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Abstract: Multi-tier heterogeneous Networks (HetNets) with dense deployment of small cells in
5G networks are expected to effectively meet the ever increasing data traffic demands and offer
improved coverage in indoor environments. However, HetNets are raising major concerns to mobile
network operators such as complex distributed control plane management, handover management
issue, increases latency and increased energy expenditures. Sleep mode implementation in multi-tier
5G networks has proven to be a very good approach for reducing energy expenditures. In this
paper, a Markov Decision Process (MDP)-based algorithm is proposed to switch between three
different power consumption modes of a base station (BS) for improving the energy efficiency and
reducing latency in 5G networks. The MDP-based approach intelligently switches between the states
of the BS based on the offered traffic while maintaining a prescribed minimum channel rate per user.
Simulation results show that the proposed MDP algorithm together with the three-state BSs results in
a significant gain in terms of energy efficiency and latency.

Keywords: smart 5G networks; green 5G communication; sleep mode; Markov decision process;
energy efficient 5G networks

1. Introduction

The next generation (5G) of wireless networks will serve an unprecedented number of devices,
providing ubiquitous connectivity as well as innovative and rate-demanding services. Hence the
design of 5G networks will necessarily have to consider energy efficiency as one of its key pillars.
Recent studies prove that using a multi-tier 5G network is a very good approach to reduce energy
consumption in the entire network [1]. Furthermore, the gain might be very high if the architecture
allows switching off the network resources or base stations (BSs) that are not necessary to guarantee
the target QoS for the offered traffic. In that case, minimal or zero power consumption mode of a base
station can play a very crucial role if the aim is to increase energy efficiency of the network. Thus a 5G
BS, which is known as gNB, can be turned off or put in low power consumption mode to reduce global
energy consumption when its service not needed to ensure QoS. However we should also consider
the delay caused by the required wake up time from sleep mode. The deepest sleep mode consumes
zero power, however can cause significant delay in service due to wake up time from sleep mode;
whereas in a lighter sleep mode (also known as stand-by mode) a resource consumes little power but
wakes up very quickly. Hence our proposed model fills a gap in the performance evaluation of two
type of minimal power consumption mode with a trade–off between energy efficiency and wake-up
delay, while ensuring user-perceived QoS. In this work, low and zero power consumption modes are
implemented on the BSs of a multi-tier 5G network in order to reduce the energy consumption of
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the network. We propose three different power consumption modes for BSs and a novel MDP-based
algorithm to control these modes of the BSs under QoS constraint.

Novelty of our work: As already presented in some pioneering works [2–4], switching off a base
station within a HetNet is a very good approach to save energy consumption during low traffic
condition. However each sleeping BS takes significant amount of time to wake up and become fully
operable. As a consequence, some of the users might experience a delay in accessing the network,
even some calls might be dropped as well. In order to overcome the problem of call dropping due to
the wake up delay, we propose an energy efficient ‘3-state MDP model’ for the BSs within the network.
We propose three different modes namely ‘Active mode’, ‘Stand-by mode’ and ‘Sleep mode’ for the
BSs. In this paper, we utilize Markov model to find the optimal policy in terms of energy efficiency
using Markov decision process (MDP). We have also shown the energy-delay trade–off in order to
design an energy efficient as well as delay aware network. We utilize the stand-by mode and have
differentiated it from the sleep mode by defining that a BS in stand-by mode consumes some small
amount of energy but takes negligible time to go back to the active mode; whereas a BS in sleep
mode does not consume any energy but takes more time to wake up. Hence sleep mode gives us the
advantage of power saving, whereas stand-by mode allows us to avoid the wake-up delay. That is
why we are implementing both the stand-by mode and sleep mode in our algorithm so that we can
reduce energy consumption as well as wake up delay of BSs. The hardware and software setups for
these low power consumption and zero power consumption modes have already been proposed in the
literature [5,6]. We have explained the operation and switching procedure among these modes in the
following sections. Another novelty of our work is in defining a novel reward function for the Markov
decision process (MDP) which helps us to get an optimal policy in selecting a particular mode for each
BS. Because of applying the proposed 3-state MDP model, we find that a significant amount of energy
can be saved in low traffic condition along with fulfilling the QoS requirement in terms of data rate.

