evaluation metrics.

Bleu_1 Bleu_2 Bleu_3 Bleu_4 METEOR ROUGE_L CIDEr

Mean 0.670 0.509 0.399 0.310 0.235 0.560 0.978
Ours 0.893 0.744 0.655 0.587 0.455 0.779 5.044

Table 4 shows the comparison of the evaluation metrics between the experiment and the mean
values from 18 experiments in several related papers. Our evaluation metric values are higher than the
mean values.

Comparing our experimental results with the mean values of 18 experimental evaluation metrics
from related papers [17,25,26,28,29,63], it is obvious that all of our evaluation metrics scores were
better than the mean values. Moreover, in our experience, the pixel accuracy of FCN and U-net for
semantic segmentation were 0.89 and 0.93, respectively, which also reached a good level. Therefore, our
experimental results are credible and can support subsequent recognition and correction experiments.

We analyzed the reasons for the better experimental results. By comparing the generated captions
with the GT, we found that among 668 samples in the validation set, 300 samples contained the word
“with” in GT. A total of 256 samples of generated captions containing the word “with,” accounting
for 85%. The analysis shows that the multi-scale labeling strategy we proposed is feasible and can
be used in experiments. This multi-scale spatial relationship description strategy not only greatly
reduces the sum of spatial relationship vocabulary in reference captions and the difficulty of network
learning but also accurately describes the complex spatial relationship between remote sensing objects.
Both reasons are important for increasing the evaluation metric values of the experiment.

Combining words in all sample generation captions, we analyzed the reliability of caption
descriptions. The analysis results are shown in Table 5.

Table 5. Reliability analysis for generated captions.

Samples Total Number of Samples: 668

Correct Incorrect Total

Words 3417 368 3785
Proportion 90.28% 9.72% 100%
S.R. Word 1396 170 1566
Proportion 89.14% 10.86% 100%

Nouns 2021 198 2219
Proportion 91.08% 8.92% 100%

Table 5 shows the results of our analysis of the generated captions of 668 samples in the validation
set. In the table, “word” is the sum of “S.R. word” and “nouns” in the captions, “S.R. word” was
the spatial relationship word, and “nouns” were the category nouns. “Correct” means that the word
existed in the reference captions (GT), and “incorrect” means that it did not exist.

From Table 5, it is obvious that a total of 3785 words existed in the 668 generated captions, of
which 3417 were correct, accounting for 90.28%, and 368 were incorrect, accounting for 9.72%. The
Bleu_1 value in our experiment was slightly lower than 0.9028. There are two possible reasons: (1) the
influence of other words (such as “and” and “with”), and (2) the introduction of a penalty mechanism
in the calculation of the Bleu scores. We divided the 3785 words into nouns and relatives and calculated
the statistics. Among them, there were 2219 nouns in total and 2021 were correct, accounting for 91.08%.
Moreover, there were 1566 relative words, and 1396 were correct, accounting for 89.14%. Because of
the high accuracy of nouns and relative words, it was possible to recognize and correct image objects.

After the recognition and correction of objects, the effect is shown in Table 6.
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Table 6. Number of matched nouns before and after correction.

Samples Total Number of Samples: 668

Pre-Correction Matched Post-Correction Matched Unmatched Total

Nouns 929 1856 363 2219
Proportion 41.87% 83.64% 16.36% 100%

Table 6 shows the matching of the nouns and the object mask graphs before and after recognition
and correction. “Pre-corrected matching” means that the attention area of the noun was matched with
the object mask graphs before correction. “Post-correction matched” means that the attention area of
the noun was matched after correction. “Unmatched” means that the attention area of the noun was
unmatched with the object mask graphs before and after correction.

