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Abstract: In this research, we characterized the changes in the Gravity Recovery and Climate
Experiment (GRACE) monthly total water storage anomaly (TWSA) in 18 surface basins and
12 principal aquifers in the conterminous United States during 2003–2016. Regions with high
variability in storage were identified. Ten basins and four aquifers showed significant changes in
storage. Eight surface basins and eight aquifers were found to show decadal stability in storage.
A pixel-based analysis of storage showed that the New England basin and North Atlantic Coastal
Plain aquifer showed the largest area under positive storage change. By contrast, the Lower Colorado
and California basins showed the largest area under negative change. This study found that
historically wetter regions (with more storage) are becoming wetter, and drier regions (with less
storage) are becoming drier. Fourier analysis of the GRACE data showed that while all basins
exhibited prominent annual periodicities, significant sub-annual and multi-annual cycles also exist
in some basins. The storage turnover period was estimated to range between 6 and 12 months.
The primary explanatory variable (PEV) of TWSA was identified for each region. This study provides
new insights on several aspects of basin or aquifer storage that are important for understanding basin
and aquifer hydrology.

Keywords: GRACE; terrestrial water storage; precipitation; runoff; evapotranspiration; soil moisture
and snow water equivalent

1. Introduction

Increased human activity has inevitably led to changes in the water cycle, especially water
availability. Understanding changes in terrestrial water storage (sum of surface water storage,
groundwater storage, soil moisture storage, canopy water storage, and snow water storage) is critical
for the estimation of water availability in a region. The terrestrial water storage (TWS) is a fundamental
component of a basin or continental water balance. However, there is still little understanding of this
primary state variable [1], and its spatiotemporal variability is still emerging [2–4], primarily due to data
scarcity of storage parameters—it is time consuming and challenging to conduct field campaigns over
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large areas [5]. Moreover, other problems, such as heterogeneous landscapes and basin complexities,
introduce error while converting point-scale observations to the resolution of current large-scale
hydrology and climate models [1]. Consequently, a continental-domain understanding of changes in
basin storage remains elusive.

The first aspect of basin storage that requires investigation is understanding the spatiotemporal
variability and the magnitude of storage change and its significance at different temporal
scales. Most hydrologic studies assume storage change is insignificant at annual scales.
However, several studies revealed that groundwater and other storage components of the hydrologic
cycle often exhibit significant variability at seasonal and annual time scales [4,6–8]. Due to high
variability and uneven distribution of hydrologic fluxes in space and time, basin storage could be
significant even at annual time scales [1,4]. This is especially true in several regions where groundwater
abstraction is a major component of the water budget. In such cases, assuming insignificant storage
change could lead to inaccurate estimation of hydrologic fluxes. Hence, knowledge of spatiotemporal
changes in storage and its importance with respect to basin precipitation is critical for understanding
hydrologic behavior. Furthermore, in a changing world, both human impacts and climate variability
could cause substantial changes in water availability [9]. Changes in water supply (precipitation and
runoff distribution) and demand (human water consumption) lead to changes in inter- and intra-annual
variability in basin storage and change the periodicity of storage and its turnover time in the basin.
Hence, it is important to establish a baseline and monitor changes in storage over time. Another aspect
to investigate is what drives the storage changes in a basin. TWS is generally driven or controlled by
a combination of hydrologic fluxes. A study by Reager et al. [1] identified that there are differences
among basins in terms of which flux drives TWS depending on precipitation, temperature, land cover,
and soil moisture availability in the basin. However, we have an incomplete understanding on the
interactions and dynamics of the various hydrologic drivers of TWS.

The Gravity Recovery and Climate Experiment (GRACE) mission is a joint National Aeronautics
and Space Administration (NASA) and the German Deutsches Zentrum für Luft und Raumfahrt (DLR)
project. GRACE provides direct global, monthly measurements of time-varying TWS changes and
measures the temporal variations in the Earth’s gravity field. Wahr et al. [10] pointed out that GRACE
gravity data can be used to recover water storage variations, but its coarser spatial resolution and
accuracies inhibited the use of data over small basins and regions. Further research by Rodell and
Famiglietti [6] showed that TWS accuracy could be improved by increasing the temporal interval and
spatial resolution of the monitoring area (regions > 200,000 km2). The current Center for Space Research
(CSR), University of Texas at Austin TWS dataset (CSR RL05 mascons) is an enhanced representation of
the RL05 GRACE solutions and provides improved surface-based gridded information that can be used
without further processing [11], providing an opportunity to use GRACE data for making regional water
management decisions [12]. With availability of more than a decade of data (2003–2016) and improved
data quality, GRACE TWS data have been used for addressing a wide range of questions. For example,
GRACE storage data were used to identify extreme weather conditions, such as droughts [13,14] and
floods [15,16], to analyze the impact of groundwater abstraction [17] and surface water storage [18],
and more recently to understand the connections between large-scale weather patterns, such as the El
Niño-Southern Oscillation (ENSO) and storage [19], and to understand hydro-climatic extremes [20,21].

Because of the importance of understanding this critical flux, several studies have analyzed basin
TWS in the past using GRACE data. Apart from some continental and global studies [1,5,8,21,22],
most studies have focused primarily on one or a few basins or regions [6,23–28]. Ramillien et al. [22]
analyzed GRACE water mass variations over African basins and identified the potential of GRACE
for management of water resources at the regional scale. Reager et al. [1] analyzed GRACE storage
observations over several large basins globally. Their investigation included understanding variability
in storage and analyzing hydrologic fluxes, such as precipitation, temperature, and land cover,
as potential drivers of storage. Long et al. [5] performed global analysis of changes in the storage
obtained from merged GRACE products. More recently, Scanlon et al. [8] compared GRACE TWS
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with global models in 186 river basins globally. Sun et al. [21] analyzed GRACE TWS over 35 basins
globally to assess large-scale hydrologic extremes. However, these studies [1,5] covered only one or
a few basins from the conterminous United States (CONUS), and storage changes over aquifers were
not investigated. Furthermore, the relationship of storage with other hydrologic fluxes, such as basin
runoff (Q), snow water equivalent (SWE), evapotranspiration (ET), and water balance (WB) in the
CONUS region, is poorly characterized.

The goal of this study is to demonstrate myriad ways in which GRACE data can be used to
improve our current knowledge on basin storage. Specific objectives of this study include analyzing
GRACE storage for 18 surface basins and 12 aquifers to (a) characterize temporal variability and
magnitude, (b) quantify periodicity or storage cycle, (c) identify primary hydrologic explanatory fluxes
and controls of basin storage, and (d) estimate rate of change at both basin and pixel scales. The results
from this study will advance current understanding of storage changes and enable resource managers
to incorporate GRACE TWS in basin water-availability estimations and improve management of
water resources.

