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Abstract: Remote sensing (RS) and proximal soil sensing (PSS) technologies offer an advanced array
of methods for obtaining soil property information and determining soil variability for precision
agriculture. A large amount of data collected by these sensors may provide essential information
for precision or site-specific management in a production field. Data clustering techniques are
crucial for data mining, and high-density data analysis is important for field management. A new
clustering technique was introduced and compared with existing clustering tools to determine the
relatively homogeneous parts of agricultural fields. A DUALEM-21S sensor, along with high-accuracy
topography data, was used to characterize soil variability in three agricultural fields situated in
Ontario, Canada. Sentinel-2 data assisted in quantifying bare soil and vegetation indices (VIs).
The custom Neighborhood Search Analyst (NSA) data clustering tool was implemented using Python
scripts. In this algorithm, part of the variance of each data layer is accounted for by subdividing the
field into smaller, relatively homogeneous, areas. The algorithm’s attributes were illustrated using
field elevation, shallow and deep apparent electrical conductivity (ECa), and several VIs. The unique
feature of this proposed protocol was the successful development of user-friendly and open source
options for defining the spatial continuity of each group and for use in the zone delineation process.

Keywords: remote sensing; proximal soil sensing; clustering techniques; spatial homogeneity;
management zones

1. Introduction

A delineated areal extent (DAE) is a finite part of a field representing a unique and homogeneous
portion of data [1,2]. The determination of DAEs, or zones, using remote sensing (RS) and proximal
soil sensing (PSS) data is becoming critical in the assessment of soil properties and the characterization
of variability in precision agriculture [1–8]. In the delineation process, high-resolution data from these
sensing technologies, together with quantitative methods, are used to infer the spatial pattern of soil
heterogeneity [9–13]. To obtain information on the spatial pattern of soil parameters and produce
thematic soil maps to understand a field’s agronomic and yield-limiting factors, high-density and
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multivariate data analyses were drawn upon to isolate homogeneous field areas and identify potential
management zones [14–20].

Multivariate data and hierarchical clustering techniques are crucial for identifying and
understanding soil variability within a production field [13,21–25]. Among the multivariate data
analysis techniques, the unsupervised clustering techniques of fuzzy c-means and k-means are
most commonly used for data mining [26–32]. Because of the fuzziness of c-means and k-means
and other limitations—each cluster object can belong in more than one group and boundary pixels
are created—in the isolation process [8,33,34], this study attempted to provide a multivariate and
hierarchical clustering tool to represent unique thematic maps and zonal boundaries based on the
homogeneity of the agricultural field.

Most clustering algorithms applied in zone delineation do not handle high-density data files
with multiple variables [35–39] or produce an optimal number of zones. As clustering techniques
commonly generate fragmented management zones, agricultural scientists and farmers face challenges
when implementing variable-rate operations [8,16,40–44]. In practice, for field operations, the optimal
number of zones should be such that the capacity of GPS-guided field equipment is neither overtaxed
(too many isolated zones) nor underexploited (too few isolated zones). A survey conducted using
a Real-Time Kinematic (RTK), DUALEM proximal soil sensor, and a remote sensing satellite sensor
yielded high-density elevation, apparent electrical conductivity (ECa), and surface vegetation reflectance
data, respectively. In this research, the proposed data clustering algorithm was optimized to generate
spatially contiguous zones to aid in the achievement of best management practice goals. This study
presents the process used to develop a new and enhanced clustering technique to better understand
soil variability (e.g., topography, crop performance, and high-density soil data, such as ECa) in an
agricultural field. The performance of this technique was then compared to that of other commonly
used techniques.

