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Abstract: This study presents the development of an artificial neural network (ANN) model to
quantitatively estimate the atmospheric aerosol load (in terms of aerosol optical depth, AOD), with
an emphasis on dust, over the Mediterranean basin using images from Meteosat satellites as initial
information. More specifically, a back-propagation ANN model scheme was developed to estimate
visible (at 550 nm) aerosol optical depth (AOD550 nm) values at equal temporal (15 min) and spatial
(4 km) resolutions with Meteosat imagery. Accuracy of the ANN model was thoroughly tested by
comparing model estimations with ground-based AOD550 nm measurements from 14 AERONET
(Aerosol Robotic NETwork) stations over the Mediterranean for 34 selected days in which significant
dust loads were recorded over the Mediterranean basin. Using a testbed of 3076 pairs of modeled
and measured AOD550 nm values, a Pearson correlation coefficient (rP) equal to 0.91 and a mean
absolute error (MAE) of 0.031 were found, proving the satisfactory accuracy of the developed model
for estimating AOD550 nm values.

Keywords: Dust detection; Meteosat satellite; remote sensing; artificial neural networks;
Mediterranean; AERONET

1. Introduction

Dust and sand storms originating from Earth’s major arid and semi-arid desert areas can
significantly affect the climate system and health. Such dust events create hazardous air quality
conditions and increase mortality (e.g., [1–3]). On the other hand, dust is ascertained to have
significantly affected past climate (e.g., [4,5]) and also affects present climate and weather conditions
on a regional to global scale, but there is still high uncertainty of dust’s total impact on ongoing climate
change [6]. The climatic effect of dust is exerted through modification of the shortwave and longwave
radiation budget (e.g., [7–9]). Dust also has indirect and a semidirect effects on climate, which consist of
modification of cloud and precipitation properties and influence general circulation of the atmosphere
(e.g., [10,11]). Besides, feedback between dust and atmospheric carbon dioxide or ocean biochemistry
and productivity have also been documented (e.g., [12,13]). Apart from these, dust can also have other
effects, namely on transportation (e.g., aviation), space exploration, and solar photovoltaic power [14].
For all these reasons, the identification and detection of dust, especially at large spatiotemporal scales
and high resolutions, is very important.

Significant is the role of numerical modelling to detect and forecast dust loadings. More specifically,
numerical dust transport models have been widely used for simulating and forecasting the concentration
of dust aerosols, such as the Community Aerosol and Radiation Model for Atmospheres (CARMA) [15],
the NCEP (National Centers for Environmental Prediction) regional atmospheric model [16], the Dust
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REgional Atmospheric (DREAM) Model [17,18], the NMMB/BSC-Dust multi-scale dust model [18,19],
and the Weather Research and Forecasting/Chemistry Model (WRF/Chem) model [20,21]. Although
these models perform quite satisfactorily in predicting dust events, there are still significant uncertainties
in the final forecasts (e.g., [22]). Moreover, it should be noted that large differences exist between global
dust models in terms of reproducing the dust cycle [23].

On the other hand, dust detection and monitoring, as well as dust load estimation from satellite
observations, is an efficient alternative solution, which has the advantage of providing extended spatial
coverage. Indeed, remote sensing has been shown to be a valuable tool for detecting, mapping, and
forecasting dust events (e.g., [24–26]), while it is also used for real-time dust detection (e.g., [27–29]).
Methodologies for dust storm detection and tracking using satellite imagery have already been
developed in response to the high demand for distinguishing and forecasting severe dust outbreaks.
Furthermore, use of satellite remote sensing for dust monitoring and nowcasting is also useful in
providing long-term and global observations. Nevertheless, the majority of existing approaches
for dust detection and monitoring are still based on simple thresholding of multispectral satellite
imagery [30–32]. More specifically, brightness temperature differences (BTDs) at 8.7, 10.8, and 12 µm
are being commonly used to discriminate atmospheric dust from clouds (e.g., [33–36]), since dust
particles absorb more thermal radiation at shorter infrared wavelengths, opposed to ice and/or liquid
water particles that induce higher absorption at longer wavelengths of thermal infrared radiation
(e.g., [37,38]). However, several factors can affect BTD values, such as intense surface temperature
inversion and the existence of high water vapor concentration, which hamper detection of “dusty”
pixels [39].

It should also be noted that a common practice to detect dust storms is the use of remote sensing
indices (e.g., [38,40,41]). A key study by Legrand et al. [40] developed the infrared difference dust
index (IDDI). Also, Zhao et al. [38] proposed a multichannel imager (MCI) algorithm for detecting
dust aerosols, over both land and water, based on universal thresholds. In a more recent study [28],
dust detection and quantification were performed using BTDs among four channels in the visible and
infrared regions of the Himawari-8 satellite as well as two dust indices.

