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Abstract: The critical role of water in enabling or constraining human well-being and socioeconomic
activities has led to an interest in quantitatively establishing the status of water (in)sufficiency over
space and time. Falkenmark introduced the first widely accepted measure of water status, the Water
Scarcity Index (WSI), which expressed the status of the availability of water resources in terms of
vulnerability, stress, and scarcity. Since then, numerous indicators have been introduced, but nearly
all adopt the same basic formulation; water status is a function of “available water” resource—by
the demand or use. However, the accurate assessment of “available water” is difficult, especially in
data-scarce regions, such as Africa. In this paper, therefore, we introduce a satellite-based Potential
Available Water Storage indicator, PAWS. The method integrates GRACE (Gravity Recovery and
Climate Experiment) satellite Total Water Storage (TWS) measurements with the Tropical Rainfall
Measuring Mission (TRMM) precipitation estimates between 2002 and 2016. First, we derived the
countries’ Internal Water Storage (IWS) using GRACE and TRMM precipitation data. Then, the IWS
was divided by the population density to derive the PAWS per capita. Following the Falkenmark
thresholds, 54% of countries are classified in the same water vulnerability status as the AQUASTAT
Internal Renewable Water Resources (IRWR) method. Of the remaining countries, PAWS index
leads to one or two categories shift (left or right) of water status. The PAWS index shows that 14%
(~160 million people) of Africa’s population currently live under water scarcity status. With respect
to future projections, PAWS index suggests that a 10% decrease in future water resources would affect
~37% of Africa’s 2025 population (~600 million people), and 57% for 2050 projections (~1.4-billion
people). The proposed approach largely overcomes the constraints related to the data needed to
rapidly and robustly estimate available water resources by incorporating all stocks of water within the
country, as well as underscores the recent water storage dynamics. However, the estimates obtained
concern potential available water resources, which may not be utilizable for practical, economic, and
technological issues.

Keywords: Africa; GRACE; TRMM; water resources; water scarcity

1. Introduction

Concerns regarding the effects of climate change and climate variability have combined with
greater awareness of the food-energy-water-nexus to intensify interest about the real and perceived
risk of water scarcity [1–3]. The term “water scarcity” is a relative concept defined as “a gap
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between available freshwater supply and demand under prevailing institutional arrangements and
infrastructural conditions” [4]. The water scarcity concept stretches on a continuum from water
abundance at one extreme through several intermediate conditions, such as water stress, to an absolute
lack of water at the opposite extreme. As noted by [1], understanding water scarcity is important
because “it affects the views of users and policymakers on the urgency to address the water crisis, as
well as their views on the most effective policies to address the water crisis” [1]. Today, scholars and
policymakers recognize that water scarcity is a multi-dimensional phenomenon that integrates aspects
of the physical availability of water, including its quality, status, as well as socio-cultural, economic,
political, and structural dimensions [5].

The original derivation of the concept, however, was based almost entirely on the physical
availability of water. In 1989, Falkenmark developed what became the first widely used indicator, the
water stress index (WSI; Equation (1)), by expressing the degree of water (in)sufficiency as the total
renewable water resources in a country (or drainage basin) divided by the total population.

WSI =
Renewable Water Resources

Population
(1)

Renewable water resources were denominated in flow units (where 1 flow unit = 1000 m3)
available to a country from all sources. The WSI established four thresholds or indicators of renewable
water resources vulnerability or stress (Table 1) [6].

Table 1. Thresholds/indicator for water stress index (WSI) adapted from [6].

Threshold (m3 per capita) Status

>1700 Occasional or local water stress (no stress)
1700–1000 Regular water stress (Vulnerable)
1000–500 Chronic water shortage (Stressed)
<500 Absolute water scarcity (Scarcity)

Almost from inception, the WSI experienced widespread use and acceptance due to its novelty,
simplicity, intuitiveness, as well as parsimonious input data requirements. Nevertheless, the index has
also been criticized on multiple fronts [1,7–9]. These criticisms inspired the development of numerous
other water resources vulnerability indicators (e.g., Table 2).

Table 2. Basic types of water scarcity and different introduced water stress indicators.

Water Scarcity Type Indicator Reference

Physical Water Scarcity

Falkenmark Indicator [10]
Water Resources Vulnerability Index [11]

Basic Human Water Requirement [12]
Water Resources Availability [13]

Watershed Sustainability Index [14]

Economical Water Scarcity
Physical Economic Water Scarcity [15]

Green-Blue Water Scarcity [16]
Water Scarcity Function of Water Footprint [17]

Social Water Scarcity
Social Water Stress Index [18]

Water Use Availability Ratio [19]
Local Relative Water Use and Reuse [20]

Technological Water Scarcity Water Poverty Index [21]
Water Supply Stress Index [22]

Despite considerable improvements, a cursory review shows that the majority of these indices
still require, and therefore suffer the limitations associated with, the assessment of “available water
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resources”. For example, most methods do not account for all forms of “available water”, notably, soil
moisture and groundwater due to lack of data [16,23].