2. Materials and Methods

2.1. Experimental Sites and Data Description

Situated at the Woodrill Farms near Guelph, Ontario, Canada, three agricultural fields (namely,
WH, LD, and RB), differing in acreage and soil class, were surveyed using both RS and PSS sensors
(Table 1 and Figure 1). The PSS equipment was pulled behind an all-terrain vehicle and measured
elevation and ECa data points for the experimental sites at intra- and inter-row spacings of 5 m and
10 m, respectively. Elevation data points were collected by an RTK Global Navigation Satellite Systems
(GNSS) receiver (Trimble Inc., California, USA) (Table 2). On the basis of the high-density elevation
points, a digital elevation model (DEM) was created with a spatial precision of about 2 cm horizontally
and 3 cm vertically. Slope, aspect ratio [sin(aspect/2)], and a topographic wetness index (TWI) were
derived from a DEM of the study sites. Developed by Beven and Kirkby [45] and serving to investigate
hydrological processes controlled by topography, the TWI was determined using the SAGA GIS v.2.4
(University of Hamburg, Germany). The DUALEM-21S system (DUALEM Inc, Milton, ON, Canada)
had one transmitter coil and four receivers—two of horizontal coplanar (HCP) geometry and two of
perpendicular coplanar (PRP) geometry—at a separation distance of 1 to 2 m. It was used to collect
ECa at four different depths: PRP1 at 0–0.5 m, PRP2 at 0–1.0 m, HCP1 at 0–1.6 m, and HCP2 at 0–3.0 m
(Table 3). The pre-processing procedures for the collection of RTK elevations and ECa values were
similar and included a raw data display, the identification of missing values, median filtering, and the
removal of outliers. Culled data included: (i) start pass and end pass delays, (ii) points with overspeed
limits, (iii) values outside the user-defined minimum and maximum values, and (iv) pitch or roll
changes outside the acceptable limit. Data outliers were removed on the basis of the criteria above,
such that about 15% of data points were removed. Various methods of geospatial data processing were
undertaken on multiple data layers, including rectification, interpolation, and point data extraction.
These methods enhanced the data quality for further analysis.
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Table 1. Characteristics of three agricultural fields in Guelph, Ontario, Canada.

Field ID Area (ha) Soil Classes Target Crops

WH 39.60 Loam Soybean/Wheat
LD 21.00 Sandy Loam Soybean
RB 75.00 Fine Sandy Loam Soybean/Wheat

Table 2. Summary statistics of elevation data from the Real-Time Kinematic (RTK) sensor for three
agricultural fields in Guelph, Ontario, Canada.

Field ID # of Measurements
Elevation (m)

Min Median Max Range STD Mean

WH 28493 372.06 378.07 384.54 12.48 2.33 378.21
LD 7110 332.70 344.86 354.17 21.47 5.76 343.95
RB 20813 358.41 367.67 372.16 13.75 3.63 366.64
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Figure 1. (a) Location and aerial views of three fields at the Woodrill Farms in Guelph Ontario, Canada:
WH field boundary with soil apparent electrical conductivity (ECa) data points (b), LD field boundary
with soil ECa data points (c), and RB field boundary with soil ECa data points (d).

A Sentinel-2 image was used to analyze bare soil and vegetation characteristics (Table 4).
Remote sensing image processing steps were followed, including radiometric correction, stitching,
co-registration, and stack bands. One OrthoPhoto and two Sentinel-2 images were used for
co-registration and visual interpretation with zonal thematic maps. In addition to the traditional
visible (RGB) and near-infrared (NIR) spectral bands, Sentinel-2 imagery presented red edge part of the
spectrum as well. Spectral indices were produced from Sentinel-2 data to identify the strong absorption
spectrum of chlorophyll. These included the Difference Vegetation Index (DVI), the Normalized
Difference Red Edge Index (NDRE), the Normalized Difference Vegetation Index (NDVI), and the



Remote Sens. 2019, 11, 1036 4 of 17

Modified Soil Adjusted Vegetation Index (MSAVI2). Among the vegetation indices (VIs), NDVI maps
were found to be more suitable and were used for the clustering process [46,47].