In the last decade, new methodologies based on satellite imagery have been developed for
the detection and tracking of dust storms by applying machine learning techniques (e.g., [42–44]).
In spite of the quite satisfactory performances of these methodologies for detecting dust that have
been documented in several studies, the majority of them do not provide operational tools; instead
they use data from polar-orbiting satellite instruments such as the MODIS (moderate resolution
imaging spectroradiometer). Nevertheless, polar-orbiting satellite measurements provide limited
temporal resolutions, opposite to the higher resolution ensured by geostationary satellites like Meteosat,
Himawari, or geostationary operational environmental satellites (GOESs). For example, Meteosat
offers a temporal resolution of 15 min, which is essential for real-time or near real-time dust detection
(dust nowcasting) applications.

To date, there are few studies making combined use of datasets from geostationary satellites and
ANN (artificial neural network) schemes, but they mainly focus on classification of different rainfall
types and estimation of rainfall intensity (e.g., [45,46]). Similar studies focusing on atmospheric dust
detection and monitoring [28,47] still remain scarce, while they do not provide quantitative outputs for
dust loading at high temporal resolutions, which is critical information for many applications.

This study presents a machine learning methodology for identifying/isolating patterns of dust
storms from Meteosat second generation (MSG) imagery over the greater Mediterranean basin, which
is an ideal study region for such applications since it is located near the world’s largest deserts in Africa
and the Middle East. The main advantage of the present study is that the developed methodology
exclusively uses multispectral initial information from the abovementioned geostationary satellites,
and through an ANN scheme, provides final outputs depicting dust spatiotemporal patterns at
high temporal (15 min) and spatial (about 4 km over the study area) resolutions of the Meteosat
satellite images. Moreover, the developed Meteosat-ANN based model is able to provide quantitative
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estimations of dust loading, in terms of AOD at 550 nm (hereinafter “AOD550 nm”) on a Meteosat pixel
(4 km × 4 km) basis. Efficiency of the developed model is tested by comparing its outputs against
corresponding AOD products from 14 AERONET (Aerosol Robotic NETwork) stations distributed
over the Mediterranean basin.

2. Initial Data and Study Area

Three different types of data were used in this study. The first type of data was AOD products
derived from AERONET (Aerosol Robotic NETwork) ground-based stations. AERONET is a federation
of ground-based remote sensing aerosol networks established to provide long-term, continuous, and
readily accessible datasets of optical, microphysical, and radiative properties for aerosol research
and characterization as well as for validation of satellite retrievals (https://aeronet.gsfc.nasa.gov/).
The AERONET parameter used in this study was AOD at 550 nm. More specifically, cloud-screened
and quality-controlled Level 1.5 AOD data from 14 AERONET stations in the central and the eastern
Mediterranean basin were used. The greater area of central and eastern Mediterranean (Figure 1) was
selected as the domain of the study because of the frequent dust outbreaks originating mainly from
northern Africa (Sahara Desert). In Figure 1, the exact location of the selected AERONET stations used
in this study is shown.
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Figure 1. The domain of the study. The 14 Aerosol Robotic NETwork (AERONET) stations (white
circles) used in the study are indicated. The brownish colored areas highlight mountainous areas with
an altitude greater than 800 m.

The second type of data was multispectral satellite images from the SEVIRI (Spinning Enhanced
Visible InfraRed Imager) instrument onboard the MSG platform (Meteosat-10 and Meteosat-11).
More specifically, the brightness temperatures (BTs) at pixel level for the channels with spectral centers
at 8.7, 10.8, and 12 µm were used. In addition, two BT differences, BTD (12.0µm-10.8µm) and BTD

(10.8µm-8.7µm), were also computed and used. It was documented that all the abovementioned SEVIRI
channels and their differences could be combined to efficiently identify the dust load at different
atmospheric levels either during the day or at night (e.g., [31,48,49]). Moreover, BT at pixel level for
water vapor (WV) channels with spectral centers at 6.2, 7.3, and as their difference, BTD (6.2µm-7.3µm),
were used to mask optically thick cloud patterns and humid atmospheric layers, as explained in
Section 3. It was noted that all Meteosat satellite images in every one of the abovementioned channels
with temporal resolutions of 15 min were collected for selected time periods during which five notable
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episodes of dust transportation occurred over the greater Mediterranean basin (20–26 February 2017,
17–22 March 2017, 10–15 May 2017, 1–8 February 2018, and 20–25 March 2018). Five case study periods
with notable dust episodes were selected applying a specific statistical threshold based on the total
frequency distribution of all stations’AOD550 nm values. More specifically, the aforementioned periods
were considered periods with dust outbreaks if the distribution of AOD550 nm values for all used
stations had a 95th percentile value larger than 0.5 (i.e., if at least 5% of the total number of recorded
AOD550 nm values from all used stations during every case study period exceeded the threshold of 0.5).
As shown in Figure 2, the specific criterion were met in the five selected cases. It should be clarified
that the AOD550 nm values of the distributions of Figure 2 were filtered with the “cloud mask” criterion
(explained in Section 3.1). At this point, it was noted that from a statistical point of view, the 95th
and 5th percentiles were typical thresholds for defining outliers from the main distribution of values,
while AOD values larger than 0.5 were indicative of notable dust transport in the Mediterranean
atmosphere [24].
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Finally, for assessing the performance of the ANN model, satellite-based data products from the
MODIS instrument (onboard the Terra/Aqua satellite platforms) were also used. More specifically,
daily Level-3 MODIS AOD 1◦ × 1◦ gridded data [50] were used and compared to the AOD outputs of
the ANN model.