The rest of the paper is organized as follows: Section 2 outlines related work in the concerned area.
Network model, three state Markov model and proposed MDP-based algorithm model are presented
in Sections 3–5, respectively. Section 6 presents the power consumption model. The simulation results
and performance analysis are presented in Section 7. Finally Section 8 concludes the paper.

2. Related Work

Energy efficiency in cellular networks and communication has been studied widely in the
literature [2–5,7–9]. Some research papers [2–5] have proposed different algorithms to implement
sleep mode in the LTE BSs. The authors in [5] proposed an approach to reduce energy consumption in
mobile networks by introducing discontinuous transmission on the base station side. In some of the
pioneering works, MDP has been used as an effective approach for sleep mode implementation [2,7–9]
for green communication as well as to solve some other optimization problems [10,11]. The authors
in [10] use a Markov decision process-based model to schedule consumers’ behaviors in order to
optimize the consumers’ net benefits. They utilize a networked smart grid system, where future
electricity generation is predicted with reasonable accuracy based on weather forecasts. In [11],
the authors have proposed an algorithm to design efficient coding tools and optimize frame structure
for transmission to facilitate view switching and contain error propagation in differentially coded video
due to packet losses. In [2], the authors proposed an MDP-based optimal controller that associates
to an activation/deactivation policy which maximizes a multiple objective function of the QoS and
improve energy efficiency. Other papers such as [7,8] consider a single user and use a Markov chain
technique to evaluate the energy savings due to the sleep mode mechanism of a single user terminal.
The authors in [8] take correlated packet arrivals into account to evaluate an MDP-based sleep mode
mechanism. The authors in [9] consider a similar setting of one user and one station and show how to
derive the optimal sleep policy numerically by formalizing the problem as a Semi-MDP. The authors
in [3] proposed a novel scheme for the sleep scheduling based on decentralized partially observable
MDP (Dec-POMDP). However almost all of the above mentioned papers have proposed sleep mode
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of the BS in low traffic condition and the BS will be in active mode for rest of the time. We refer to
this model as ‘2-state model’. The authors of references [2–5,12] have shown that this 2-state power
consumption model can reduce energy consumption of the whole network. However, the problem
is that the BS takes significant time to wake up from sleep mode, which may cause call drop to new
users. This wake up time can range from tens of seconds to couple of minutes for small cell and up to
10–15 min for macro cell [6]. This is clearly a constraint for an energy efficient system. The authors in
reference [5] proposed the low power consumption mode, which consumes some small amount of
power but wakes up within negligible time; their power consumption model is similar to what we
propose as stand-by mode. In contrast to works done in the literature so far, we propose a MDP-based
algorithm on the base stations so that they can intelligently switch among three different modes.

3. Network Model

We consider a multi-tier 5G network where some base stations can be put in low power
consumption mode as shown in Figure 1. In our proposed model we are implementing low and
zero power consumption mode on the base stations within this multi-tier 5G network. The proposed
algorithm is managed in the algorithm management unit, which is included in the base band unit
of the network architecture. The Mobility Management Entity (MME) unit of the Evolved Packet
Core (EPC) also has some contribution in the algorithm, as MME can inform the BS if any new user is
approaching the cell and if any handover is about to happen. Thus, the MME can help the BS to update
the total number of active users. Hence the centralized management unit is included in the mobility
management entity (MME). The home subscriber server (HSS), mobility management entity (MME),
serving gateway (S-GW) and packet data network gateway (P-GW) are included in the evolved packet
core (EPC). The nomenclature used in rest of the paper is provided in Table 1.

Table 1. The acronyms and terms.

Acronyms Description

BS Base Station
MDP Markov decision model
QOS Quality of service
BWT Total bandwidth offered by BS
Nact Number of active BS
Nstd Number of stand-by BS
Nslp Number of BS in sleep mode

N Total number of BSs in the network
¶out Transmit power
¶act Power consumption in active mode
¶std Power consumption in stand-by mode
¶slp Power consumption in sleep mode

Traffic Model: We adopt a traffic model where the users arrive according to Poisson process in
the coverage area of the BS with a certain arrival rate, uλ and death rate, uµ. Here we include all the
users originating calls in the cell as well as the users being handed over from other cells.