To support a general framework and methodology for quantitatively measuring “available
water”, the Food and Agricultural Organization (FAO) established a global water information system
known as “AQUASTAT” to collect, analyze, and disseminate data and information by country.
According to AQUASTAT, a country’s (CTRY) total renewable water resources (TRWR) consist of the
renewable water resources generated within the country, plus the net difference between the internally
generated water resources leaving the country and the externally generated water resources entering
the country. Arithmetically,

TRWRnatural = IRWRCTRY + ERWRnatural (2)

where TRWRnatural : total renewable water resources; IRWRCTRY: internal renewable water resources,
and ERWRnatural: external renewable water resources. Details of the methodology, data requirements,
and underlying assumptions are contained in [24]. IRWR is calculated as,

IRWRCTRY = [R + I − (Qout−Qin)] (3)

where R: surface runoff calculated as the long-term average annual flow of surface water generated by
direct runoff from endogenous precipitation; I: groundwater recharge generated from precipitation
within the country; (Qout −Qin): the difference between base flow or groundwater contribution to
rivers and seepage from rivers into aquifers. Similarly, ERWR is calculated from [24] as,

ERWRnatural = SWIN + SWPR + SWPL + GWIN (4)

where SWIN: surface water entering the country; SWPR: the amount of water entering the country
through rivers measured at the border; SWPL: the portion of water in shared lakes belonging to the
country; GWIN: groundwater entering the country.

While this approach streamlined the process of determining water scarcity at country or basin
level, constraints related to data availability and reliability remain. Even for precipitation and stream
discharge, in-situ data may not be available, accessible (due to conflict or wars), or of acceptable
quality due to differences in standards and procedures, including, for example, how frequently critical
rating curve equations are updated. Additionally, many countries do not have reliable, temporally
continuous, and spatially representative groundwater monitoring programs. As a result, groundwater
is often ignored or assumed to be negligible even though it may account for as much as 70% of water
withdrawal and use, especially in the rural areas in developing countries [25]. Additionally, the IRWR
estimates are updated infrequently, possibly due to difficulties associated with data. For example, for
most countries in the database, IRWR has been fixed at 1962 estimates.

In this paper, therefore, we introduce the concept of Potential Available Water Storage (PAWS)
derived by integrating the monthly Total Water Storage (TWS) from GRACE (Gravity Recovery and
Climate Experiment) satellite data with Tropical Rainfall Measuring Mission (TRMM) precipitation
estimates. The proposed index is used to assess “potentially available water” resources for 48 African
countries. The proposed approach circumvents many of the limitations related to data unavailability
and reliability in data-scarce regions, such as Africa. In fact, Africa’s 2017 estimated population of
1.2 billion is projected to double by the year 2050 to 2.4 billion people. Such rapid population growth
will exert considerable stress on the continent’s available water resources, worsening the already
acute water scarcity situation [26]. Therefore, Africa can benefit from a methodology for rapidly and
reliably estimating the status of water resources vulnerability. Additionally, this study contributes
to expanding the range of applications and beneficial impacts of GRACE and the GRACE Follow-on
mission (GRACE-FO), as well as the global satellite gridded precipitation products, such as TRMM data.
It also represents a reliable methodology of water vulnerability assessment, especially to risky conflict
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zones and regions where hydrological observations are inaccessible. Finally, the proposed PAWS
index produces proxy estimates of the potentially available water resources, including groundwater
component in the study domain, which is especially valuable given the lack of groundwater monitoring
sites in many parts of the study area.

2. Materials and Methods

Despite the recent advances in satellite-based hydrological measurements (e.g., TRMM, Global
Precipitation Mission (GPM), Moderate Resolution Imaging Spectroradiometer-Evapotranspiration
(MODIS-ET)), blended and reanalysis grids (e.g., Global Precipitation Climatology Centre (GPCC),
Climatic Research Unit Time Series (CRU TS), National Centers for Environmental Prediction (NCEP),
Noah Land Surface Model (Noah LSM)), our understanding of the water balance for data-poor regions
remains limited. Satellite-based and gauge corrected hydrological grids provide a valuable data source
that fills the gaps of the in-situ observations over space and time. Table 3 summaries the data utilized
in this research; the temporal coverage of the data is between April 2002 to December 2016.

Table 3. Sources and information about the utilized data.