3. Methodology

All the collected datasets described in Section 2 were automatically analyzed through an algorithm
that was developed with an aim (among others) to monitor AOD550 nm in real-time using Meteosat
multispectral imagery. More analytically, an internal programming module of the algorithm was
developed in order to automatically perform a spatiotemporal correlation between ground-based
AOD550 nm data from the 14 AERONET stations and pixel BT and BTD values from SEVIRI satellite
images. Data used in this spatiotemporal correlation came from the case studies in Figure 2. The created
sample of paired values was necessary for training and evaluating the ANN model, since it related
station ground-based AOD550 nm measurements with Meteosat pixel-level spectral BT and BTD values.
This actually defined the relationship between the dependent variable (AOD550 nm) and the independent
variables (BTs and BTDs). In conclusion, through this procedure, a final dataset with correlated sets
of pixel-level values of AOD550 nm, BT, and BTD (specified in the previous section) was created.
As abovementioned, the final dataset consisted of values for the selected five case study periods for
34 days in total. In this way, 10,254 paired values were collected and analyzed (this number of values
represents the total number of cases that are presented in Figure 2).

3.1. Data Pre-Processing and Filtering

Before the spatiotemporal correlation of the two types of datasets, the BT and BTD data were
filtered by applying a simple thresholding procedure, which played the role of a mask for excluding
optically thick cloud patterns as well as humid atmospheric areas. This procedure aimed at excluding
cases with a presence of water vapor content in the atmosphere, which prevented observation of dust
from the satellites. It is known that atmospheric water vapor along with cloudiness have a significant
effect on the detection of airborne dust (e.g., [51,52]), and that the BTD of SEVIRI water vapor (WV)
channels can efficiently delineate thick and humid cloud patterns like convective systems. Therefore,
SEVIRI WV channels of 6.2 and 7.3 µm were used here in order to isolate relatively dry atmospheric
regions without cloudiness. The same channels are widely used given their efficiency in detecting
moisture at different atmospheric levels (e.g., [53]). More specifically, pixels with BTD(6.2µm-7.3µm)

lower than −15 ◦C and BT7.3µm larger than −15 ◦C were considered valid pixels. The choice of these
threshold values was made based on the study of Kolios and Stylios [54], where the same channels and
similar thresholds were found to appropriately delineate unstable and humid air masses. Application
of the specific threshold values enabled exclusion of humid patterns and delineated dry and cloud-free
atmospheric areas.

After spatiotemporal correlation between the two types of datasets, the final created dataset (total
sample of data), consisting of 10,254 paired values, was split into two subsamples. One subsample
(yielding 70% of the final dataset, randomly selected), which hereinafter is called “training sample”,
was used to train a back-propagation ANN model, while the second subsample (yielding 30% of the
final dataset, randomly selected), hereinafter called “validation sample”, was used to evaluate the
accuracy of the ANN model. At this point it was also noted that the ANN model was developed as an
independent internal module of the algorithm [55]. It was parametrized through a “trial and error”
procedure until the optimal accuracy statistics according to Table 1 were achieved, thus ensuring the
best possible reliable estimations of AOD550 nm loads based on SEVIRI multispectral satellite imagery.

It should be noted that random selection of training and validation samples ensured necessary
similarity of their shape distributions and range of values. This similarity guaranteed that the ANN
model was trained adequately (representatively). In this way, during the validation procedure, it was
ensured that ANN model estimations could cover the whole range of values of the reference dataset
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(validation sample). In order to examine if the training and validation samples in the present study
were statistically different or similar (regarding the shape of its distribution and the range of values),
the Mann–Whitney–Wilcoxon statistical test [56,57] was performed. The result of this statistical test
confirmed that the distributions of values of the training and validation datasets were not different
at the 0.01 level of statistical significance (99% statistical confidence). Figure 3, displays the boxplot
diagrams of the training and validation samples, showing their great similarity.

At this point it was noted that from a statistical point of view, the values of the 95th and 5th
percentiles were classic thresholds to discriminate outliers from the main distribution of values,
while an AOD value of 0.5 could be considered clear indication of notable dust transportation in the
atmosphere [24].
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550 nm (AOD550 nm) values.