Table 3. Summary of statistics from DUALEM-21S sensor readings from the three agricultural fields.
HCP: horizontal coplanar, PRP: perpendicular coplanar.

Field ID # of Measurements Sensor Configuration Apparent Soil Electrical Conductivity (ECa), mS m−1

Min Median Max Range STD Mean

WH 20129
HCP1

4.00 12.28 25.28 21.28 1.69 12.51
LD 6931 2.58 6.90 16.08 13.50 1.55 6.96
RB 18524 1.70 9.00 17.98 16.28 2.81 9.13

WH 20129
PRP1

4.68 7.92 22.24 17.56 1.60 8.15
LD 6931 0.72 4.44 14.12 13.40 1.38 4.55
RB 18524 0.00 3.53 16.80 16.80 2.86 4.40

WH 20129
HCP2

7.42 10.46 24.42 17.00 1.79 10.83
LD 6931 0.50 4.44 14.44 13.94 1.85 4.61
RB 18524 2.50 8.45 14.99 12.49 2.65 8.22

WH 20129
PRP2

5.42 9.10 23.92 18.50 1.75 9.37
LD 6931 1.08 4.68 14.60 13.52 1.50 4.75
RB 18524 0.14 5.10 15.00 14.86 2.96 5.64

Table 4. Remote sensing data characteristics and their sources.

Satellite Sensor Spectral Bands Pixel (m) Central
Wavelength(nm) Imaging Date Source

OrthoPhoto B, G, R, NIR 0.2 - 23 May 2015 OMAFRA/OMNRF 1

Sentinel-2 2(B), 3(G), 4(R), 8(NIR) 10.0 494, 560, 665, 834 21 July 2017 Planet Labs
Sentinel-2 5,6,7 (red edge 1,2 &3) 20.0 704, 740, 781 21 July 2017 Planet Labs

1 Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and Ontario Ministry of Natural Resources
and Forestry (OMNRF).

2.2. Interpolated Maps of Selected Sensor Variables

Ordinary Kriging interpolation maps were generated from the PSS measurements in ESRI ArcGIS
software (v10.5.1). Kriged maps (with a spatial resolution of 5 m) showing RTK elevation (DEM),
derived topographic variables (including slope, aspect, and TWI), and DUALEM sensor variables
(HCP1, HCP2, PRP1, and PRP2) were produced. Slope and aspect showed similar clustering patterns
as TWI and thus were deemed redundant. In the final clustering process only TWI was used. Indices
from NDVI maps (with a spatial resolution of 10 m) were extracted for the clustering tool. Those maps
represented significant variations across the expanse of each field (Figures 2–4). The interpolated maps
were extracted into a data file of multiple layers. Finally, a text data file was generated to store the
sensor-derived variables for input into the newly developed clustering tool and commonly used fuzzy
clustering techniques.

To delineate zones, the multilayer data files were analyzed by the proposed data clustering tool.
The new data clustering algorithm and its processing steps are elaborated in detail in the following
section, as well as the new algorithm’s clustering outputs in comparison to outputs from fuzzy
clustering techniques.
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2.3. Data Clustering Algorithms

Fuzzy c-means calculated by the management zone analyst (MZA) [48] were used to generate
the normalized classification entropy (NCE) and fuzziness performance index (FPI) of the five zones.
The k-means algorithm in the Python data library was used to generate (k = 5, k =15, and k = 25)
clusters and find cluster centers using the sum of square distances of all data points and the number of
cases in each cluster. Initially, five user-defined clusters were defined in the above clustering methods;
however, the optimum number of zones was determined in the final step and compared between the
two methods.