Data Type Source Size Reference Description

GRACE http://www2.csr.utexas.edu/grace/RL05_
mascons.html 1.0◦ [27] TWS anomaly

TRMM (3B42) https://pmm.nasa.gov/data-access/
downloads/trmm 0.25◦ [28] Satellite

precipitation

AQUASTAT http://www.fao.org/nr/water/aquastat/data/
query/index.html?lang=en Time series

CRU (TS v. 4.02) https://crudata.uea.ac.uk/cru/data/hrg/ 0.5◦ [29] Gridded
observation

Noah-LSM https://disc.gsfc.nasa.gov/datasets?
keywords=noah025&page=1 1.0◦ [30] LSM data

Groundwater BRAVE Project In-situ data
Lake level http://hydroweb.theia-land.fr/ [31] Time series

2.1. GRACE TWS Anomalies

Since it first launched in 2002, GRACE has provided unprecedented hydrological information
about the changes in water budget components [32,33]. GRACE sums the total variation in TWS
(i.e., the water mass contained in different hydrological reservoirs, including surface, soil moisture,
groundwater, and snowpack component [34–38] as,

∆TWS = ∆SW + ∆SM + ∆GW + ∆SN (5)

where SW: surface water, SM: soil moisture, GW: groundwater, and SN: snowpack. GRACE-derived
TWS may be considered analogous to the traditional water budget storage (∆S).

By removing the surface water and soil moisture components using either in-situ data, remote
sensing observations, or Land Surface Model (LSM) outputs, the GWS can be isolated [33,39] as,

∆GWS = ∆TWS− (∆SW + ∆SM) (6)

Besides, at the basin scale, solving the water balance equation can lead to isolating either the
runoff (river discharge) [32,40,41] or the evapotranspiration [42–45].

The spatial resolution of the GRACE data is around 300 km either using spherical harmonics
(SH) or Mass Concentration blocks (mascons) solutions. This is intrinsic to the data acquisition or the
original GRACE satellites footprint, ~200,000 km2 [46]. Generally, SH solutions are applicable to study
changes in TWS at basin scale [40,47,48] or areas greater than 4-degree resolution. In 2012, Landerer and
Swenson introduced a global gridded product of SH of 1-degree grid scale (~100 km) [34]. However,
the SH products are strongly affected by leakage and spurious noise known as north-south striping.

http://www2.csr.utexas.edu/grace/RL05_mascons.html
http://www2.csr.utexas.edu/grace/RL05_mascons.html
https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
https://crudata.uea.ac.uk/cru/data/hrg/
https://disc.gsfc.nasa.gov/datasets?keywords=noah025&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=noah025&page=1
http://hydroweb.theia-land.fr/
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The mascons, however, allow better estimation of the TWS anomaly by reducing these problems.
Historically, the mascon technique was first developed and applied by the gravity group at National
Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), (GSFC-M) [49,50].
In 2015, NASA Jet Propulsion Laboratory (JPL) introduced a new mascon product, JPL-M solutions,
which made available by [51]. The JPL-M solves the gravity field functions within a fixed mass block of
3 × 3-degree resolution [51]. In 2016, the Center for Space Research (CSR) at the University of Texas at
Austin introduced another mascons product, the CSR-M [27]. The CSR-M data were estimated using
the same standards as the preceding GRACE-SH [27]. However, CSR-M data have the advantage of
retaining location information that can be used in smaller areas (~100 km) [52], reducing residual noise
and minimizing spatial leakage error. The CSR-M based TWS data can be integrated directly without
applying any scaling factor. This research utilizes the CSR-M data at a 1-degree resolution to comply
with the original GRACE- footprint, and TWS data were extracted for Africa at the country level. The
CSR-M data can be accessed via http://www2.csr.utexas.edu/grace/RL05_mascons.html.

2.2. TRMM Precipitation Estimates

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission of NASA and the Japan
Aerospace Exploration Agency that began in January 1998. TRMM monthly precipitation observations
products are computed as quasi-global grids of 0.25◦ resolution combining microwave-IR-gauge
estimates of precipitation. The TRMM research product is recommended for global and regional water
balance studies and hydrological model simulation. In this research, we utilized the TRMM 3B42
research product. Precipitation data were co-registered to a fixed 1-degree resolution grid similar to
the aggregated CSR-M estimates. The TRMM data were sampled at the country level using individual
country shapefile.