3.2. The Artificial Neural Network (ANN) Model

The developed back-propagation ANN model estimated AOD550 nm values using four (4) types
of information (input nodes) from SEVIRI multispectral imagery (Figure 4). More specifically, the
ANN model was designed to have four input nodes, which referred to the normalized pixel values of
BTD(12.0µm-10.8µm), BTD(10.8µm-8.7µm), BT(10.8µm), and BT(8.7µm). The specific input nodes were selected
because, as abovementioned, the information provided from these spectral regions was widely used to
discriminate dust in the satellite imagery. Other than the four selected input nodes, such as elevation
or visible radiances could also be used in the algorithm. However, use of four input nodes was
decided in order to keep a relatively small number of inputs. Fast training of the ANN model and
quick provision of its data products were desired since the ANN model was intended to produce
final outputs at the same high temporal (15 min) and spatial (4 km) resolutions of Meteosat satellites.
A larger number of input nodes containing information for an extended geographical region, like
the Mediterranean in such a high spatial and temporal resolution, would significantly increase the
response time of the ANN model and make the whole algorithm unable to provide outputs at the
required spatiotemporal resolution.

After multiple tests for finding optimal parametrization, in terms of accuracy of the estimated
AOD550 nm values, the final learning rate of ANN was set to 0.01, the number of iterations was
10,000, and the non-linear softplus function [58] was used as activation function, while the hidden
layer consisted of 12 different nodes (Figure 3). Having this parametrization, the ANN model ran
and provided estimations (output node) of pixel-level AOD550 nm values that corresponded to the
real AOD550 nm values. These ANN outputs were compared to the validation sample of AOD550 nm.
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It should be mentioned that the term “learning rate” referred to a parameter that scaled the magnitude
of ANN weight updates in order to minimize final bias of the outputs. Usually, a slow learning
rate makes the ANN training procedure progress slowly as it makes small updates to the weights of
the ANN, while a high learning rate can cause undesirable divergent behavior in the final outputs.
The learning rate must be set carefully, after thoroughly checking the different values of this parameter
as well as the produced final outputs for each learning rate. The term “hidden layer” (Figure 4) referred
to a layer between input layers and output layers, where all the artificial neurons took in a set of
weighted inputs in order to produce outputs through an activation function. The activation function
was applied in each of the ANN nodes and defined the output of that node, or "neuron," given the
set of inputs. The activation function helped the neurons of the ANN decide which outputs would
be produced.

Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 20 

 

the ANN training procedure progress slowly as it makes small updates to the weights of the ANN, 
while a high learning rate can cause undesirable divergent behavior in the final outputs. The learning 
rate must be set carefully, after thoroughly checking the different values of this parameter as well as 
the produced final outputs for each learning rate. The term “hidden layer” (Figure 4) referred to a 
layer between input layers and output layers, where all the artificial neurons took in a set of weighted 
inputs in order to produce outputs through an activation function. The activation function was 
applied in each of the ANN nodes and defined the output of that node, or "neuron," given the set of 
inputs. The activation function helped the neurons of the ANN decide which outputs would be 
produced. 

 

Figure 4. A simplified scheme of the architecture of the ANN model with its input nodes, brightness 
temperature (BT) and BT difference (BTD), and output (AOD550 nm) nodes. 

4. Model Evaluation 

4.1. Overall evaluation 

Evaluation of the ANN model was performed by calculating four basic statistical parameters 
that were widely used for assessing the accuracy of model estimations. These parameters were the 
mean error (ME), the mean absolute error (MAE), the root mean squared error (RMSE), and the 
Pearson correlation coefficient (rP). The equations and computed values of all statistical parameters 
in the ANN model, resulting from comparisons between estimated and measured AOD550 nm values 
for the validation sample, are provided in Table 1. 

Table 1. The equations and computed values of four basic statistical parameters calculated from the 
comparison between the ANN (algorithm theoretical estimations) and measured daily AOD550 nm 
values (in the equations e refers to the theoretical estimates, r to the real values, and n is the total 
number of the values of the validation sample). MAE: mean absolute error; ME: mean error; RMSE: 
root mean squared error; and rp: Pearson correlation. 

Statistical Parameter Equation Value 

MAE 𝑀𝐴𝐸 = (|𝑒 − 𝑟 |) /𝑛 0.031 

Figure 4. A simplified scheme of the architecture of the ANN model with its input nodes, brightness
temperature (BT) and BT difference (BTD), and output (AOD550 nm) nodes.

4. Model Evaluation

4.1. Overall Evaluation

Evaluation of the ANN model was performed by calculating four basic statistical parameters that
were widely used for assessing the accuracy of model estimations. These parameters were the mean
error (ME), the mean absolute error (MAE), the root mean squared error (RMSE), and the Pearson
correlation coefficient (rP). The equations and computed values of all statistical parameters in the
ANN model, resulting from comparisons between estimated and measured AOD550 nm values for the
validation sample, are provided in Table 1.