5. Discussion

The object recognition and correction mechanism proposed in this paper performs object
recognition based on the nount generated at time step t and the corresponding attention weight
matrix, and multi-scale correction for the mismatched object concerned by the attention weight matrix.
Therefore, in order to better analyze the object recognition and correction effects, we divided the 668
samples into two subsets: Sample Set 1 and Sample Set 2. The nouns contained in the generated
captions of the samples in Sample Set 1 were all correct, and the captions generated by the samples in
Sample Set 2 contained error nouns. In this way, Sample Set 1 could fully realize object recognition and
correction, and Sample Set 2 could only identify and correct the remote objects corresponding to the
correct nouns. We further analyzed the two sample sets. The overall results before and after correction
are shown in Table 7.

Table 7. The results of the overall analysis of the subsets.

Samples Total Number of Samples: 668

All Nouns are Correct: 477 Not All Nouns are Correct: 191

Correct Incorrect Total Correct Incorrect Total

S.R. Word 1013 76 1089 383 94 477

Proportion 93.02% 6.98% 100% 80.29% 19.71% 100%

Pre-Correction
Matched

Post-Correction
Matched Unmatched Total Pre-Correction

Matched
Post-Correction

Matched Unmatched Total

Nouns 781 1541 26 1567 148 315 337 652

Proportion 49.84% 98.34% 1.66% 100% 22.70% 48.31% 51.69% 100%

Table 7 shows the overall analysis of Sample Set 1 and Sample Set 2. From the table, we can see
the words contained in the captions generated using the two sample sets and the comparison results of
the number of nouns matched with the object before and after correction.

The 477 samples in Sample Set 1 generated a total of 2656 words, of which 2580 words are correct,
and 76 words were incorrect. In the generated 2656 words, there were 1567 object nouns, and all of
them were correct; 1089 words were relational words, of which 1013 words were correct, and 76 words
were incorrect. There were a total of 1129 words contained in the 191 generated captions of Sample
Set 2, of which 837 words were correct, and 292 words were incorrect. Among the 1129 words, there
were 652 object nouns, of which 454 words were correct, 198 words were incorrect; 477 words were
relational words, of which 383 words were correct, and 94 words were incorrect.

In Sample Set 1, we first performed an analysis based on the samples, and the results are shown in
Table 8. There were 477 samples in the validation set (i.e., the sample set to be analyzed). Among them,
87 samples, accounting for 18.24%, did not need to be corrected because all nouns were matched with
objects. There were 337 samples with incorrect recognition objects before correction, but nouns were all
matched with objects after correction, accounting for 70.65%. Generally, after the implementation of our
correction method, there were a total of 424 samples in which each noun in the generated captions were
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matched with the corresponding objects, accounting for 88.89%, an increase of 70.65 percentage points,
which was a remarkable effect. In addition, there were 37 partially corrected samples, accounting for
7.76%; only 16 samples were not corrected, accounting for 3.35%, basically achieving the purpose of
recognizing remote sensing objects and the spatial relationship between them.

Table 8. Sample-based analysis of Sample Set 1 before and after correction.

Sample Class Completely
Corrected

Partial
Correction

No Corrective
Effect

No Need for
Correction Total

Number 337 37 16 87 477
Proportion 70.65% 7.76% 3.35% 18.24% 100%

Table 8 shows the sample-based analysis of Sample Set 1. As shown in the table, more than 78%
of the samples were completely or partially corrected.

Next, we conducted an analysis based on category nouns included in the 477 generated captions
of Sample Set 1. There were 1567 nouns in all generated captions from the 477 samples. There were
781 nouns whose attention areas were matched with objects before the correction, the proportion was
49.84%, and the matched ones increased to 1541 after correction, accounting for 98.3%, an accuracy
increase of 48.50 percentage points. The effect was greatly improved, which means that the method we
proposed can meet the demand of remote sensing interpretations.

We performed a similar analysis of 191 samples in Sample Set 2. The results of the sample-based
analysis are shown in Table 9. There were multiple objects in one or more classes of some samples, and
in the generated captions of these samples, nouns of these classes appeared more than once, and a
many-to-many relationship could therefore be constructed. However, the matched objects’ judgement
of the generated correct nouns in the image will be affected by the incorrect nouns. These samples
were classified into having no corrective effect on the statistics, totaling 55 samples. One sample whose
words in the generated captions were all incorrect and was classified into no corrective effect.