2.3. Ancillary Data

Other ancillary data utilized include the four-soil moisture (SM) estimates, as well as the
canopy water content (CWC) from the Global Land Data Assimilation System (GLDAS) Noah-LSM.
Summing the average of SM and CWC estimates leads to calculate the Land Water Content (LWC)
required for GW storage estimation according to Equation (6). The LWC anomalies were constructed
using the same GRACE baseline by subtracting the averaged grids from January 2004 to December
2009 from all monthly grids. The GLDAS-Noah datasets are available at 1◦ resolution grids via
(https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=gldas%20noah). The data were
co-registered similar to GRACE grids. The IRWR data for Africa were acquired from the
AQUASTAT database at (http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en). The
lake level altimetry observations for four major African Lakes (Tana, Victoria, Malawi, and
Tanganyika) and two reservoirs (Volta and Nasser) were obtained from the HYDROWEB portal
(http://hydroweb.theia-land.fr/); noteworthy, these lake level altimetry observations have good
agreement with in-situ water levels observations according to [37,53]. Additionally, through
personal communications, we acquired the time series for the depth to groundwater for twenty
observational wells in North Ghana from December 2005 to December 2012. The groundwater data
were collected as part of project BRAVE (Building understanding of climate variability into the planning
of groundwater supplies from low storage aquifers in Africa), headed by the British Geological Survey
(BGS). Potential evapotranspiration (PET) estimates were acquired from the Climatic Research Unit
(CRU), at the University of East Angelia (UEA). CRU provides monthly reanalysis datasets calculated
at high-resolution (0.5◦ × 0.5◦) [29]; herein, we utilized the CRU version CRU (TS v. 4.02) for the
period from 2002 to 2016. CRU grids are available via (https://crudata.uea.ac.uk/cru/data/hrg/). The
annual average precipitation and PET data were utilized to calculate the aridity index (AI) according
to [54] approach (i.e., AI = P/PET). Countries are classified according to AI into hyper-arid; AI < 0.05,
arid; 0.05 < AI < 0.20, semi-arid; 0.20 < AI < 0.50, and humid; AI > 0.50 [54]. The AI was utilized to
understand the relationship between TWS uncertainties and countries’ aridity (see Section 3.2). Finally,

http://www2.csr.utexas.edu/grace/RL05_mascons.html
https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=gldas%20noah
http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en
http://hydroweb.theia-land.fr/
https://crudata.uea.ac.uk/cru/data/hrg/


Remote Sens. 2019, 11, 904 6 of 17

the current and future projections of population counts for 48 African countries were downloaded
via the World Bank portal at (https://data.worldbank.org/data-catalog/population-projection-tables).
Countries’ population densities were established as the population count per unit area.

2.4. PAWS Index

We argue that ∆TWS determined from Equation (5) is analogous to the change in storage (∆S)
calculated in classical water budget hydrology. As such, it can be used as a proxy to calculate a
country’s Internal Water Storage (IWS). The IWS accounts for the water availability in all forms within
a country’s borders (i.e., surface and groundwater storage). Conceptually, available water (or change
in storage) can be estimated as the net difference between inflows (from precipitation, surface, and
groundwater) and outflows (evapotranspiration losses, surface, and groundwater outflow) to the
hydrologic system [55]. In classical hydrology, this is expressed in terms of fluxes, that is, ∆S is obtained
as the residual between input and output or (I − O = ∆S), which can be rearranged as,

R + ET(out f low) = P− [∆S ≡ ∆TWS](in f low) (7)

where R: runoff; ET: evapotranspiration; P: precipitation; ∆S: the change in storage.
In contrast, the GRACE-based approach integrates all effects of fluxes and anthropogenic factors

within the system or study domain and estimates the available water as the net change in storage
(Figure 1).
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Figure 1. A conceptual framework to estimate the net water storage using flux budgeting (A) as the
difference between the input-output of the water in the system and Gravity Recovery and Climate
Experiment (GRACE)-based changes in water storage (B). TRWR: Total Renewable Water Resources;
Qin: inflow; Qb: baseflow; Qout: outflow; I: infiltration; Gin: groundwater-in; Gout: groundwater-out;
TWS: Total Water Storage; SN: Snowpack; SW: Surface Water; GW: Ground Water; SM: Soil Moisture.

Therefore, to calculate the potential available water storage per-capita (PAWS), first, we estimate
the ∆TWS between two consecutive months according to [43].

∆TWSi+1 = TWSi+1 − TWSi (8)

Because there generally exists a one-month lag between precipitation and TWS [56–58], the
monthly IWS per-country is determined as the difference between TRMM precipitation estimate of the
month(i) and the ∆TWS of the consecutive month(i + 1).

IWSi = Pi − ∆TWSi+1 (9)

https://data.worldbank.org/data-catalog/population-projection-tables


Remote Sens. 2019, 11, 904 7 of 17

where IWS is expressed in units of mm/month. Then, PAWS is obtained as the average monthly IWS
(m/yr.) divided by country population density (population count per unit area).

PAWS =
1
n
∑n=12

i=1 IWSCTRY

Population density
(10)

The PAWS unit is expressed as (m3/yr. per-capita).
We recognize that a degree of difference between IRWR and IWS is inevitable first as a result of

errors and uncertainties inherent in the data used to drive each index and second due to the differences
in the manner in which available water is conceptualized and calculated. We hypothesize, however,
that the two indices will mostly agree when available water per-capita is grouped into different
vulnerability classes using the established WSI threshold of Falkenmark (see Table 1). Section 3.2
highlights the differences between the IWS, IRWR, PAWS, and WSI.