Remote Sens. 2019, 11, 1022 8 of 19

Table 1. The equations and computed values of four basic statistical parameters calculated from the
comparison between the ANN (algorithm theoretical estimations) and measured daily AOD550 nm

values (in the equations e refers to the theoretical estimates, r to the real values, and n is the total number
of the values of the validation sample). MAE: mean absolute error; ME: mean error; RMSE: root mean
squared error; and rp: Pearson correlation.

Statistical Parameter Equation Value

MAE MAE =
n∑

i=1
(|ei − ri|)/n 0.031

ME ME =

(
n∑

i=1
(ei − ri)

)
/n −0.0025

RMSE RMSE =

√(
n∑

i=1
(ei − ri)

2
)
/n 0.051

rp rP =
∑n

i=1(ei−e) (ri−r)√
(
∑n

i=1 (ei−e)2)
√
(
∑n

i=1 (ri−r)2)
0.91

Statistical values in Table 1 confirmed satisfactory accuracy of the ANN model. Indeed, the AOD
values of MAE, ME, and RMSE were one to two orders of magnitude lower than the values associated
with significant dust episodes (AOD550 nm > 0.4). More specifically, compared to the overall mean
AOD550 nm value of the validation sample (0.2 for the ground-based measurements, against 0.21 for
ANN), MAE, ME, and RMSE were equal to 0.031, −0.0025, and 0.051%, respectively. Also, good
correlation (0.91) between the ANN model estimations and the real AOD550 nm values underlined very
good agreement in the whole range of values of the validation dataset.

A second statistical procedure was undertaken in order to evaluate the accuracy of the ANN
model. A set of statistical scores were calculated that quantified the model’s efficiency in producing
adequate estimates in different (manually set) classes of AOD550 nm values representing four different
levels of dust load in the atmosphere. The four different ranges of AOD550 nm values (i.e., classes
of dust loads) were “very low dust”, “low dust”, “high dust”, and “very high dust” conditions in
the Mediterranean. These classes of AOD550 nm were defined so that they comprised the measured
values from the validation sample of data that fell within the following ranges: [AOD550 nm(min),
AOD550 nm(mean) – AOD550 nm(stddev)) for class-1, [AOD550 nm(mean) – AOD550 nm(stddev), AOD550 nm(mean))
for class-2, [AOD550 nm(mean), AOD550 nm(mean) + AOD550 nm(stddev)) for class-3, and [AOD550 nm(mean)

+ AOD550 nm(stddev), AOD550 nm(max)] for class-4. AOD550 nm(min) was the minimum value of the
validation sample (equal to 0.01), AOD550 nm(mean) was the average value of the validation sample
(equal to 0.2), AOD550 nm(stddev) was the standard deviation of the validation sample (equal to 0.16),
and AOD550 nm(max) was the maximum value of the validation sample (equal to 1.39). It was noted that
the number of values of each AOD class with respect to the total number of sample values were equal
to 3.15% for class-1, 57.87% for class-2, 25.58% for class-3, and 13.4% for class-4. More specifically, a
contingency table was used (Table 2), and four statistical scores were calculated (Equations (1)–(4)).

POD =
H

(H + M)
; (1)

FAR =
FA

(H + FA)
; (2)

POFD =
FA

(FA + CN)
; (3)

PSS = POD− POFD; (4)

where POD stands for the probability of detection, FAR stands for the false alarm ratio, POFD stands
for probability of false detection, and PSS stands for the Peirce skill score. The symbols “H” (hit), “M”
(miss), “CN” (correct negative), and “FA” (false alarm) are parameters that are presented and explained
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in Table 2. From a practical standpoint, “H” referred to the number of correct AOD estimates, “FA”
referred to the total number of estimated values that belonged to a wrong class of values, “M” referred
to the observed values that were wrongly estimated, and finally, “CN” referred to the total number of
paired values that did not belong to the examined class of values.

Table 2. Contingency table with calculated statistical scores used to evaluate the ability of the ANN
model to reproduce AERONET AOD550 nm values over the Mediterranean.

Threshold Value
Ground-Based Measurements

Yes No

ANN model
estimations

Yes Hit (H) False Alarm (FA)
No Miss (M) Correct Negative (CN)

The probability of detection (POD) score was the fraction of the number of observed values that
were estimated correctly by the ANN model (within the range of values of each AOD class). It ranged
from zero (low estimation ability) to one (high estimation ability). The false alarm ratio (FAR) was the
fraction of wrong estimations with respect to the total number of estimations. It ranged from zero to on.
An accurate model provided a low FAR score, while a bad model provided a high FAR score [58,59].
The probability of false detection (POFD) was the fraction of observed values that were estimated
wrongly, and it ranged from zero to one. An accurate model provided a low POFD score, while a bad
model provided high POFD values [59,60]. The Peirce skill score PSS accounted for all the elements
of the contingency table, and it was calculated as the difference between the probability of detection
(POD) and the probability of false detection (POFD). PSS values ranged from −1 to 1. A PSS value
greater than zero meant that the number of hits (correct AOD550 nm estimates) was higher than the
number of false alerts and indicated the model’s ability to estimate AOD550 nm values. An estimate
had no predictive ability when PSS ≤ 0 [59,60].