Propagation Channel Model: We consider the log-normal shadowing model with a pathloss
exponent, α and a shadowing variance, σ under AWGN channel. The received signal to noise ratio
(SNR) per user is determined by link budget calculation from Equation (1), where ¶out is the transmit
power of the BS; PL is pathloss; Gt and Gr are transmit and received antenna gain respectively; X is
log-normal shadowing and Pn is the noise power. Equation (2) is used to find the pathloss PL, where
d0 is a reference distance, fc is carrier frequency, c is the speed of light and d is the distance between
the BS and the user. Please note that for the sake of simplicity, we consider zero level of interference in
the network. The values of d0 and c are constant and are provided in Table 2.

SNR(dB) = ¶out + Gt + Gr − PL− X− Pn (1)
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PL = 20log(
4πd0 fc

c
) + 10αlog(

d
d0

) (2)

Then Shannon’s capacity formula [13] is used to determine the required bandwidth for all of the
active users for a minimum target data rate, as shown in Equation (3); here Rt is the target data rate
and snr is signal to noise ratio in linear value. This BWreq is the measure of the minimum required
QoS. Our proposed algorithm ensures that this QoS requirement is fulfilled while reducing energy
consumption and delay.

BWreq =
Rt

log2(1 + snr)
(3)

Figure 1. Multi-tier architecture for energy efficient 5G networks [1].
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Table 2. BS’s parameters for the power consumption model.

Parameters Values

Carrier frequency, fc 1800 MHz
Path Loss Exponent, α 2.5
BS Transmit Power 40 W
Shadowing Mean 0
Variance, σ 7
Total BSs, N 3
Antenna Gain 10 dB and 2 dB
User arrival rate, λ 0.01
User death rate, µ 0.005
¶max 40 W
Minimum data rate 300 kbps
d¶ 4.7
¶std 10 W
¶slp 0 W
BWT 6 MHz
bmax 6 MHz
bmin 2 MHz
BW per BS 2 MHz
dt 2 s
d0 1 km
c 3× 108 ms−1

4. Proposed Power Consumption Modes

We have proposed a three state model, where the BSs of the network can be in any of the following
three states:

1. Active Mode: In active mode, the BS is in fully operational mode and consumes maximum power.
2. Stand-by Mode: In stand-by mode, the BS is in low power consumption non-operational mode,

where it consumes a small amount of power but requires negligible wake-up time to go back
to the active mode. Researchers from Ericsson company have reported that a BS consumes
approximately 10 W power in stand-by mode and takes approximately 30 µs to go into the active
mode [5].

3. Sleep Mode: In sleep mode, the BS is totally switched off so that it consumes almost zero power,
however takes longer time to wake up. The authors in [6] have reported that small cells can
take tens of seconds to couple of minutes to wake up from sleep mode, where a macro BS takes
10–15 min of wake up time from sleep mode. Please note that there is some non-zero ultra–low
power consumption during sleep mode, however this ultra–low power consumption is assumed
to be negligible compared to the power consumed in active mode in this work. Hence sleep mode
is treated as zero power consumption mode in this work.

Table 3 outlines the delay required for a BS to remain in active mode or become active from
stand-by and sleep mode.

Table 3. Required time for a BS to become active (Hence approximate delay experienced by a new user).