2.5. Uncertainty Estimations

The uncertainty associated with each source of data used, that is, TRMM, ∆TWS, lake level
estimates, LSM, and the calculated IWS, was assessed according to [52]. Specifically, we applied an
additive model approach to decompose the total series (Stotal) into its main constituents as follows:

Stotal = Strend + Scycle + Sseasonal + Sresidual (11)

The standard deviation of the residual, (Sresidual), was treated as a measurement error associated
with each component. It is worth noting that the errors calculated in this manner may overestimate the
actual error because the residual may contain sub-seasonal scale signals [59].

2.6. TWS Trend Estimation

The TWS trend was estimated using non-parametric Mann-Kendall (MK) trend test [60]. MK
method is widely used for trend estimation [61], and the significance of the trend was tested using the
Sen’s slope method. The Mann-Kendall statistic (S) for a time series x1, x2, . . . , xn is calculated as,

S =
n−1∑
k=1

n∑
i=k+1

sgn(xi − xk) (12)

where Sgn(x1 − x2) =


+1, (x1 − x2) > 0
0, (x1 − x2) = 0
−1, (x1 − x2) < 0

(13)

The MK tests the presence and significance of a trend but not its magnitude. Therefore, we applied
Sen’s slope estimator, (Qi), to determine the magnitude of a trend in each xi with the statistically
significant trend. The test is calculated as,

Qi =
x j − xk

t j − tk
, i = 1, 2, . . . . . .N, j > k (14)

where x j and xk are as previously defined. The slope is measured at n points in the time series,
N = n(n− 1)/2, Qi is the median of these N values.

We accessed the Sen’s slope algorithm via CARN.R-project, the spatialEco package, for spatial
analysis and modeling utilities according to [62].
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3. Results and Discussion

3.1. Temporal and Spatial Patterns of ∆TWS

To explore the temporal variation of GRACE-TWS data, Figure 2 compares the monthly TWS
series against lake level altimetry observations. The results show the agreement, (R2), between TWS
and the lake level observations varying between 0.66 and 0.77, all strongly statistically significant
(p < 0.001). This agreement is noteworthy given the small size of the lakes relative to the GRACE
footprint. Other important characteristics of the observed lake level time series, such as trends (e.g.,
Lake Malawi and Lake Tanganyika) and abrupt shifts (e.g., Lake Victoria), are also accurately replicated
in TWS observations. On the other hand, the amplitudes are not consistently perfectly matched. This is
not surprising, given likely discrepancies between lake surface areas and the GRACE footprint, as well
as the fact that GRACE-TWS integrates all the changes in surface and groundwater storage changes, as
well as, the variation related to anthropogenic impact [59].Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 18 

 

 
Figure 2. Total Water Storage (TWS) trend across Africa between 2002 and 2016 derived using the 
Center for Space Research (CSR)-M data. The trend map shows a varying TWS across Africa with a 
remarkable decline in North Africa, Congo basin in the west, Lake Malawi, Limpopo river basin, and 
Madagascar in South Africa. There is a positive increase in TWS in the Sahel region in the west, 
Okavango river basin in the south, Lake Victoria, and Lake Tana. The TWS signals from CSR-M were 
compared with lake water level (LWL) observations across six major lakes. Noteworthy, the majority 
of the lakes have aerial coverage less than the original Gravity Recovery and Climate Experiment 
(GRACE) satellite footprint; however, there is good consistency between GRACE signals and lake 
level anomalies (p-value < 0.0001). The uncertainty bounds are computed for the TWS and LWL as 
introduced in Section 2.5. Additionally, groundwater storage estimates from GRACE, based on 
Equation (6), were compared to groundwater levels (meter below ground level-MBGL) that were 
averaged from 20 groundwater wells in North Ghana. The in-situ groundwater observation covers 
the period from December 2005 to December 2009. The GRACE-based groundwater observations 
show good agreement with the in-situ data (p-value < 0.0001).   