The values of POD, FAR, POFD, and PSS statistical scores for each one of the four AOD550 nm

classes are presented in Figure 5. It was found that POD scores were satisfactory (>0.7) except for
class-1 (“very low dust”), for which the POD was 0.16. For this class, FAR was 0.27, the POFD was
0.157, and the PSS was 0.15, with these score values indicating a relatively weak efficiency of ANN in
estimating very weak dust loads in the Mediterranean, although PSS was still positive. Nevertheless,
it should be noted that since this class included a small percentage of total sample AOD550 nm values
(equal to 3.15%), this hardly affected ANN model performance overall. Under “low dust” and “high
dust” conditions (class-2 and class-3 in Figure 5), the model performed very satisfactorily. Indeed,
POD was equal to 0.84 for class-2 and 0.82 for class-3, while the corresponding FAR values were
0.16 and 0.36 (Figure 5). The PSS was above 0.6 for both classes, while the POFD was below 0.2.
Since the number of AOD550 nm values of these two classes represented 83.45% of the total number of
sample values, the computed values of all the four scores confirmed the ability of the developed ANN
model to accurately estimate AOD550 nm values using initial information from SEVIRI multispectral
imagery. Finally, regarding the 4th AOD class (i.e., under “very high dust” load conditions), the
values of computed statistical scores indicated, again, overall good accuracy. The POD and PSS scores
were both above 0.75, while FAR and POFD were close to zero for the examined validation sample.
Consequently, it was shown that the ANN model performed very well, generally, in 96.6% of cases,
producing accurate estimations of AOD550 nm over the Mediterranean basin.
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Figure 5. Statistical scores (probability of detection—POD, false alarm ratio—FAR, probability of false
detection—POFD, and Peirce skill score—PSS) depicting ANN model accuracy in adequately estimating
four different classes of AOD550 nm values over the Mediterranean basin. Class-1 corresponds to “very
low dust”, class-2 to “low dust”, class-3 to “high dust”, and class-4 to “very high dust” conditions.

Apart from the POD, FAR, POFD, and PSS scores, other statistical metrics, namely MAE, ME,
RMSE, and rp, were also computed for each class and are presented in Table 3. The relevant conclusions
on the performance of the ANN model were comparable to those drawn from Figure 5. More specifically,
class-2 of AOD had the best results, but satisfactory results were also calculated for AOD class-3 and
class-4. This was very important since these classes included large AOD550 nm values that corresponded
to dust loads in the atmosphere.

Table 3. Statistical results for the different AOD550 nm classes that are defined for the evaluation sample.

Statistical Parameters Class-1 Class-2 Class-3 Class-4

MAE 0.03 0.018 0.026 0.092
ME −0.028 −0.008 0.012 0.014

RMSE 0.031 0.0035 0.02 0.12
rp 0.19 0.92 0.84 0.87

4.2. Case Study

4.2.1. Evaluation of ANN Model Outputs against the Aerosol Robotic NETwork (AERONET)

Apart from the overall evaluation, a case study analysis was conducted in order to evaluate the
ability of the ANN model to reproduce geographical patterns of dust load (i.e., AOD550 nm values) using
BTs from thermal infrared imagery of Meteosat Second Generation imagery as the initial information.
More specifically, on 1 March 2016 a significant dust transport from northern Africa to southeastern
Europe occurred. Under southwestern air flow, dust from the Sahara region moved northeast and
gradually covered significant parts of the Ionian and the Aegean Seas (Figure 6). Figure 6 shows that
the main dust load overlaid the Gulf of Sirte (Libya), the southern Ionian Sea, and the Aegean Sea
(Greece). Also, there were notable dust loads over the central Mediterranean Sea as well as over large
parts of the eastern Mediterranean. The images on the left side of the Figure 6 are RGB composites
(Red: BTD(12.0µm-10.8µm), Green: BTD(10.8µm-8.7µm), Blue: BT(10.8µm) µm), which is the usual way that
information on dust load is provided [61,62]. The magenta colored parts of Figure 6 depict geographical
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regions that were covered by the dust load. It was important to note that the date of this case study did
not include the period covered by the data used to train or validate the model.
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Figure 6. An African dust transport event that occurred over the Mediterranean basin on 1 March 2016.
The images in magenta (RGB composites) on the left side depict dust load transportation from northern
Africa up to the Aegean Sea. RGB refers to red (BTD(12.0 µm-10.8 µm)), green (BTD(10.8µm-8.7µm)), and blue
(BT(10.8 µm) µm) channels. The right-side plots display the corresponding image products (AOD550 nm

values) of the ANN model scheme, referring to the same date/time with the RGB composites. The
different colors in the right-hand plots represent four different levels of AOD550 nm (very low—VL,
low—L, high—H and very high—VH, see Section 4.1). Black colored areas correspond to optically
thick cloud patterns for which aerosol loads (AOD550 nm) were not detected (ND) by the ANN model.