The proposed data clustering method, called the Neighborhood Search Analyst (NSA), resulted in
the algorithms shown in Figure 5. The processing steps and formula were adopted from the NSA and
are written in MATLAB scripts [6]. Preliminary tests of the algorithm in numerous production fields
highlighted the algorithm’s robustness when partitioning field areas using several field measurements.
To construct an objective function to be optimized through the data grouping process, the mean squared
error (MSE) was calculated for each individual data layer k according to:

MSEk =

m∑
j=1

n j∑
i=1

(
Xi j −X j

)2

N −m
(1)

where Xij is a sensor value for the ith grid cells within the jth group; X j is the mean of jth group; N is the
total number of grid cells; m is the number of groups; and nj is the number of grid cells within the
jth group.

It should be noted that the difference between the total number of grid cells and the number of
groups can be determined by:

N −m =
m∑

j=1

(
n j − 1

)
(2)

Since the algorithm initially assumes that all grid cells belong to the same group, labeled “1” and
designated as "the rest of the field", then MSEk(m = 1) represents the variance of the kth data layer
across the entire field. Given that the area of the field is substantially greater than the area of a grid cell,
MSEk(m = 1) can be termed Farthest Distance Variance (FDVk). In such a situation, the portion of data
variance accounted for by distributing N grid cells among m groups can be calculated as:

R2
k = 1−

MSEk
FDVk

(3)

where MSEk(m = 1) can be called Farthest Distance Variance (FDVk).
The maximum value of R2

k can be obtained when MSEk is as small as possible. It approaches
1when the number of groups increases. Since the result can be considered less favorable if at least one
data layer k is not adequately accounted for, it is reasonable to employ the integration operator OR
instead of the more common AND. This avoids the need to assign a weight factor to each individual
data layer when adding corresponding MSEk estimates. In mathematical terms, this would mean that
the product of all R2

k should be maximized. Therefore, the objective function (OF) was defined as:

OF =
K∏

k=1

R2
k (4)

where K is the number of PSS data layers.
In this study, the smallest number of data elements that could be grouped within the grid cell

square window was nine (3 × 3). Therefore, the maximum accountable variance is the variance of PSS



Remote Sens. 2019, 11, 1036 9 of 17

measurements between immediate neighbors. The Shortest Distance Variances (SDVk) can be found
using:

SDVk =
1
w

w∑
j=1

9∑
i=1

(
Xi j −X j

)2

8
(5)

where w is the total number of 3 × 3 square windows of grid cells.
Since SDVk represents the smallest MSEk value, the maximum value of R2

k is calculated as:

R2
kmax = 1−

SDVk
FDVk

(6)

This R2
k max parameter can range between 0 and 1. It is equal to 0 when data layer k is either

uniform or highly variable, so that SDVk = FDVk. In such a case, the data layer should not be able to
affect changes in the OF. Alternatively, when R2

k max is close to 1, the data layer has a strong spatial
structure (SDVk << FDVk), and OF must be sensitive to the change of MSEk corresponding to that
particular data layer. In mathematical terms, this goal can be achieved by multiplying all R2

k values
raised to the R2

k max power of:

OF =
K∏

k=1

R2
k

R2
kmax

=
K∏

k=1

(
1−

MSEk
FDVk

)(1− SDVk
FDVk

)

(7)

The resultant OF indicates the overall quality of grid cell groupings. It varies from 0 to 1 and
approaches high values when every spatially structured layer of PSS measurement is separated among
spatially continuous groups of grid cells with minimum internal group variance. Such groups represent
different combinations of average PSS measurements obtained with different sensors that diverge from
average field conditions. To facilitate the formation of grid cell groups that would maximize the OF,
the NSA algorithm was implemented in this study using Python v3.6 (created by Guido van Rossum
and managed by Python Software Foundation, Delaware, USA).
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3. Results and Discussion

3.1. c-Means Clustering

On the basis of the seven input variables (i.e., elevation, TWI, NDVI, HCP1, HCP2, PRP1, and PRP2)
of the WH field, Euclidean distance-based NCE and FPI indices in FCM clustering were assessed for
their performance in creating an optimum number of zones. Comparing the NCE index to the FPI index
showed that the maximum value was reached only in zones 4 and 5 (Figure 6). This clustering method
is flaws when it comes to obtaining an optimum number of zones [8,49,50]. The FCM clusters produced
pixels with isolated boundaries in various parts of the field [51,52]. Many studies have reported this
representation problem regarding the clustering of data due to the fuzzy boundary [16,32,53,54]. In the
present method, user-defined numbers of clusters were produced without considering the geospatial
locations of the dataset (spatial continuity) or their distances.