3.2. Comparison of IWS, IRWR, PAWS, and WSI  

Figure 3 plots the magnitude of uncertainties associated with ΔTWS (TWSA), IWS, and 
precipitation (Precip). The data have been arranged left to right by decreasing the country’s area 
(Figure 3A) and increasing the humidity levels according to AI (Figure 3B). The results show that the 
uncertainty in TWSA and IWS data lies within three averages: ±2 cm, ± 4cm, and ±6 cm, respectively 
(see different shades of red in Figure 3). Uncertainty in precipitation is low in all countries, (< ± 1 cm), 
except for Nigeria, Côte d’Ivoire, and Congo. Significantly, the uncertainty in all data sources 
increases in inverse proportion to country size (R2 = 0.23, p < 0.0001) and direct proportion with the 
countries’ aridity (R2 = 0.57, p < 0.0001). These findings are consistent with the result of other studies 
(e.g., [52]), who have also reported larger uncertainties as basin size decreases. Confounding the 
situation, however, is the fact that the magnitude of uncertainty in the arid zone countries, for 
example, Egypt, Libya, West Sahara, and Eritrea is also relatively smaller. Since some of the largest 
countries in Africa by area are also among the most arid, it is unclear how aridity and size affect 

Figure 2. Total Water Storage (TWS) trend across Africa between 2002 and 2016 derived using the
Center for Space Research (CSR)-M data. The trend map shows a varying TWS across Africa with
a remarkable decline in North Africa, Congo basin in the west, Lake Malawi, Limpopo river basin,
and Madagascar in South Africa. There is a positive increase in TWS in the Sahel region in the west,
Okavango river basin in the south, Lake Victoria, and Lake Tana. The TWS signals from CSR-M were
compared with lake water level (LWL) observations across six major lakes. Noteworthy, the majority
of the lakes have aerial coverage less than the original Gravity Recovery and Climate Experiment
(GRACE) satellite footprint; however, there is good consistency between GRACE signals and lake
level anomalies (p-value < 0.0001). The uncertainty bounds are computed for the TWS and LWL
as introduced in Section 2.5. Additionally, groundwater storage estimates from GRACE, based on
Equation (6), were compared to groundwater levels (meter below ground level-MBGL) that were
averaged from 20 groundwater wells in North Ghana. The in-situ groundwater observation covers the
period from December 2005 to December 2009. The GRACE-based groundwater observations show
good agreement with the in-situ data (p-value < 0.0001).
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Since GRACE cannot distinguish between anomalies resulting from the surface, soil moisture, or
groundwater storage, thus Noah-LSM outputs were used to remove surface and soil moisture storage
from GRACE-TWS following Equation (6). The temporal variation of GWS anomalies was compared to
in-situ observations to the depths to groundwater levels from twenty groundwater wells in Northern
Ghana (Figure 2, plot 7). The two series show good temporal consistency with an R2 value of 0.70
(p < 0.001), similar to the degree of agreement between TWS and lake level measurements.

Spatially, Figure 2 shows the TWS trend of evolution across Africa. Areas of significantly decreasing
trend in TWS anomalies are observed in the semiarid and arid regions of North Africa (i.e., Nubian
Aquifer and South Tunisia). A large southwest to the northeast oriented region of negative TWS
anomalies is extending from the Congo basin to South Sudan. Lake Malawi, Southern Mozambique,
and Limpopo river in Southern Africa are displaying negative TWS trend. On the contrary, areas
of significant positive TWS trend cover most of Sahel region in West Africa, a large southwest to
northeast oriented positive anomalies from Okavango river delta in the southwest, Lake Tanganyika,
Lake Victoria, and further northeast to Lake Tana. These observations in TWS trend across Africa
were confirmed as well by the temporal patterns from the lake observations. Furthermore, existing
studies have concluded similar observations of the TWS trends in Africa (i.e., [38,52,59,63]). However,
additional studies are needed to establish the cause(s), as well as associated impacts, of these temporal
and spatial patterns of TWS trends across Africa.

3.2. Comparison of IWS, IRWR, PAWS, and WSI

Figure 3 plots the magnitude of uncertainties associated with ∆TWS (TWSA), IWS, and precipitation
(Precip). The data have been arranged left to right by decreasing the country’s area (Figure 3A) and
increasing the humidity levels according to AI (Figure 3B). The results show that the uncertainty in
TWSA and IWS data lies within three averages: ±2 cm, ± 4 cm, and ±6 cm, respectively (see different
shades of red in Figure 3). Uncertainty in precipitation is low in all countries, (<± 1 cm), except for
Nigeria, Côte d’Ivoire, and Congo. Significantly, the uncertainty in all data sources increases in inverse
proportion to country size (R2 = 0.23, p < 0.0001) and direct proportion with the countries’ aridity
(R2 = 0.57, p < 0.0001). These findings are consistent with the result of other studies (e.g., [52]), who
have also reported larger uncertainties as basin size decreases. Confounding the situation, however, is
the fact that the magnitude of uncertainty in the arid zone countries, for example, Egypt, Libya, West
Sahara, and Eritrea is also relatively smaller. Since some of the largest countries in Africa by area are
also among the most arid, it is unclear how aridity and size affect uncertainty. This is an important area
of further research because the results may have implications on the calculations and interpretation of
water vulnerability and scarcity using GRACE data.