Apart from evaluating visually (in Figure 6) the performance of the ANN model towards
reproducing geographical patterns of dust transport on 1 March 2016, further numerical evaluation
was also performed against ground-based AOD550 nm data from the reference AERONET network.
The results are given in Figure 7. More specifically, ANN model AOD550 nm outputs were compared to
corresponding outlets of the “FORTH_Crete” AERONET station in Crete (latitude: 35.333◦N, longitude:
25.282◦E). This specific station was selected because it was located on the pathway of dust transport in
the studied case, and also because it had the largest availability of AOD550 nm data. In Figure 7a the
day-to-day evolution of AERONET AOD550 nm retrievals and the corresponding estimations from the
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ANN model were given together. Both AERONET and ANN models indicated similar low AOD550 nm

values on 29 February 2016 (i.e., one day before the dust event). On the morning of the next day
(1 March 2016), the AOD550 nm values of both AERONET and ANN models started increasing until
they reached high levels (up to about 0.7) as a result of the dust transport event that took place on this
day (see Figure 6). Subsequently, AOD550 nm values decreased and became smaller than about 0.3 for
both ANN and AERONET. The obtained results proved that the ANN model was able to reproduce
the temporal evolution of AERONET AOD550 nm over Crete. This was also clearly shown in Figure 7b,
where the relevant scatterplot comparison between the ANN model and AERONET AOD550 nm data
for the studied dust transport event was given. The computed Pearson correlation coefficient (rp) was
equal to 0.8, and the RMSE value was 0.09, thus highlighting satisfactory performance of the developed
ANN model scheme. It was noted that the two statistical metrics (rp and RMSE) for the case study
(0.8 and 0.09, respectively) were slightly inferior to the corresponding ones for the overall evaluation
(0.91 and 0.051, Table 1). This was not strange since the statistical metrics of a specific case are expected
(statistically) to be either slightly better or worse than the statistics of all the examined cases (Figure 2).
Nevertheless, in both cases (i.e., the case study and the overall evaluation) the statistical metrics were
very satisfactory.
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Figure 7. (a) Temporal evolution of the AOD550 nm values (black dots) over the “FORTH_CRETE”
AERONET station as retrieved by AERONET (black colored dots) and as derived by the ANN model
(gray colored dots) during the period 29 February–2 March 2016. (b) Scatterplot comparison of the
pairs of AERONET and ANN model AOD550 nm values over the Crete-AERONET station during the
period 29 February–1 March 2016. The red line corresponds to linear fit (slope = 0.87 and intercept =

0.06), while the blue line is the ideal (1:1) line. (c) Scatterplot comparison of the pairs of AERONET and
ANN model AOD550 nm data for the 14 AERONET stations for 1 March 2016. The red line corresponds
to linear fit (slope = 0.92 and intercept = 0.04), while the blue line is the ideal (1:1) line.

In addition, apart from the evaluation of the model against the FORTH_Crete AERONET station
for the studied case, a further evaluation was performed against all available AOD550 nm data from the
total of AERONET stations of the study region for the day of the case study on which the dust event
took place (1 March 2016). The results were summarized in the scatterplot comparison of Figure 7c, and
they were quite satisfactory, yielding an overall correlation coefficient equal to 0.7, a slope value of 0.92,
and a very small intercept (0.04). The large population of AOD550 nm data pairs with small values in
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the lower part of the scatterplot was explained by the fact that most of the AERONET stations were not
found within the path of dust transport on 1 March 2016 (Figures 6 and 8), thus having low AOD550 nm

values. It should be reminded that the 14 AERONET stations (Figure 1) were located over both land
and sea (coastal) areas, also including arid and non-arid regions. This differentiation in characteristics
of the surface type of AERONET stations was important for the observed longwave radiation by
the SEVIRI instrument through a semi-transparent atmosphere and different emitting surface types.
Therefore, spatial distribution of the utilized AERONET stations covered different surface types and,
thus, could be considered as sufficiently representative. The obtained satisfactory statistics of the
overall comparison of the ANN model AOD550 nm products against those of 14 AERONET stations
confirmed its ability to estimate AOD550 nm using Meteosat multispectral imagery.