BS Become Active Required Time

From active mode 0 s (delay group-1)
From stand-by mode 30 µs (delay group-2)

From sleep mode 40 s (delay group-3)
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4.1. Motivation of Using Three Different Modes

The well–known advantage of sleep mode is that a BS consumes zero power while sleeping, but its
disadvantage is that it takes around 40 s [14] to get back into fully operational mode. On contrary,
though a BS in stand-by mode consumes some small amount of power, but it takes negligible time to
wake up. Therefore we utilized both of the modes so that we can have the power saving advantage
from sleep mode and reduce activation delay by utilizing stand-by mode. Figure 2 graphically depicts
the time and energy required to switch between active mode and sleep mode. The energy gain for
being in sleep mode equals (¶act − ¶slp)tslp , where ¶act and ¶slp represent the power consumption
in active and sleep mode, respectively, and tslp is the duration of the time spent in sleep mode. It is
evidence from the figure that a BS needs quite a long time to wake up from sleep mode to active mode.
This wake up delay issue of sleep mode has clearly been reported in the paper [14] as in Figure 3.
These results had been acquired from experiments and shows that a resource takes approximately 5 s
to turn off completely (i.e., to go in sleep mode) and approximately 60 s to go on active mode and be
completely operational again. That is why we need to put one of the BSs in stand-by mode so that it
can be activated with minimal delay when needed. It is worth mentioning that we consider the fact
that implementing three different states spend extra overhead, however we make sure that the energy
consumption of the overhead is less that the energy saved by the algorithm.

Figure 2. Graphical representation of energy saving and energy wasting due to activating BS from
sleep mode.

Figure 3. Time measurement for switching between sleep mode and active mode (source: [14]).
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4.2. Power Consumption Model

The total power consumed in the network depends on the number of active, standby and sleeping
BSs. The following power consumption model presented in Equation (4) is used to determine the total
power consumption of a BS for our proposed 3-state model, it is derived from the paper [15,16].

¶3−state = Nact(¶o + d¶ · ¶out) + Nstd · ¶std + Nslp · ¶slp (4)

where Nact, Nstd and Nslp denote the number of BSs in active mode, stand-by mode and sleep mode
respectively; ¶out is the output power or transmit power; d¶ is the slope of load-dependent power
consumption which is represented as a linear transmission power dependence factor in [15]; ¶o and
¶std are the power consumption at minimum non-zero load and in stand-by mode respectively. Please
note that the BSs in sleep mode consume zero power. The reference values of all these variables for
a macro BS [16] have been shown in Table 2. We assume d¶ to be unchanged as suggested in the
paper [15,16]. We apply trapezoidal numerical integration [17] on the power consumption curve to
find the total energy consumption of the BS. For the ’All BS active’ mode we do not apply any sleep or
standby mode to the BSs, hence we consider that all the BSs are always active regardless of the traffic
requirement. The power consumption model for this mode become as Equation (5) where N is the
total available BSs in the eNodeB and Ntx is the number of transmitting BSs which is equivalent to
Nact in Equation (4).

¶all−BS−active = N · ¶o + Ntx · d¶ · ¶out (5)

Two-State Power Consumption Model: In the commonly used ‘two-state model’ [2–5,12], all
of the inactive BSs are kept in either stand-by mode or in sleep mode, when there is no active user
at all. This model can be expressed as the following power consumption equation Equation (6).
We have compared our proposed model with two different ‘two-state models’ namely ‘Rangisetti
2 state (active-standby) model’ where Nlow = Nstd and ‘MDP-based 2 state (active-standby) model’
where Nlow = Nslp.

¶2−state = Nact(¶o + d¶ · ¶out) + Nlow · ¶std (6)

5. Three State Markov Model for a Base Station

The base stations (BSs) follow a Markov decision process (MDP) to decide when to switch among
different states. The transition among all of the three states can be represented as a three-state Markov
model [18] and can be presented as Figure 4. In this figure, S0, S1 and S2 represents the states of the
nth base station at sleep mode, stand-by and active mode respectively; and a0, a1 and a2 represent the
action of (n− 1)th BS going into or staying at sleep, stand-by and active mode respectively. According
to this figure, while the nth BS is in state S0 (sleep mode), and an action a0 or a1 is taken so that
(n− 1)th BS goes into or remains in sleep mode or stand-by mode respectively, then the nth BS will
remain in the same state S0 with transition probability 1. However if an action a2 is taken so that
(n− 1)th BS goes into active mode, then the nth BS will go to state S1 (stand-by mode) with transition
probability 1. While the nth BS is in state S1 (stand-by) then the only possible actions are a1 and a2

as per our proposed model. This is because we are following the sequence of the state transition of
the BSs, which means when load increases then the (n− 1)th BS will go to active mode before nth
BS. In other words, we can say that if nth BS is in stand-by mode then (n− 1)th BS cannot be in sleep
mode rather it would be in stand-by or active mode. Therefore when the nth BS is in state S1 then
action a1 will take it to state S0 with probability 1; however if action a2 is taken then it will take the nth
BS to state S2 with probability Prn