2. Materials and Methods

2.1. Data Used

In this study we used 1◦ × 1◦ monthly GRACE RL05 mascon solutions obtained from the
Center for Space Research, University of Texas (UT-CSR) (http://www2.csr.utexas.edu/grace) [11].
Mascon solutions provide a significant improvement in accuracy when compared to spherical harmonics
data achieved through the reduction of leakage errors and reliable storage estimates in the tropics [11].
The UT-CSR mascon product was chosen because it shows gradual change along adjacent mascons as
compared to sharp step changes between mascons in the unsmoothed Jet Propulsion Laboratory (JPL)
mascon solutions [11]. Missing data were filled using the spline interpolation algorithm. The storage
estimates obtained from the mascon product represent deviation of storage with respect to the mean
period (2004–2009). The median obtained over 2003–2016 was subtracted from the monthly TWS
mass deviations to obtain TWS anomaly (TWSA). This preserves the original magnitude and trend in
storage. Therefore, the absolute value of storage denotes the deviation of storage from the decadal
median storage estimate (2003–2016). We also derived month-to-month change in storage, ∆S, which is
derived from TWSA, as described in a previous study [24] as:

∆St = TWSAt − TWSAt−1 (1)

where t and t − 1 are the current and previous months, respectively; ∆St is the monthly change in
storage computed continuously for each month from January 2003–December 2016. Then, ∆S for
a water year (∆SANN) was estimated by adding monthly estimates from October to September for each
year. Finally, a decadal mean annual estimate (∆SDM) for each basin was estimated using ∆SANN from
all years.

The description of other datasets used in this study is presented here. Mean basin
precipitation (P) over 2003–2016 was extracted from 4 km monthly parameter-elevation regressions
on independent slopes model (PRISM) precipitation datasets [29,30] (http://prism.oregonstate.
edu/historical/). Monthly basin runoff (Q) was extracted from gridded runoff data (2003–2016)
obtained from the U.S. Geological Survey’s WaterWatch (https://waterwatch.usgs.gov/?id=romap3).
Monthly regional evapotranspiration (ET) data were extracted from 1 km operational simplified
surface energy balance algorithm (SSEBop) ET data (2003–2016) produced from model-assimilated
weather datasets and Moderate Resolution Imaging Spectroradiometer (MODIS) thermal images [31]
(https://earlywarning.usgs.gov/useta). Monthly snow water equivalent (SWE) was computed from
Advanced Microwave Scanning Radiometer for Earth observing system (AMSR-E) L3 25 km ease grids
(2003–2009) obtained from the National Snow and Ice Data Center [32] (http://nsidc.org/data/ae_mosno).
Monthly soil moisture (SM) data (0–2 m) were obtained from National Land Data Assimilation System
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(NLDAS-2) monthly mosaic land surface model level 4 climatology data (0.125 × 0.125 degree) available
from NASA (https://disc.gsfc.nasa.gov/datasets/NLDAS_MOS0125_MC_V002/summary) [33].

This study was carried out to understand the changes in storage over Hydrologic Unit Code
2 (HUC2) surface basins and principal groundwater aquifers in CONUS (Figure 1). The U.S.
Geological Survey (USGS) has divided the United States into hydrologic units that are identified by
unique numeric HUCs [34]. The entire United States is divided into 21 major surface regions (HUC2),
composed of 222 sub-regions (HUC4) that are further divided into smaller basins (HUC6) and sub-basins
(HUC8). The boundaries of these units are defined in terms of topographic river basin divides and
sub-basins. The hydrologic unit code represents two digits each to indicate region, sub-region, basin,
and sub-basin. In this study, we use 18 HUC2 surface basins covering CONUS. The approximate
mean area of HUC2 is 500,000 km2. Boundary information for all HUCs is obtained from the USGS
(https://water.usgs.gov/GIS/huc.html). Twelve aquifers in the CONUS region were selected from
the USGS Ground Water Atlas of the United States (https://water.usgs.gov/ogw/aquifer/atlas.html).
The aquifer boundaries derived from this map indicate the areal extent of the uppermost principal
aquifer system on a national scale. A principal aquifer system is a regionally extensive aquifer or aquifer
system that has the potential to be used as a source of water abstraction for human or agricultural use.
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Figure 1. Study area regions. Hydrologic Unit Code 2 (HUC2) surface basin boundaries (left) and
principal aquifer boundaries (right). The background map shows Gravity Recovery and Climate
Experiment (GRACE)-derived total water storage anomaly (TWSA) for August 2003 (top) and August
2016 (bottom) in mm per month summarized for previously defined HUC2 surface basins and
principal aquifers.

2.2. Analysis of Temporal Variability and Magnitude in TWSA

Time series of TWSA are plotted to understand the temporal variability and magnitude of changes
in the TWSA for HUC2 surface basins and principal aquifers. The goal of this exercise is to identify
regions with high or low month-to-month, annual, and decadal variability in storage. Response of
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storage with respect to the climate variability (such as droughts and floods) is analyzed. We also
validate the general assumption in hydrology—the significance of storage at annual and decadal scales.
For each region, we identify the significance of storage by analyzing the mean ratio of annual ∆SANN

and ∆SDM with annual and decadal mean regional precipitation, respectively, during 2003–2016.

2.3. Analysis of Storage Cycle and Periodicity in Storage

First, we use an analytical approach to understand storage cycle using GRACE TWSA data.
A simple algorithm was written that analyzes inflection points and turning points within the time
series TWSA data to estimate average time (in months) of storage recharge and storage discharge
and total time to complete one full cycle (recharge + discharge). A turning point is a point at which
the TWSA derivative (slope) changes sign. The distance between two turning points can either be
storage recharge period or storage discharge period, depending on the sign of the slope. A positive
slope between the turning points indicates recharge period and a negative slope between two turning
points indicates discharge period. This is an alternative approach to other robust algorithms [21,35]
that delineate the storage cycle and periodicity in storage. However, any sudden anomalous change in
TWSA slope (from positive to negative) with respect to the mean can result in a spurious or pseudo
cycle, which would introduce noise or error in the estimation of the storage cycle. Hence, a 3-month
moving average window was used to smooth out abrupt changes in the storage over certain months
while preserving the annual and bi-annual cycles. The goal is to preserve the trend (annual and
bi-annual trend) and reduce random noise in the monthly data. Analysis was performed using the
mean estimate of TWSA for each of the HUC2 surface basins and aquifers. This approach is more
analytical and does not provide statistical significance to the estimates of the storage cycle.