Figure 4A compares the GRACE-estimated IWS to the AQUASTAT-IRWR data by country. The
result shows three sets of observations: 1—a good agreement between the calculated IWS and the
IRWR in twenty-three countries with (p < 0.0001), 2—overestimation of IWS relative to the IRWR in
thirteen countries and finally underestimation between the IWS compared to the IRWR in twelve
countries. Spatially, most of the countries, where IWS ‘overestimates’ relative to IRWR, are in arid areas
(e.g., Libya, Niger, Kenya, Somali, Namibia) (Figure 4B). We hypothesize that this result likely indicates
that IWS includes additional groundwater resources within these countries that are not included in
IRWR. Conversely, the countries, where IWS ‘underestimates’, generally have very large populations
demanding more water resources (e.g., Egypt, Nigeria, Congo). These observations underscore the
contribution of the IWS to update the water resources status of each African country. The countries’
water scarcity classification based on the PAWS indicator shows that 27 countries follow similar pattern
compared to the WSI index (Figure 4C).
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Figure 4. Estimated countries’ Internal Water Storage (IWS) versus the AQUASTAT- Internal Renewable
Water Resources (IRWR) (A), this plot indicates the three main classes of the estimation (agreed,
overestimate, and underestimate), the spatial distribution of these classes is shown in the map (B).
Based on the calculated IWS, the Potential Available Water Storage (PAWS) will follow the same pattern
when compared to Water Scarcity Index (WSI) indicator (C).

Figure 5 shows the status of water availability in Africa by country based on the WSI (Figure 5A)
and PAWS (Figure 5B). Both plots utilize the same water vulnerability thresholds (Table 1). The results
show that both the WSI and PAWS classify twenty-six countries (54%) into the same water vulnerability
class (Figure 5C). Much of this agreement is driven by the countries classified as experiencing ‘no
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stress’, out of which eighteen (69%) are classified similarly. Of the remaining, one country (Tanzania) is
classified by both PWAS and WSI as “vulnerable”, three countries are classified as stressed (Eretria,
Malawi, and South Africa), and four are classified as scarce in both indices (Egypt, Tunisia, Rwanda, and
Burundi). In twenty-two countries (45%), however, the two indices lead to a different water vulnerability
status. For instance, the PAWS index leveled up twelve countries in their water vulnerability status,
while ten countries were leveled down compared to WSI indicator (see Figure 5).Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 18 
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Figure 5. Water Stress Index based on the current AQUASTAT water storage data (A), and the new
proposed Potential Available Water Storage (PAWS) from Gravity Recovery and Climate Experiment
(GRACE) data (B) using the average Internal Water Storage (IWS) from 2002 to 2016. The plot (C) shows
the changes in the IWS for 26 countries between 2002 and 2016 that are agreed on the water status
level, (“no stress” 18 countries, “vulnerable” one country, “Stressed” three countries, and “Scarce”
four countries).

The above patterns reveal important differences between PAWS and WSI. For example, considering
both the scarcity and stressed categories, the agreement in the countries classified similarly is 54%,
implying that the methods agree more than they disagree. Based on the water vulnerability levels, the
PAWS index revealed that about 14% of the African population, ~160 million people, currently live
under a water scarcity status. Meanwhile, according to WSI, about 20% of the African population,
~250 million people, currently live under water scarcity conditions. Research is needed to clarify
areas of disagreement in water vulnerability status classification between the proposed PAWS and
existing methods based on conventional data. Meanwhile, the differences are mainly attributed to the
dynamic changes recorded by GRACE-based IWS between 2002 and 2016 (Figure 5C). Moreover, the
apparent high level of agreement in the countries classified as ‘no-stress’ may simply be due to the
fact that this category is large and unbounded on the upper end, allowing many more countries to
be grouped together. As noted previously, these differences are not surprising. The PAWS estimate
accounts for all forms of water, including soil moisture and groundwater in deep aquifers, while WSI
relies overwhelmingly on the portion of water influx within the system. The WSI likely underestimates,
especially, the groundwater component due to poor data availability and quality. Furthermore, the
runoff and flow measurements are highly susceptible to measurement and calibration errors. In contrast,
not all of the water available in storage as measured by PAWS is extractable for technical and economic
reasons. Therefore, the method likely overestimates real or useable available water. Further research is
also required to reconcile these inconsistencies to facilitate decision making and planning regarding
the water vulnerability status of African countries.