4.2.2. Evaluation of ANN Model Outputs against the Moderate Resolution Imaging
Spectroradiometer (MODIS)

Apart from the comparison against the 14 AERONET stations, which ensured successful operation
of the ANN model above different surface types, a further comparison was made against MODIS satellite
data in order to inter-compare ANN model performance over the entire study region. MODIS-Terra
and MODIS-Aqua AOD550 nm data have been extensively and successfully validated all over the globe
(e.g., [63,64]) as well as over the Mediterranean basin (e.g., [65]) and, thus, are considered a high-quality
dataset. More specifically, here the daily collection 6.1 Level-3 MODIS-Terra and MODIS-Aqua
AOD550 nm data for the case study (1 March 2016) were utilized and compared to the corresponding
ANN data. The AOD550 nm data of the ANN model that had a 4 km × 4 km spatial resolution were
re-gridded to match the resolution of MODIS (100 km × 100 km). Re-gridding was done using the
inverse distance weighting method. From the available upscaled ANN model AOD550 nm products
(every 15 min during 1 March 2016), those corresponding to the time passages of the MODIS instrument
were selected and compared (namely at 10:30 UTC for Terra satellite descending orbit and 13:30 UTC
for Aqua satellite ascending orbit). Figure 8 shows the spatial distribution of the model estimated and
MODIS-Terra and MODIS-Aqua AOD550 nm values over the study region on the day of the case study
(i.e., on 1 March 2016).
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There was an apparent similarity between the geographical distribution of modeled and MODIS
AOD550 nm data, especially with regard to the main dust transport pathway extending from northern
Africa up to Greece and the Aegean Sea. Of course, there were also some differences, as for example
the absence of many high AOD550 nm values in the northern part of the study region (northern Greece
and Black Sea) and the existence of high Meteosat-based values in the eastern part of the study
region (Middle East). Nevertheless, the ANN model AOD550 nm product was consistent with Meteosat
composite images (Figure 6a,c,e,g,i), which did not indicate the presence of dust over the Black Sea
where significant cloud coverage occurred.
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Comparisons of the ANN model against MODIS were also illustrated by the histogram distribution
of their AOD550 nm pixel-level differences (Figure 9). For the comparison against MODIS-Terra
(10:30 UTC), small AOD550 nm differences (from −0.1 to 0.1) were found in 43.2% of the total number of
data pairs, while moderate differences (from −0.3 to 0.3) were found in 77.1% of the total population of
data pairs. For the comparison against MODIS-Aqua (13:30 UTC) the corresponding percentages were
equal to 46.6% and 85.9%, respectively, indicating satisfactory similarity between modeled and MODIS
pixel-level AOD550 nm data.

5. Conclusions

In this study, a back-propagation ANN model was developed for quantitatively estimating
different aerosol loads during dust outbreaks over the Mediterranean, in terms of AOD550 nm values
at 550 nm, using combinations of brightness temperatures from different channels of the SEVIRI
instrument onboard the MSG satellites as initial information. A thorough evaluation of the developed
ANN model using a tested sample of data (validation sample) proved its accuracy since ANN
AOD550 nm estimations yielded satisfactory statistical scores, namely a MAE of 0.031, RMSE of 0.052,
and a Pearson correlation coefficient rP of 0.91. Moreover, further assessment of ANN accuracy for
four different levels of dust loads (very low, low, high, and very high) also yielded good statistical
scores, namely a probability of detection (POD) larger than 0.7 and a false alarm ratio (FAR) lower
than 0.3, in almost all the examined classes of AOD550 nm values. The very satisfactory efficiency of the
ANN model was especially confirmed for high AOD550 nm values, which corresponded to significant
dust load transportation in the Mediterranean atmosphere. Finally, a case study of a specific dust
transport event above the central-eastern Mediterranean on 1 March 2016 was presented, This showed
ability of the ANN model to reproduce detailed patterns of either the geographical distribution or the
temporal (hourly to daily) evolution of dust AOD550 nm as well as dust transport, as proven through
comparisons against corresponding surface-based AERONET and MODIS (Terra and Aqua satellites)
AOD550 nm data.

It is important to note that the present ANN model can be used for AOD retrievals on a real-time
basis and also for providing AOD products at the same high spatial and temporal resolutions of
Meteosat satellite imagery. On the other hand, it also can be used for deriving AOD products on a
climatological basis using long-term spectral observations of Meteosat. In both cases, either real-time
or long-term, the present model AOD products have the great advantage of high spatial (4 km) and
temporal (15 min) resolutions, which combined with their extended spatial coverage (both land and
ocean), make significant improvements to other existing similar data products (e.g., MODIS, MISR,
AVHRR, OMI, etc.). Automated operation of the ANN model, as part of a system solely based on
multispectral MSG imagery that aims to monitor and nowcast different features of storms (e.g., hail
and heavy rainfall) as well as dust transport episodes, is also an important addition to the present tool.

In future steps, different ANN parametrizations (e.g., additional channels of image data from the
SEVIRI instrument; additional dependent variables, namely latitude, longitude, and topography; and
larger training/validation datasets) are intended to be studied for further improving ANN accuracy in
estimating dust using Meteosat imagery.
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