Second, we used a theoretical approach that provides statistical significance of the storage
periodicity. The basin-averaged TWSA was transformed into frequency domain to investigate
the dominant frequencies in the GRACE storage signal [1]. Fourier analysis of the storage time
series data was undertaken to identify the dominant periodic cycles. Plots of periodograms,
which are plots of the relative power spectra of individual periodic components, are used for visual
interpretation. Usually, hydrological time series data are a combination of signals with multi-year,
annual, and sub-annual cycles. As the relative power of the annual and multi-annual components are
higher in a given TWSA time series, sub-annual components are relatively subdued. To enhance the
sub-annual components and improve visibility and clarity, we used the month-to-month change in
storage (∆S) parameter, which effectively filters out the relative strong multi-annual power component
from the data. The 95% confidence intervals were generated, using white noise spectra with mean of
the distribution and two standard deviations of the spectra (for both TWSA and ∆S), and plotted along
with the periodograms. If the power of the signal lies above the 95th percentile confidence interval of
the white noise spectra, then it is considered statistically significant and different from white noise.

2.4. Analysis of Primary Explanatory Variable of Storage

To understand the hydrologic fluxes that can explain the GRACE storage signal, we investigated
five independent fluxes and storage terms (P, ET, Q, SWE, SM, and WB = P-ET-Q) against the GRACE
storage signal (dependent variable). Direct comparison of hydrologic fluxes with GRACE TWSA
is not possible because hydrologic fluxes are direct measures, whereas the latter is an anomaly.
Hence, we computed an anomaly for each hydrologic flux and storage term as a deviation from the
decadal median and compared it with GRACE TWSA in the following ways: (i) the behavior of TWSA
against the hydrologic variables was analyzed for each basin; (ii) using decadal mean monthly TWSA
estimates produced from the 2003–2016 data, a stepwise regression was performed to identify the best
model (with lowest Akaike information criterion, AIC), and a set of parameters in the best model for
each basin was identified; and (iii) hydrologic variables with highest correlation with TWSA were
identified. Generally, presence of multicollinearity results in extremely unstable regression coefficients
which could cause serious problems when making inferences and predictions based on the regression
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model [36]. Hence, we used a multicollinearity diagnostic test for each regressor (explanatory variables)
using “MCTEST” package in R and estimated multicollinearity in the model using the variance inflation
factor (VIF). Usually, a VIF > 10 is a common threshold for detecting severe multicollinearity [37],
and thus any variable with VIF > 10 will be ignored. For efficient management of basin water storage,
it is important to identify the primary explanatory variables of storage. Hence, we computed the
contribution of each variable in the best fit model using standardized partial regression coefficients,
and the variable with the highest contribution was identified.

2.5. Analysis of Change in Storage

Several regional studies in the past have used GRACE TWS to understand change in storage over
time [5] and decadal trends in TWS, for example, groundwater depletion in India [38,39] and TWS
changes in the U.S. in California’s Central Valley [40,41] and in the High Plains aquifer region [41,42].
More recently, GRACE-derived TWS was used to estimate emerging trends in global freshwater
availability [4]. Most of these studies have provided estimates of rate of change (mm/year) in storage
obtained from GRACE. In this study, we perform the seasonal Mann-Kendall (SMK) test [43], using “rkt”
package in R statistical software, using monthly GRACE TWSA over 2003–2016. For each basin,
the Theil-Sen’s slope and 5% significance level (p-val ≤ 0.05) were estimated. For easy interpretation,
we converted significance levels to directional p-val (containing both positive and negative p-val)
based on the direction of the slope. This analysis of change in storage was performed both at the basin
scale and at the pixel level to identify regions showing significant changes in storage.

3. Results

3.1. Analysis of Temporal Variability and Magnitude in Storage (2003–2016)

The temporal variability in monthly TWSA (green line), ∆S (blue line), and ∆SAnn, DM (red line)
for HUC2 surface basins and principal aquifers over 2003–2016 are presented in Figures 2 and 3.
Monthly TWSA demonstrates seasonal variability, and the slope (dashed line) is a good indicator of
long-term trend. Coefficient of variability, CV ((Standard Deviation * 100) / Mean of the observation),
was computed on TWSA to understand the combined monthly and decadal variability (with respect to
the mean storage) in each basin or aquifer. TWSA variability for 4 out of 12 surface basins (Great Lakes,
Tennessee, Texas-Gulf, and California) showed low variability (CV < 10%). Similarly, TWSA variability
for 6 out of 12 aquifers (High Plains aquifer, Mississippi River alluvial aquifer, Surficial aquifer,
Texas Coastal Uplands aquifer, North Atlantic Coastal Plain aquifer, and Denver Basin aquifer) showed
high variability (CV > 20%). On the other hand, the Coastal lowlands aquifer and Ozark Plateaus
aquifer showed low variability (CV < 10%). These results were different when ∆S was used to compute
CV with a focus on quantifying month-to-month variability (not shown here). GRACE TWSA data
were also found to capture variability due to climate extremes. A wet year results in an increase
in storage due to high precipitation and increased water availability. For example, the Missouri
River basin experienced catastrophic floods during 2011, and the GRACE TWSA signal for 2011
showed an all-time high in storage over 2003–2016. Similar peaks in storage during wet periods
can also be seen in other basins, such as prolonged floods in the South Atlantic Gulf basin in 2015
and floods in Texas in 2004. A general increase in Great Lakes water levels, as indicated by the
altimetry data (https:// ipad.fas.usda.gov/cropexplorer/global_reservoir/ ), corroborates an increase in storage
in the Great Lakes region. Similarly, a dry season results in loss of storage due to low precipitation,
high evapotranspiration, and reduced groundwater levels. For example, the GRACE TWSA signal
for Tennessee showed an all-time low storage due to the extreme drought in 2007. Similar declines in
storage during dry periods can also be seen in other basins experiencing drought, such as California
(2011–2015) and Texas (2011). Figures 2 and 3 also demonstrate that there is high variability in inter-
and intra-annual storage among HUC2 surface basins and aquifers.

https://ipad.fas.usda.gov/cropexplorer/global_reservoir/
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Figure 2. Time-series plots of monthly GRACE TWSA for the HUC2 surface basins in conterminous
United States (CONUS) during 2003–2016. Dashed lines indicate the slope and decadal trend. LTM
stands for long term for annual (∆SANN) and decadal (∆SDM) change in storage. The “M” in x-axis
represents a decadal time scale.