12 or will remain in state S1 with probability Prn
11. Finally when The

nth BS is in state S2 (active mode) then the only possible action is a2 which will take the nth BS to state
S1 with probability Prn

21 or will remain in state S2 with probability Prn
22.
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Figure 4. Proposed Three-state Markov Model for nth base station where 2 ≤ n ≤ N. (note: The 1st BS
is always active).

6. Proposed MDP-Based Algorithm

In this section, we describe our markov decision process (MDP)-based algorithm to obtain
the optimal policy of deciding a particular mode for each base station. The following reward
function, transition probability and the Value Iteration Algorithm (VIA) are used to solve the
optimization problem.

Reward:

The total reward function for an action, a is defined as Equation (7)

R(s, a) =
bmax − ba

bmax − bmin
(7)

where ba is the total required bandwidth, bmax and bmin are the maximum and minimum required
bandwidth respectively. It is noteworthy that the required bandwidth is proportional to the required
energy consumption, because less required bandwidth will put more BSs in low power consumption
mode, hence would save more energy. Therefore the maximum expected reward from Equation (7)
would help us to find the optimal policy in terms of energy efficiency.

Transition Probability:

The transition probability between two states of the base stations is learned by Monte-Carlo
simulation for a particular call arrival rate and death rate. The treatment of the learning part is not
within the scope of this paper.

Value Iteration Algorithm:

If we denote V(s) as the maximum expected total reward for an initial state s and future state s′

then the optimality equation is given by Equation (8) as follows:

V(s) = maxa∈A{R(s, a) + ∑
s′∈S

λPr[s′|s, a]V(s′)} (8)
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Here, R(s, a) is the reward function for a state s and action a as explained in Equation (7);
Pr[s′|s, a] is the transition probability between current state s and future state s′ for an action a; A is
the set of all possible actions and S is the set of all possible states. The solution of the optimality
equation correspond to the maximum expected total reward V(s) and the MDP optimal policy π(s).
This MDP optimal policy π(s) indicates the decision of allocating a certain mode to the appropriate
base station. As explained in Algorithm 1 value iteration algorithm (VIA) [19] is used to solve this
optimization problem.

Algorithm 1 Value Iteration Algorithm

1: Set V0(s′) = 0 for each state s. Specify ζ > 0, and set k = 0.
2:
3: For each state s, compute Vk+1(s) by
4:
5: Vk+1(s) = maxa∈A{R(s, a) + ∑s′∈S λPr[s′|s, a]Vk(s′)}
6:
7: δ = max(Vk+1(s)−Vk(s))
8:
9: If δ < ζ 1−λ

2λ , go to step 5.
10:
11: otherwise increase k by 1 and return to step 2.
12:
13: Output a stationary optimal policy, π, such that
14:
15: π(s) = argmaxa∈A{R(s, a) + ∑s′∈S λPr[s′|s, a]Vk+1(s′)}
16:
17: and stop

The number of epochs before reaching equilibrium is distributed with mean 1
(1−λ)

where
0 ≤ λ < 1; here λ is the discount factor. When expected service duration is known, λ is set accordingly
to match the equivalent number of epochs. For example, we have put λ = 0.975 to model mean service
time of 40 epochs.

7. Simulation Results and Performance Analysis

The traffic model as presented in Section 3 is used to determine the total number of users in
the coverage area of the BS at each decision epoch under the above mentioned propagation channel
environment. We use Matlab to simulate our proposed algorithm. The Markov decision process
along with the value iteration algorithm is used to find the required number of active, stand-by and
sleeping base stations. The total observation period is 3600 s and the simulation parameters are given
in Table 2. The simulation has been run for 10,000 iteration and then the average of the results are taken.
The algorithm takes approximately 18,700,000 addition operation, 23,320,000 subtraction operation,
20,830,000 subtraction operation, 3,510,000 division operation and 2,900,000 logical AND operation
to complete the 10,000 iteration. For the set of parameters provided in Table 2, we have found the
transition probability matrix for the second BS (BS2) as the Equation (9) and the transition probabilities
for the third base station(BS3) are shown in Figure 5.