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 16 

 

3. Results and Discussion 

3.1. c-Means Clustering 

On the basis of the seven input variables (i.e., elevation, TWI, NDVI, HCP1, HCP2, PRP1, and 
PRP2) of the WH field, Euclidean distance-based NCE and FPI indices in FCM clustering were 
assessed for their performance in creating an optimum number of zones. Comparing the NCE index 
to the FPI index showed that the maximum value was reached only in zones 4 and 5 (Figure 6). This 
clustering method is flaws when it comes to obtaining an optimum number of zones [8,49,50]. The 
FCM clusters produced pixels with isolated boundaries in various parts of the field [51,52]. Many 
studies have reported this representation problem regarding the clustering of data due to the fuzzy 
boundary [16,32,53,54]. In the present method, user-defined numbers of clusters were produced 
without considering the geospatial locations of the dataset (spatial continuity) or their distances. 

  
Figure 6. Normalized classification entropy (NCE) (a) and fuzziness performance index (FPI) (b) of 
the WH field based on seven input variables. 

3.2. k-Means Clustering 

In the k-means clustering (k=5), the data values were taken directly from the input table of the 
WH field for generating cluster centers (Figure 7a). Data were standardized and normalized for the 
specific variable values. Among the five user-defined clusters, clusters 1, 2, 3, and 5 used the most 
data points. Since there was a random component, after several runs of each clustering process, the 
coefficient of determination (R2) varied according to how the k-means algorithm was initialized. The 
cluster map consisted of groups of pixels with isolated boundaries in various parts of the WH field 
(Figure 7b). Figure 7b shows that the k-means cluster map of the WH field generated 36 scattered 
zones of user-define clusters (k=25). 

  

Figure 7. (a) k-means cluster (k = 5) centers with variable values of the WH field and (b) k-means 
cluster (k = 25) map of the WH field showing zones with various isolated pixels. 

(a) (b) 

(b) (a) 

Figure 6. Normalized classification entropy (NCE) (a) and fuzziness performance index (FPI) (b) of the
WH field based on seven input variables.

3.2. k-Means Clustering

In the k-means clustering (k=5), the data values were taken directly from the input table of the
WH field for generating cluster centers (Figure 7a). Data were standardized and normalized for the
specific variable values. Among the five user-defined clusters, clusters 1, 2, 3, and 5 used the most
data points. Since there was a random component, after several runs of each clustering process,
the coefficient of determination (R2) varied according to how the k-means algorithm was initialized.
The cluster map consisted of groups of pixels with isolated boundaries in various parts of the WH
field (Figure 7b). Figure 7b shows that the k-means cluster map of the WH field generated 36 scattered
zones of user-define clusters (k=25).
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3.3. NSA Clustering

In the NSA zone delineation process, unlike other clustering algorithms, providing the number of
field partitioning clusters is not obligatory. Without defining the number of clusters, NSA produced an
optimum number of groups for the grid cell (grid size of 20 m), separately, for seven different input
variables. More importantly, this clustering tool efficiently delimited maps by providing the optimum
number of zones for field management (Figures 8a, 9a and 10a). On this basis, the WH, LD, and RB
fields have 28, 20, and 27 georeferenced zones, respectively. For NSA clustering, user-defined (k = 5,
k = 15, and k = 25) zones were delineated and are illustrated later in this paper.
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In NSA, zone delineation was performed by the individual R2 values of each variable
(Figures 8b, 9b and 10b) and overall OF (Figures 8c, 9c and 10c). These graphs show the part of
the variance of each data layer which was accounted for by subdividing the field into smaller areas.
In each graph, a greater number of R2 value indicated that variability within individual zones was
smaller than the difference between zones. Figures 8b, 9b and 10b show that the R2 values increased
when new groups were formed or added to the existing groups. The NSA that produced R2