The ∆S was found to demonstrate only the monthly variability. For most basins and aquifers,
∆S was found to oscillate around zero with low CV and was devoid of any decadal trend. The Great
Lakes basin and California basin showed the lowest CV in ∆S. The low CV could be because the Great
Lakes basin is the least disturbed basin, and hence has low variability, whereas the California basin is
highly managed and variability is under control due to water management practices. However, 5 out
of 18 surface basins (South Atlantic Gulf, Missouri, Arkansas-White-Red, Upper Colorado, and Pacific
Northwest) show high variability (CV > 20%), indicating very large fluctuations in storage on a monthly
basis. Although the annual change in storage (∆SANN) was usually close to zero for most years, it was
found to be considerably different from zero for some years. This means that the change in storage
was not equal to zero on an annual basis. On a decadal scale, ∆SDM (value for “M” on axis) was found
to be close to zero, indicating that although ∆SANN may not be zero at an annual time scale, it is close
to zero (insignificant) at longer time scales.
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Figure 3. Time-series plots of monthly GRACE TWSA for the principal aquifers in CONUS during
2003–2016. Dashed lines indicate the slope and decadal trend. LTM stands for long term for annual
(∆SANN) and decadal (∆SDM) change in storage. The “M” in x-axis represents a decadal time scale.

As storage changes depend on precipitation in a given region, we computed the ratio of annual
∆S/P for each region to understand the significance of change in storage within the water budget.
The annual ∆S/P percent (in Table 1) indicates that change in annual ∆S varies between ±10% of the
annual P, as indicated by the minimum and maximum annual ∆S/P during 2003–2016. At an annual
time scale, 5 out of 18 HUC2 surface basins (Souris-Red-Rainy, Missouri, Texas Gulf, Rio Grande,
and California) and 4 out of 12 principal aquifers (Central Valley, High Plains, Texas Coastal Uplands,
and Edwards Trinity) showed substantial storage (max > 2%; min < 2%). However, on a decadal time
scale, the ∆S/P (DM) was found to be small (less than ±2% of basin P). This result confirms the validity
of the general assumption in hydrology that storage is insignificant at longer time scales (decadal or
more).
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Table 1. Analysis of the ratio of month-to-month change in storage and P (∆S/P) annual max, min,
and decadal mean (DM) for each region to understand the significance of change in storage in the
water budget.

HUC 2 Surface Basins
Annual ∆S/P (%) Aquifer Annual ∆S/P (%)

Max Min DM Max Min DM

New England 0.7 −0.7 0.05 High Plains 0.8 −2.4 −0.10
Mid−Atlantic 0.7 −0.9 −0.01 Colorado Plateaus 1.1 −0.9 0.02

South Atlantic Gulf 0.9 −0.9 0.01 N Atlantic Coastal Plain 0.7 −1.0 0.00
Great Lakes 1.1 −1.1 0.05 Denver Basin 0.6 −0.6 −0.02

Ohio 1.2 −1.2 0.06 Central Valley 5.4 −9.9 −1.28

Tennessee 1.7 −1.8 0.03 Piedmont and Blue Ridge
Cryst. Rock 0.9 −1.4 0.01

Upper Mississippi 1.1 −1.7 0.04 Ozark Plateaus 1.4 −0.8 0.09
Lower Mississippi 1.1 −1.0 0.03 Mississippi River Valley 1.6 −1.2 0.06
Souris−Red−Rainy 1.5 −3.9 −0.28 Surficial 0.8 −1.0 0.00

Missouri 0.9 −2.5 0.02 Texas Coastal Uplands 1.7 −4.4 −0.20
Arkansas−White−Red 0.7 −1.5 −0.06 Coastal Lowlands 0.7 −1.2 −0.01

Texas Gulf 1.3 −5.3 −0.32 Edwards Trinity 1.2 −8.7 −0.57
Rio Grande 0.8 −3.7 −0.26

Upper Colorado 1.3 −1.1 0.04
Lower Colorado 1.2 −1.6 −0.20

Great Basin 1.9 −1.8 −0.17
Pacific Northwest 1.1 −0.9 0.07

California 2.2 −3.2 −0.35

Note: DM is the decadal mean estimate of annual ∆S/P and Max and Min indicate maximum and minimum
year-to-year changes in the ∆S/P.

3.2. Analysis of Storage Cycle and Periodicity in Storage

Results of analysis of storage cycle are presented in Table 2. Storage cycle analysis indicated
that HUC2 surface basins in CONUS took 6 to 12 months to complete a storage cycle, but with high
year to year variability (standard deviation up to 4 months). Nine out of 18 basins showed average
storage cycles of 12(±1) months. However, 9 basins showed average storage cycles of <12 months.
The Rio Grande (6 months) and Texas Gulf (7 months) both showed bimodality of storage. The storage
cycle analysis of aquifer systems revealed that it took 6 to 12 months to complete a storage cycle.
However, only 5 out of 12 aquifer systems showed annual storage cycles (12 ± 1 months) and the rest
(7 out 12) of the aquifer systems took <12 months to complete a storage cycle. The Edwards-Trinity and
Texas Coastal Uplands aquifer systems showed bimodal storage cycles within a period of 12 months.