Pr2 =

Pr2
00 Pr2

01 Pr2
02

Pr2
10 Pr2

11 Pr2
12

Pr2
20 Pr2

21 Pr2
22

 =

0.9842 0.0158 0
0.0044 0.9956 0

0 0 0

 (9)

For our proposed model, BS2 is capable of moving only between stand-by mode and active mode
depending on the traffic condition. For the third BS, the transition among all of the three states can be
presented as Figure 5. In this figure, S0, S1 and S2 represents the states of the base station (BS3) at sleep
mode, stand-by and active mode respectively; and a0 and a1 represent the action of BS2 becoming
stand-by and active respectively.

Figure 6 compares the power consumption of the network for always active BSs referred as
‘All BS Active’; 2-state model proposed in [5] referred as ‘Rangisetti 2 state (active-standby) model’;
MDP-based 2-state model [2] referred as ‘MDP-based 2 state (active-sleep) model’; and our proposed
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3-state MDP model referred as ‘proposed MDP-based 3 state model’. These models can be defined
as below:

• All BS Active: where all of the BSs of the network are always active.
• Rangisetti 2 State (active-standby) Model: The BSs are capable of switching between active

mode and stand-by mode [5].
• MDP-based 2 State (active-sleep) Model: The BSs are capable of switching between active mode

and sleep mode [2].
• Proposed MDP-based 3 State Model: The BSs are capable of switching among active mode,

stand-by mode and sleep mode.

Figure 5. Three-state Markov Model for BS3.
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Figure 6. Power consumption of the network for different models.
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The plots clearly show that using the proposed MDP model, we can save a significant amount of
power than ‘All BS active’ and ‘Rangisetti 2 state model’ in low traffic condition. This is because, as per
our proposed model, some of the BSs are in active mode, one of them is in stand-by mode and rest of
them are in sleep mode; whereas in ’Rangisetti 2 state model’ all of the unused BSs are in stand-by
mode, which causes higher energy consumption. However, our proposed MDP-based 3 state model
consumes bit more energy than the ‘MDP-based 2 state model’, that is because ‘Combes Model’ put
all of the unused BSs in sleep mode only, which results in less power consumption compared to our
proposed model but causes more wake up delay. This wake up delay can cause some call drops for
some new users who would need to wait for a sleeping BS to wake up. However, as expected, the power
consumption is the same for the two states and three states models in higher traffic condition, as almost
all of the BSs needs to be active in order to support the load. In order to see the delay performance of
the above mentioned four different models we generate Figure 7, which shows the percentage of the
total users experiencing delay (from delay group defined in Table 3) in receiving service within the
observation period for the four different models. As expected, all the users in ‘All BS active’ model will
have no delay (delay group-1) at all because all of the BSs are always active for this mode. On the other
hand, ‘Rangisetti 2 state model’ uses stand-by mode for the unused BSs and ‘our proposed model’ uses
standby and sleep mode for the unused BSs. Therefore only a few (around 12%) of the users experience
approximately 30 µs (delay group-2) of delay for both of these models. It is noteworthy that as per
the proposed MDP-based 3 state model, the users will experience delay only when a base station will
have transition from stand-by to active mode. The time needed for the sleeping BS to go to stand-by
mode will not cause delay to the users. Note that as per, Rangisetti model, the delay is also caused by
the transition between stand-by to active mode. That is why the delay for ‘Rangisetti 2 state model’
and ‘proposed 2 state model’ are the same. On the contrary, these users (around 12%) experience 40 s
(delay group-3) of delay in the ’MDP model’ as this model implements only sleep mode for unused
BSs, and it takes more time for the BSs to go from sleep mode to active mode. Therefore, our proposed
model offers a fair share of energy efficiency and delay in low traffic condition.
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Effect of the Parameter Variation