The PAWS index has utilized to develop the first-order estimates of possible water scarcity levels
due to projected climate change and population growth in Africa. A 10% decrease in future water
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resources, which is within the range of several climate projections for some countries [64], is developed
for future population growth of years 2025 and 2050. Figure 6 shows that total water resources
availability in the year 2025 leads to ~100% increase in the number of countries experiencing water
scarcity, from five to ten countries. This implies that ~37% or ~600 million people of Africa’s population
would be affected. Meanwhile, the number of countries under scarcity condition increased ~280% for
the year 2050, from five to nineteen countries. This means that ~57% of Africa’s population or about
1.4-billion people will deal with the extreme water crisis. Within the water scarcity continuum, for
2025, the number of countries experiencing water stress decreases from twelve to nine, while, thirteen
are classified as vulnerable. Interestingly, the 2025 projections reveal that seventeen countries which
are currently classified as “no stress” still lie under the same water scarcity category. The projections
for the year 2050 show that the total number of countries experiencing “no stress” status is declined
significantly from seventeen to seven countries, meaning that ~85% of Africa will face a dangerous
water scarcity situation by 2050.
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These future scenarios present a sobering picture of the precarious situation of water availability
in Africa given rapid population growth. Fortunately, it is highly unlikely that the entire continent will
experience a 10% decrease in water resources availability everywhere. Even so, for some countries, one
or more of these scenarios are within the range of past experience. For example, the peak of the Sahel
droughts of 1970 to 1985, precipitation decreased by 30% [65,66], suggesting that such a magnitude of
change is possible again at some point in the future. Moreover, a number of climate change projection
scenarios suggest a decrease in precipitation over Northern Africa and the Western parts of Africa [67],
while the Eastern and Southern Africa are highly likely to experience increase precipitation by the end
of the 21st century [68,69].

4. Conclusions

Availability of freshwater resources is critical for assuring human wellbeing, socio-economic
development, and food security. This pivotal and ubiquitous role leads to great interest in determining
as accurately as possible the status of freshwater resources availability as a basis for developing policies
for planning and water resources utilization or allocation. Currently, the most widely used method of
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obtaining this information relies on the measurements of the fluxes of water entering and exiting a
country. Unfortunately, the requisite data tends to be unavailable, discontinuous over space and time,
inaccessible for reasons of conflict or political decisions, and frequently collected by different agencies
using different references periods and standards.

In this paper, we demonstrated the use of GRACE anomalies and TRMM precipitation estimates
for calculating available renewable water resources for Africa. The proposed approach overcomes
many of the limitations identified above. The data are accessible, continuous over space and time, and
collected based on a consistent methodology and reference period. Even so, the method is not without
limitations. Critically, it estimates potential available fresh water only in a hydrologic or physical sense.
That is, it does not address the political and power relations that make water actually available or
accessible. Additionally, the method as presented deals with water scarcity at the country level, an
often-cited criticism of many existing methods. While the methodology is perfectly capable of being
applied at finer temporal, political, and geographic units, we elected to focus on the country level
because of the availability of the AQUASTAT-IRWR data against which we have compared our results.
The major findings can be summarized as follows:

1. Estimates of TWS derived from GRACE appear to be affected by country size and aridity. The
magnitude of uncertainty associated with input data increases as the country size decreases.
However, the relationship is complicated by the fact that many of Africa’s largest countries inhabit
the most arid zones. Either factor has a physical basis. Confidence in GRACE estimates decreases
as the study domain shrinks to below 200,000 km2, generally accepted as the GRACE footprint.
Similarly, the small range of variability in available water typical in arid regions leads to smaller
uncertainty in estimated TWS. Further research is needed to establish the relative effects of scale
and aridity on GRACE anomalies.

2. With the above caveat in mind, the PAWS approach classifies 26 out of 48 countries in the same
water vulnerable category as AQUASTAT-IRWR. Of the remaining countries, a strong majority was
classified in the adjoining or bordering category, suggesting that the hard thresholds contribute to
some of the differences in classification. On the other hand, much of the agreement between the
two methods is driven by the large no stress category, which acts as a sort of catchall group. This
suggests, perhaps not unexpectedly, that the differences between the two methods are accentuated
when using small ranges for categorization. Clearly, however, there are fundamental differences
between WSI and PAWS, which reflect how available water is conceptualized and calculated.

3. Compared to the IRWR, PAWS results in a more moderate assessment of water resources scarcity
in the arid areas. This is not surprising, given the spatial continuity of the PAWS estimates
compared to the country averaged-IRWR. Additionally, we suspect that PAWS index integrates a
larger proportion of groundwater, accounting for the difference.

4. The PAWS can be used to rapidly develop first estimates or scenarios of possible water scarcity
due to climate change and population growth. A 10% decrease in future water resources, which is
within the range of several climate projections for some countries, may entail a significant increase
in the number of additional countries facing water scarcity. Preliminary analysis suggests that it
is possible to partition GRACE signals to yield proxy estimates of groundwater measurements,
although more data are needed in different climatic zones in order to develop robust calibration.
Additional research is needed to expand and validate the promise shown by these preliminary
estimates, including, for example, the ability to partition GRACE signals to derive proxies for
groundwater level dynamics and to investigate water scarcity at finer spatial and temporal
time scales.
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