Results from the Fourier analysis of the basin-averaged GRACE signal (periodograms) are
presented in Figures 4 and 5. To establish statistical significance of these peaks, we generated white
noise using the mean and standard deviation of the observation, and we plotted a 95th percentile
confidence interval of the white noise spectra (red and dashed lines in Figures 4 and 5). Any peak
lying above the 95th percentile confidence interval is considered significantly different from the
white noise. Fourier transformation of GRACE TWSA and ∆S signals showed prominent annual and
multi-annual peaks and subdued sub-annual peaks. Fourier analysis of both TWSA and ∆S signals
reveals that all basins and aquifers show a prominent annual cycle with a statistically significant peak
at a frequency of 1 cycle/year. However, the signal from TWSA indicated prominent multi-annual
cycle peaks for 7 out of 12 HUC2 surface basins (South Atlantic Gulf, Great Lakes, Souris-Red-Rainy,
Missouri, Arkansas-White-Red, and Texas Gulf). Fourier analysis of ∆S showed amplified signals
at sub-annual scales and high frequencies. Additional peaks in ∆S at higher frequencies were
also seen for 7 out of 18 basins (Great Lakes, Ohio, Upper Mississippi, Souris-Red-Rainy, Missouri,
Rio Grande, and Lower Colorado) and showed prominent higher order frequencies (sub-annual
cycles). The presence of significant higher order frequencies could mean that in addition to prominent
annual periodicity, portions or regions within the basins exhibit sub-annual storage periodicities.
Identifying and understanding the presence of high spatial variability in storage periodicity within
a basin is important for basin water management. Since this analysis uses monthly data, we ignore
frequencies > 6 cycles/year and frequencies < 1/14 cycles/year. Fourier analysis revealed similar
results for aquifer systems with prominent annual cycles (frequency of 1 cycle/year). However, 4 out
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of 12 aquifers (Peidmont and Blue Ridge crystalline rock aquifer, Ozark Plateaus aquifer, Surficial
aquifer, and Texas Coastal Uplands aquifer) showed statistically significant peaks at cycles >1/year.
Fourier analysis of ∆S showed that 3 out of 12 aquifers (High Plains aquifer, Surficial aquifer,
and Edwards-Trinity aquifer systems) showed sub-annual periodicities (cycles) of storage.

Table 2. Estimates of average storage cycle (STP) and ± standard deviation (SD) in months derived for
surface basins and aquifers using GRACE TWSA.

HUC2 Surface Basins Average STP ± SD
(Months) Aquifers Average STP ± SD

(Months)

New England 12 ± 1 High Plains 10 ± 3
Mid-Atlantic 12 ± 1 Colorado Plateaus 12 ± 1

South Atlantic Gulf 9 ± 4 N Atlantic Coastal Plain 12 ± 2
Great Lakes 10 ± 3 Denver Basin 10 ± 3

Ohio 12 ± 1 Central Valley 12 ± 1
Tennessee 11 ± 2 Peidmont and BR cryst-rock 9 ± 4

Upper Mississippi 10 ± 3 Ozark Plateaus 10 ± 3
Lower Mississippi 11 ± 2 Mississippi River Valley 12 ± 3
Souris-Red-Rainy 10 ± 3 Surficial aquifer 9 ± 3

Missouri 10 ± 3 Texas Coastal Uplands 7 ± 4
Arkansas-White-Red 10 ± 3 Coastal lowlands 12 ± 3

Texas Gulf 7 ± 4 Edwards-Trinity 6 ± 3
Rio Grande 6 ± 3

Upper Colorado 12 ± 1
Lower Colorado 9 ± 3

Great Basin 12 ± 1
Pacific Northwest 12 ± 1

California 12 ± 1

Note: Average STP is equally divided into storage recharge period (SRP) and storage discharge period (SDP).
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3.3. Analysis of Primary Explanatory Variable of Storage

The decadal monthly GRACE TWSA derived from the water year (October–September) data
during 2003–2016 is plotted against other hydrologic fluxes (computed as deviation from decadal
median) in Figures 6 and 7. Visual comparison of TWSA in most of the basins indicates a general trend
of minimal storage in October and increasing storage in winter (November–April), and then decreasing
storage in summer (April–September). This general trend in TWSA did not respond to P in most basins,
as higher P in summer did not translate into higher basin storage. This could be because basin ET was
found to be more than P during summer. Higher ET often results in loss of surface water, resulting in
a decrease in net storage; therefore, storage showed a negative relationship with ET. For most regions,
storage tends to increase until WB is positive (above its decadal median), and as ET tends to increase in
summer, storage tends to decline. Runoff and SWE showed a weak relationship with storage in most of
the basins. However, SWE from winter months showed a positive relationship with ∆S in some basins.
Although magnitude of monthly change in soil moisture was low for most basins, it followed the
general trend of storage, and hence showed a positive relationship with basin storage (Figures 6 and 7).
To understand the interaction between hydrologic fluxes and TWSA, we computed TWSA response lag
on each variable (see Table A1). Our results indicate that despite P being the main driver of hydrologic
processes, TWSA responds with P with a greater lag than other variables, mainly because it depends
on the way P is partitioned into hydrologic fluxes (such as SM, ET, Q, and SWE). However, for most
basins, soil moisture and runoff had quicker response times on TWSA. For example, in the South
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Atlantic Gulf basin (Figure 6), precipitation occurs for almost all months, with most of the precipitation
falling in the summer months (peaking in August). During summer, theoretically, other fluxes and
storage, such as soil moisture, runoff, and TWSA, should increase, but in fact, these fluxes decrease
in summer. This decrease occurs because most of the P is meeting the ET demand from vegetation.
During winter and spring (October–April), ET is low, and hence soil moisture is increasing, as is TWSA.
While SM attains a peak in February, TWSA continues to peak until March. Runoff shows greater
response to TWSA with a lag of 0. Hence, for the South Atlantic Gulf, runoff is a key explanatory
variable of TWSA. Most of the other basins also have similar responses with runoff and soil moisture
showing greater response (smaller lag) to TWSA. Other than soil moisture and runoff, the key driver of
TWSA is ET. For most basins, the zero crossing of ET (when the monthly ET starts to increase beyond
the long-term mean) corresponds to the peak of TWSA, which means any increase in ET mostly leads
to a decline in TWSA.
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Figure 7. Comparison of aquifer GRACE TWSA against other important hydrologic fluxes and
parameters: (precipitation (P), evapotranspiration (ET), runoff (Q), snow water equivalent (SWE), water
balance, WB (P-ET-Q), and soil moisture (SM) (on secondary Y-axis)), all derived as deviation from
their respective decadal median.

Stepwise regression analysis results, partial regression coefficients, and the primary explanatory
variable for each region (HUC2 surface basins and aquifer systems) are presented in Table 3.
Variables discarded due to multicollinearity and those that are not identified in the best fit model are
represented as “NA”. For all the basins, the existence of the WB term resulted in high multicollinearity,
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because WB is a derivative of other hydrologic fluxes (P, Q, and ET), hence WB was removed from
the analysis.

Table 3. Stepwise regression approach to identify a set of explanatory variables (Precipitation, P;
Runoff, Q; Snow Water Equivalent, SWE; Evapotranspiration, ET; and soil moisture, SM) and a primary
explanatory variable (PEV) of GRACE TWSA in the CONUS.