We apply trapezoidal numerical integration [17] on the power consumption curves in order to find
the total energy consumption of the network. We find that the MDP-based three state model can reduce
approximately 40% energy consumption compared to the ‘All BS active’ model. However, as one can
expect from the power consumption curves, our proposed model is consuming little bit more energy
than the MDP-based 2 state model, but this disadvantage is outweighed by the benefits of reduced
delay compared to the Combes model. In this section, we vary the different parameters and have
shown their effect on the energy consumption of the BS. At first, we vary the coverage range of the BS
and find that the energy consumption increases rapidly after a certain range in Figure 8. For the set of
parameters we have used as in Table 2, we find that the energy consumption remains almost constant
for up to BS range of 1.5 km, however increases very rapidly for higher BS ranges. This scenario is
true for all of the models we have used. These results depict that our proposed model consumes less
energy than ‘All TRC active’ model and ’Rangisetti 2 state (active-standby) model’, however consumes
little more energy than ‘MDP-based 2 state (active-sleep) model’. Figure 9 shows the expected delay
experienced by the users, from where we can see that ‘MDP-based 2 state (active-sleep) model’ offers
more delay than ‘Proposed 3 state model’ and ‘Rangisetti 2 state (active-standby) model’. As per the
proposed MDP-based 3 state model, the users will experience delay only when a base station will
have transition from stand-by to active mode. The time needed for the sleeping BS to to go stand-by
will not cause delay to the users. Note that as per, Rangisetti model, the delay is also caused by the
transition between stand-by to active mode. That is why the delay for ‘Rangisetti 2 state model’ and
‘proposed 2 state model’ are the same. As expected the delay increases with the BS range; however
after a certain range when most of the BSs are active then the activation delay reduces. Please note that
different ranges of BSs represent different types of BS (Pico, Femto, Micro, Macro etc). Figures 8 and 9
provide us a good evidence to claim that our proposed model offers a fair share of energy efficiency
and wake-up delay for any type of BSs.

We also observe the effect of different pathloss exponent and shadowing variance on the energy
consumption (for macro BS as an example) and expected delay and the results are shown in Figures 10–12
respectively. As we can expect, energy consumption of the BS increases with the path loss exponent
and shadowing variance, which is clearly depicted in the figures. Figure 12 depicts that ‘MDP-based
2 state (active-sleep) model’ offers higher delay than ‘Proposed 3 state model’ and ‘Rangisetti 2 state
(active-standby) model’. All of these results again show that our proposed model is an efficient model
which offers a fair share of reduced energy consumption as well as reduced wake-up delay.
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Figure 8. Effect of varying the range of the BS.
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Figure 9. Delay experienced by users.
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Figure 11. Effect of varying variance of shadowing.
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Figure 12. Delay experienced by users for various shadowing effect.

8. Conclusions

In this paper, we propose a novel strategy to implement sleep mode in the base stations within
a multi-tier 5G network using the Markov Decision process. The proposed method considers
a three-state base station model with active, sleep and standby modes where the states are adopted
between each other based on the MDP-based algorithm. In the MDP-based approach we have proposed
a novel reward function, which helps us to find the optimal policy depending on the traffic condition
and QoS requirement to improve the energy efficiency. The results are compared with other state-of-art
algorithms, from where we find that ‘MDP-based 2 state (active-sleep) model’ offers the lowest energy
consumption, but the highest amount of delay. Whereas, ‘Rangisetti 2 state (active-standby) model’
reduces this delay but increases the energy consumption significantly. On contrary, Our proposed
MDP bases 3 state model offers a fair share of energy efficiency and delay, where the network can
save a good amount of energy when compared to Rangisetti 2 state model with ignore-able delay
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compared to MDP-based 2 state model. Therefore the proposed model has proven to offer a good
trade-off between the energy efficiency and delay. Our future work is focused on considering the
effect of interference introduced in HetNet and updating the algorithm to incorporate the effect of
interference. Moreover, a stochastic geometry based energy efficiency analysis is also expected to be
done as part of the future work.
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