max value
was about 0.9, and the graph had a steeper initial slope. This indicated that the data layer had a strong
spatial structure and was dominant when the field was split. Moreover, the x value (No. of cells),
where most graphs leveled off, showed that the smallest level of field partitioning revealed most of the
soil heterogeneity. Results in LD and RB fields indicated that R2 for each data layer reached a maximum
height (0.60) with around 500 classified grid cells, whereas R2 reached 0.70 near the 1000-grid cell level
for the WH field (Figure 11). Roughly 60% (in LD and RB) and 70% (WH) of the field variance in both
cases was accounted for by making the clusters.
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3.4. Comparison of k-Means and NSA Clustering

At this stage, three user-defined clusters (k = 5, k = 15, and k = 25) were generated to allow
a comparison of the two clustering algorithms, i.e., k-means and NSA. User-defined centers for all
clusters were needed for k-means; however, these were not a requirement for the NSA algorithm.
The R2 values of the NSA algorithm were compared among the three different fields (Figure 11).
The overall OF showed that all of the clusters reached maximum R2 values close to 0.6 and up to 0.7.
In the three defined k-means clusters (k = 5, k = 15, and k = 25), the R2 of the RB field was higher:
0.78, 0.80, and 0.84 respectively (Figure 12). Also, R2 (k = 5) was relatively high in k-means clustering
process because of the fragmentation of clusters throughout the field, while NSA clusters were always
contiguous (i.e., not broken into parts). The R2 of the k-means cluster compared to that of the NSA was
higher in most of the fields and was approximately 0.80. The R2 values were comparable when the
isolated/boundary pixels in each k-means cluster were disjointed from the main cluster and created
spatially contiguous zones. The k-means cluster map consisted of groups or pixels with isolated
boundaries in various parts of the WH field (Figure 7b), whereas the NSA algorithm counted these
as different groups and reduced the zone fragmentation (Figure 8a). In the case of the user-defined
cluster (k = 25), the k-means cluster maps of WH, LD, and RB fields generated 36, 34, and 38 scattered
zones respectively, whereas the NSA maps created approximately 25 spatially contiguous clusters for
each of the three fields (Figure 12).Remote Sens. 2019, 11, x FOR PEER REVIEW 2 of 2 
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4. Conclusions

The high-density and multivariate data clustering approach provided an optimal number of
zones for three agricultural fields in Ontario, Canada. The preprocessing and variable selection steps
common to all clustering techniques are imperative for providing a well-defined zonal boundary for
developing management zones. Compared to other data clustering algorithms, NSA has a unique
capability for zone separation, which allows one to produce an optimum number of zones and spatially
contiguous clusters during multivariate classification. Moreover, an improved version of this software
was tested and proved to be capable of handling a significant number of variables and data layers for
delineating the optimum number of zones in a more robust way.

The software was found to be reliable when integrating high-density field topography, RS, and
PSS data files. It had a fast processing time and could be run on any platform with open source python
modules. The robust zone delineation process and georeferenced thematic maps are useful for variable
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rate crop management technologies and for other management purposes. Multi-sensor data fusion,
advanced data filtering procedures, and the web application of the NSA could be implemented to
facilitate appropriate site-specific agronomic and environmental decisions in many regions.

The zonal maps will be useful for further agronomic model calibration using targeted soil sampling.
Field data, for example, crop yield and lab-measured soil properties, could be used to validate the
georeferenced clusters and management zones created. Furthermore, this research enhances and
provides information for better variable-rate fertilizer recommendations and can optimize pesticide
and herbicide applications, thereby providing greater environmental benefits.
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