ID Basin

Partial Regression Coefficients
(%) for the Variables in the Best

Fit Model
Model
adj. R2 PEV Individual r (TWSA

vs. PEV)

P Q ET SWE SM

HUC 2 Basins

1 New England 2 2 NA 2 93 0.98 * SM 0.96
2 Mid-Atlantic NA NA 1 2 97 0.97 * SM 0.97
3 South Atlantic Gulf 31 34 1 0.5 20 0.95 * Q 0.93
4 Great Lakes 15 NA 17 NA 68 0.96 * SM 0.42
5 Ohio 1 NA NA NA 99 0.97 * SM 0.98
6 Tennessee NA NA 5 NA 95 0.92 * SM 0.94
7 Upper Mississippi NA 48 7 4 41 0.98 * Q 0.88
8 Lower Mississippi NA NA 12 NA 88 0.93 * SM 0.74
9 Souris-Red-Rainy NA 30 12 21 37 0.96 * SM 0.63
10 Missouri 1 NA 22 1 69 0.96 * SM 0.61
11 Arkansas-White-Red 10 30 19 3 38 0.95 * SM 0.84
12 Texas-Gulf 13 75 NA 12 NA 0.76 * Q 0.73
13 Rio Grande 26 NA NA 22 52 0.67 * SM 0.57
14 Upper Colorado NA 6 19 NA 75 0.96 SM 0.67
15 Lower Colorado 12 88 NA NA NA 0.82 * Q 0.85
16 Great Basin NA 5 16 4 75 0.94 * SM 0.64
17 Pacific Northwest NA NA 16 6 78 0.56 * SM 0.77
18 California NA 89 NA 11 NA 0.87 * Q 0.89

Principal aquifers

1 Central Valley NA 82 NA NA 18 0.84 * Q 0.82
2 High Plains NA 88 NA 12 NA 0.77 * Q 0.84
3 Missi. River Valley NA NA 17 NA 83 0.88 * SM 0.88
4 Surficial NA NA 100 NA NA 0.37 * ET −0.59
5 Coastal Lowlands NA 92 8 NA NA 0.66 * Q 0.82
6 Texas Coastal Uplands NA 32 14 NA 54 0.88 * SM 0.77
7 N Atlantic Coast. Plain 22 69 9 NA NA 0.90 * Q 0.9
8 Colorado Plateaus NA 36 NA 64 NA 0.66 * SWE 0.6
9 Denver Basin 4 12 NA 6 78 0.88 * SM 0.66
10 Ozark Plateaus NA NA 6 2 92 0.96 * SM 0.93
11 Edwards-Trinity 60 40 NA NA NA 0.54 * P −0.53
12 Piedmont and BR 1 73 22 4 NA 0.90 * Q 0.9

Note: NA denotes variable not used in the regression model (omitted due to multicollinearity); * model significant
at 0.05 level.

Results indicated that SM was found to be the primary explanatory variable of storage in 13 of
the 18 HUC2 surface basins. Runoff (Q) was found to explain storage patterns in 5 basins (South
Atlantic Gulf, Upper Mississippi, Texas Gulf, Lower Colorado, and California). With respect to storage
changes in the aquifer systems, we have mixed results. Runoff was found to explain storage changes
in 5 out of 12 aquifers (Central Valley, High Plains, Coastal lowlands, North Atlantic Coastal Plain,
and Piedmont and Blue Ridge crystalline-rock aquifers). Soil moisture (SM) was found to explain
storage changes in four aquifers (Mississippi River valley aquifer, Texas Coastal Uplands, Denver Basin,
and Ozark Plateaus aquifers). The fluxes ET and SWE were found to be primary explanatory variables
in the Surficial aquifer and Colorado Plateaus aquifers, respectively. Precipitation (P) was found to be
the primary explanatory variable for the Edwards-Trinity aquifer. Fluxes Q, SWE, and SM exhibited
positive individual correlation with storage. However, P showed a negative relationship due to the
lagged response of TWSA. Evapotranspiration showed an expected negative correlation, indicating that
high ET corresponds to decline in storage, and vice versa.
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3.4. Analysis of Change in Storage

Theil-Sen’s slope estimate obtained from the Mann-Kendall analysis of TWSA data (2003–2016)
yielded rate of change estimates for each region (Table 4). Seven out of 18 basins showed large increases
in storage and 3 basins (in the western United States) showed large decreases in storage. The highest
significant rate of change in storage was found in the Missouri (9.9 cm/year), followed by the Great
Lakes (8.8 cm/year) and Pacific Northwest (7.9 cm/year) basins. The largest decline in storage occurred
in the California basin (−9.9 cm/year). For the aquifer systems, only two aquifers (Denver Basin
and Ozark Plateaus) showed large increases in storage (10 cm/year each); the Central Valley and
Edwards-Trinity aquifers showed large declines in storage (−8.8 and −4.9 cm/year, respectively).

Table 4. Rate of change (cm/year) in storage and surface area under change derived using GRACE
TWSA data (2003-2016) for HUC2 surface basins and principal aquifers in the CONUS.

No Name
GRACE TWSA Basin/Aquifer Area (%) under

Rate of Change (cm/yr) P value Negative
Change

Positive
Change No Change

HUC2 Surface Basins

1 New England 4.3 0.0009 2 98 0
2 Mid-Atlantic 3.8 0.0188 0 77 23
3 South Atlantic Gulf 5.9 0.2232 0 25 75
4 Great Lakes 8.8 0.0348 5 63 32
5 Ohio 4.2 0.0431 0 56 44
6 Tennessee 3.1 0.4078 0 3 97
7 Upper Mississippi 7 0.0298 3 74 23
8 Lower Mississippi 1.7 0.6456 1 5 94
9 Souris-Red-Rainy −2.1 0.3875 31 6 63
10 Missouri 9.9 0.003 0 82 18
11 Arkansas-White-Red −4.6 0.2361 32 1 67
12 Texas-Gulf −6 0.2196 14 0 86
13 Rio Grande −5.1 0.0104 67 0 33
14 Upper Colorado 1.8 0.2267 3 31 66
15 Lower Colorado −4.9 0.003 79 0 21
16 Great Basin −2.8 0.1774 18 3 79
17 Pacific Northwest 7.9 0.0006 1 86 12
18 California −9.1 0.0279 60 7 33

Principal Aquifers

1 High Plains −4.1 0.2304 33 40 26
2 Colorado Plateaus 1.5 0.2475 20 19 61
3 N Atlantic Coastal Plain 3.9 0.1332 0 63 38
4 Denver Basin 10 0.0023 17 17 67
5 Central Valley −8.8 0.0332 80 0 20

6 Piedmont and Blue Ridge
crystalline-rock 5.3 0.2451 0 5 95

7 Ozark Plateaus 10 0.0023 0 33 68

8 Mississippi River Valley
alluvial 1.4 0.6005 0 11 89

9 Surficial 5.3 0.2451 0 52 48
10 Texas Coastal Uplands −5.6 0.2406 0 0 100
11 Coastal lowlands 1.4 0.6005 0 0 100
12 Edwards-Trinity −4.9 0.0118 7 0 93

Note: directional p-val shown in italics are significant at 95% confidence level.