Table 9. Sample-based analysis of Sample Set 2 before and after correction.

Sample Class Completely
Corrected

Partial
Correction

No Corrective
Effect

No Need for
Correction Total

Number 113 0 56 22 191
Proportion 59.16% 0.00% 29.32% 11.52% 100%

Table 9 shows the sample-based analysis of Sample Set 2. As shown in the table, only approximately
59% of the samples were corrected. The correction effect was worse than that of Sample Set 1.

The nouns-based analysis of Sample Set 2 showed that 148 (22.70%) of the nouns matched with
the mask graphs before the correction, and it increased to 315 after correction, accounting for 48.31%.
The proportion increased by 25.61 percentage points, which was less of an effect than for Sample
Set 1. However, 337 nouns still could not be corrected, accounting for 51.69%, which indicated that
the correction algorithm could only solve the mismatching problem between the attention weight
matrix and the object but could not correct the incorrect words generated by LSTM. In addition, 315 of
341 nouns could not be corrected in Sample Set 2, indicating that for a sample, the higher the Bleu
scores, the better the recognition and correction mechanism performs.

The sample-based and nouns-based overall correction effect analysis of Sample Set 1 and Sample
Set 2 are shown in Figure 12. We conducted a comprehensive analysis of the corrective effect with
a combined Sample Set 1 and Sample Set 2. Before the correction, the number of each noun in the
captions generated by the samples matching with the mask graph was 109. When the correction
finished, the number rose to 559, equivalent to a proportion increase of 67.37 percentage points. Before
and after correction, the number of nouns matching with the mask graph increased from 929 to 1856,
a proportion increase of 41.78 percentage points.
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(a,b) are the sample-based overall correction effect for Sample Set 1 and Sample Set 2, respectively; (c,d)
are the noun-based overall correction effect for Sample Set 1 and Sample Set 2, respectively. As shown
in the figure, whether from the perspective of samples or nouns, the correction algorithm proposed in
this paper achieved good results. The correction effect of Sample Set 1 was better than that of Sample
Set 2.

From the above analysis, the following conclusions can be drawn:

• When the noun in the generated caption was correct and the spatial relationship was incorrect,
the remote sensing object could still be recognized, but the spatial relationship could not
be corrected.

• When both the nouns and spatial relationship were incorrect, the proposed method was ineffective.
This requires further research.

6. Conclusions

In this paper, a multi-scale remote sensing image interpretation network (the MSRIN) was
proposed for identifying remote sensing objects and their spatial relationships from end-to-end. First,
a remote sensing image was semantically segmented through an FCN and a U-net on two spatial
scales such that each pixel in the original image was labelled with two semantic labels; therefore, a
hierarchical relationship of a multi-scale remote sensing object could be formed. Second, the features
of the same image obtained using a pre-trained VGG-19 network were input for the attention-based
LSTM, which outputted the captions that described the two-scale remote sensing objects and their
spatial relationships. Finally, the relationship between the nouns in the caption and the object mask
graphs was established through the attention weight matrix. In this way, the remote sensing objects
from the U-Net got their spatial relationship from the caption. To overcome the spatial deviations
of the attention weight matrix from the LSTM, the MSRIN designed an attention-based, multi-scale
remote sensing object identification and correction mechanism. Our method produced a complete
semantic interpretation of remote sensing images.

Identifying remote sensing objects and their spatial relations was based on the attention weight
matrix. In the future, we will improve the attention weight calculation method to achieve more
accurate positioning.
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The objectivity of the evaluation method based on Bleu depends on the completeness of the
captions, which greatly aggravates the burden of sample preparation. Therefore, we will concentrate
on exploring the establishment of evaluation metrics and methods that are suitable for remote sensing
image captioning.””

The experimental data in this paper was mainly optical remote sensing images. In the future, we
will further verify the recognition and correction mechanism proposed in this paper by using other
types of data, such as SAR.
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