Analysis of change in storage at basin or aquifer scale provides information on overall change
occurring in the region. However, it does not provide information on spatial variability in storage
change within a region. Hence, pixel-scale analysis of rate of change in storage is presented in Figure 8
(top graphics). Although some basins showed overall significant ± changes in GRACE storage, not all
areas within these basins or aquifers showed significant ± change in storage. Regions shaded in blue
indicate positive rates of change and regions shaded in yellow to brown indicate negative rates of
change. Figure 8 (bottom graphics) shows areas that are statistically significant at the 95% (0.05) level.
Parts of the Missouri, Pacific Northwest, Upper Mississippi, Great Lakes, and South Atlantic Gulf
regions show significant positive changes in storage. Similarly, northern parts of the High Plains aquifer
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and Surficial aquifer show significant positive changes in storage (Figure 8). Regions in southwestern
CONUS covering parts of the California, Lower Colorado, Rio Grande, and Arkansas-Red-Rainy
basins and the northwestern tip of the Texas Gulf basin show significant negative changes in storage
(Figure 8). These regions are characterized by arid to semi-arid conditions, where precipitation is
scarce and groundwater irrigation is common. The negative change in storage is more prominent
along the Central Valley and southern High Plains aquifer regions (Figure 8), where irrigation is
predominant. This regionalized information on changes in GRACE storage can be helpful for water
resource managers. Based on the statistical probability estimates, we computed the area under change
(positive, negative, or no change) for each region. Results presented in Table 4 indicate that for the New
England basin, 98% of the basin experiences an increase (positive change) in storage. Conversely, 79% of
the Lower Colorado basin experiences a negative change (decrease in storage). On the other hand,
the Tennessee and Lower Mississippi basins are stable with no significant changes occurring during
2003–2016 in >90% of the basin areas, while small areas of the basins experience a negative change.
Similarly, the North Atlantic Coastal Plain and Surficial aquifers show >50% of their areas under
increasing change in storage; nearly 80% of the Central Valley aquifer experiences negative change in
storage. The Texas Coastal Uplands and Coastal lowlands aquifers demonstrate stability in storage,
with 100% of these aquifer systems having no change in storage during 2003–2016.
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4. Discussion

In this study, we used monthly GRACE CSR RL05 mascons and derived TWSA, ∆SANN, and ∆SDM,
as described in Section 2.1. This study demonstrates that each of these derivatives of storage
parameters provide useful and sometimes supplemental information on storage characteristics.
However, care should be exercised in the use of these parameters. For example, TWSA is important in
understanding annual and decadal variability with respect to the mean period (2003–2016); however,
TWSA would be of little use in understanding information on the actual magnitude of month-to-month
change in storage, which is provided by ∆S. For this reason, TWSA should not be used in analyses or
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studies that require absolute estimates of storage or storage change. For example, to understand the
significance of monthly change in storage with respect to the basin P (or other hydrologic fluxes), ∆S
should be used instead of TWSA. Similarly, since TWSA is an anomaly term, it should not be directly
compared with hydrologic fluxes. However, since ∆S provides absolute estimates of change in storage
over a month, it can be directly compared with hydrologic fluxes. TWSA should be used to analyze
decadal rate of change and for computation of ∆S, because ∆S is simply a time derivative of TWSA. In
this study, we derived ∆SDM as it provides unique information that other storage parameters (TWSA
and ∆S) fail to provide, i.e., to test the assumption of stationarity of ∆S.

Over annual time scales, we found that ∆S can vary from year to year and it could be a substantial
component in the water budget in some regions. Although several hydrologic studies assume that
∆S = 0 on an annual time scale, we found this to be true in only some regions analyzed in this
study. Five out of 18 basins and 4 out of 12 aquifers showed high year to year variability with basin
precipitation, where the assumption of ∆S = 0 would be invalid. Hence, care should be exercised in
making the assumption that ∆S = 0 on annual time steps. Also, it is helpful to use GRACE ∆S data
to check the validity of the assumption that annual ∆S = 0 beforehand. Nevertheless, the ∆SDM was
found to be insignificant (<2% of the precipitation) for all the basins and aquifer regions analyzed in
this study, validating the general assumption that ∆S = 0 over longer time scales.

One advantage of having time series data (2003–2016) on storage from GRACE is to derive the
rate of change in storage (cm/year). Because GRACE data can provide a large-scale picture of changes
in storage for each basin or aquifer, time series information is critical for the management of the
basins. Several researchers have estimated rates of change in storage [4,6,12,38,39]; however, the rate
of change analysis depends on the analysis window. In this study, we used GRACE data during
2003–2016. Our results indicate that storage changes in the eastern CONUS are increasing while
the arid to semi-arid regions (mostly southwestern CONUS) are showing declining storage during
2003–2016. Overall, wet regions are becoming wetter (increasing storage) and dry regions are becoming
drier (decreasing storage), although the rate of change in all the regions is not statistically significant.
As GRACE follow-on data become available, the rate of change in storage over different basins using
data from longer time periods needs to be re-estimated to understand how storage is changing in
each basin.

For the PEV analysis, we used TWSA versus the anomaly of the hydrologic fluxes (derived
by subtracting the decadal median from the monthly estimates). For most basins, TWSA showed
a negative correlation with individual P because TWSA was found to be declining during April–August,
where the anomaly P was positive and dominant. This finding is counterintuitive because we would
expect water available from precipitation to result in immediate increase in storage. However, in most
regions, there was considerable lag between precipitation occurrence and its response to storage.

The PEV was identified based on step-wise regression and partial regression coefficients of the
fluxes in the best fit models. The variable with highest partial regression coefficients (also the variable
with highest correlation with the GRACE variable) was identified as the PEV. However, we found that
the results of the PEV analysis are subject to the selection of the fluxes being evaluated. For example,
the results (not shown) would be different if we used ∆S instead of TWSA as the dependent variable
and other fluxes in absolute magnitude (not anomalies), with ET switching with SM as the PEV for the
most regions. There is no right or wrong variable to use for this analysis. The primary explanatory
variables identified from TWSA and ∆S are equally relevant. The choice of fluxes to be used in this
analysis should be made based on the variable of interest (TWSA or ∆S) for the study. Such information
can be used to predict GRACE estimates during the data gap period between GRACE and GRACE
follow-on missions.

In this study, we compared different hydrological fluxes that are subject to some level of uncertainty.
Most of the uncertainties in the study can be attributed to the fluxes used. PRISM precipitation data used
in this study are the U.S. Department of Agriculture’s official climatological data and are considered to
be the highest quality gridded climate data available for the United States [44]. Similarly, the gridded
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runoff data obtained from the USGS are derived from observed gage data with minimal errors (less
than 10%) [45]. Hence, precipitation and runoff contribute the least to the overall uncertainty in
the regression model. Other fluxes used are subject to some degree of uncertainty. Uncertainty in
the evapotranspiration data used in this study was quantified to be < 20% at the basin scale [46].
Snow water equivalent (SWE) can introduce high uncertainty (up to 50%) in areas of high forested
basins due to masking of the microwave signal by vegetation [47]. However, the error would be low in
the arid to semi-arid basins and aquifers in the West, where dense vegetation is absent. Uncertainty in
the modeled soil moisture across CONUS has not been quantified thus far, but it is well known that
soil moisture uncertainty varies in space [48]. Similarly, uncertainties in GRACE TWSA estimates have
not been rigorously quantified and characterized. Hence, identification and interpretation of the PEV
of TWSA should be analyzed with caution. The results presented in this study are more reliable at
seasonal and temporal scales, where the impact of random errors is minimized. Improved data sets
will help reveal a more complete understanding of the interactions among the different water budget
components at finer spatiotemporal scales.

5. Conclusions

Storage is one of the key hydrologic parameters that can reduce the uncertainty in the estimation of
basin water availability. We analyzed GRACE basin TWSA for 18 HUC2 surface basins and 12 principal
aquifers in the CONUS over the period 2003–2016. Results indicate that basin storage change can be
substantial on annual and sub-annual time scales but insignificant at decadal time scales. This result
emphasizes the fact that storage is an important variable for hydrologic modeling and cannot be
assumed to be insignificant. The storage term obtained from GRACE should be considered wherever
necessary in hydrologic modeling studies conducted at annual or sub-annual time steps. Analysis of
periodicity of storage revealed that although basins showed prominent annual periodicity, some basins
showed sub-annual and multi-annual periodicities. GRACE data were also used to evaluate basin
storage turnover periods, and results indicated that basins within CONUS took 6–12 months to
complete a cycle. Soil moisture anomaly was found to be the primary explanatory variable for GRACE
TWSA. This result is in line with the findings by Reager and Famiglietti [1], who reported that basin
temperature and land cover (main drivers of soil moisture) are important factors controlling basin
storage. Rate of change analysis of storage revealed that dry regions are becoming drier (losing
storage) and wet regions are becoming wetter (gaining storage). Seven out of 18 basins showed
significant increases in storage and 3 basins (in the western United States) showed significant decreases
in storage. Within aquifer systems, the majority of aquifers in the CONUS were found to be stable,
with only two aquifers showing significant increases in storage (10 cm/year each) and two showing
significant decreases. Pixel-based analysis of rate of change revealed that the New England basin
and the North Atlantic Coastal Plain aquifer have the largest areas under positive change in storage.
Conversely, the largest areas under negative change were observed in the Lower Colorado and the
California basins.

The results from this study improve our understanding of storage in surface water basins
and principal aquifers of the CONUS and will aid in better management of these water resources.
In addition, this study will enable the prediction of future water storage using primary hydrologic
variables identified for each basin or aquifer. This statistical approach to prediction of basin storage
could offer a simple and alternative solution to fill data gaps between the current GRACE data and data
obtained from GRACE follow-on missions. While such simple models to predict storage time series
may not account for all of the complexities of basin hydrology, they offer a simple and first means for
prediction within the limits of stable ecosystems [1]. Further study will be directed toward improving
estimations of basin water availability in large basins using GRACE data and developing methods
to downscale storage for small basins (<200,000 km2) using other hydrologic fluxes and statistical
modeling techniques.
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Appendix A

Table A1. Analysis of TWSA lag against other hydrologic variables.

No Basin Name P-TWSA SM-TWSA Q-TWSA ET-TWSA SWE-TWSA

HUC2 Surface Basins

1 New England 5 1 −1 −4 2
2 Mid−Atlantic −6 1 0 −4 1
3 South Atlantic Gulf −5 1 0 −4 2
4 Great Lakes 1 4 2 −1 4
5 Ohio −2 1 0 −4 1
6 Tennessee −1 2 3 −3 4
7 Upper Mississippi −2 1 0 −3 3
8 Lower Mississippi −1 2 2 −3 −1
9 Souris−Red−Rainy −3 0 −1 −4 1

10 Missouri −1 2 −1 −2 4
11 Arkansas−White−Red −2 2 −1 −3 4
12 Texas−Gulf −3 2 1 −4 2
13 Rio Grande −4 2 −2 −4 2
14 Upper Colorado 6 1 −2 −3 3
15 Lower Colorado −5 1 1 −4 2
16 Great Basin 4 2 −1 −3 3
17 Pacific Northwest 4 2 −1 −3 4
18 California 3 1 0 −4 2

Aquifers

1 High Plains 3 1 0 −4 3
2 Colorado Plateaus −2 2 −2 −3 3

3 N Atlantic Coastal
Plain −1 2 −1 −3 2

4 Denver Basin −10 −10 −5 −9 −1
5 Central Valley −4 1 1 −4 5

6 Piedmont and Blue
Ridge −2 1 0 −4 3

7 Ozark Plateaus −4 1 0 −4 1

8 Mississippi River
Valley −4 2 −2 −2 2

9 Surficial −3 1 −2 −2 3

10 Texas Coastal
Uplands −1 1 −1 −3 2

11 Coastal Lowlands −2 2 −2 −3 2
12 Edwards−Trinity −4 1 0 −4 1

Note: Lag—storage lag in months. A negative lag of “n” months indicates that TWSA is reaching its peak “n”
months prior to the variable or (12-n) months after the variable reaches its peak. A positive lag of “n” indicates that
TWSA is reaching its peak “n” months after the variable reaches the peak; r indicates the correlation of TWSA and
variable at lag “n”. NA denotes that SWE volumes were low, and hence excluded from the computation of lags.
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