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Abstract: Time-series of imagery acquired by the Moderate Resolution Imaging Spectroradiometer
(MODIS) has previously been used to estimate woody and herbaceous vegetation cover in savannas.
However, this is challenging due to the mixture of woody and herbaceous plant functional types
with specific contributions to the phenological signal and variations in soil background reflectance
signatures observed from satellite. These factors cause variations in the accuracy and precision of
woody cover estimates from different modelling approaches and datasets. Here, woody cover is
estimated over Kruger National Park (KNP) from the MODIS 16-day composite time-series data
using dry season NDVI/SAVI images and applying NDVIsoil determination methods. The woody
cover estimates when NDVIsoil was ignored had R2 = 0.40, p < 0.01, slope = 1.01, RMSE (root mean
square error) = 15.26% and R2 = 0.32, p < 0.03, slope = 0.79, RMSE = 16.39% for NDVIpixel and
SAVIpixel, respectively, when compared to field plot data of plant functional type fractional cover.
The woody cover estimated from the soil determination methods had a slope closer to 1 for both
NDVI and SAVI but also a slightly higher RMSE. For a soil-invariant method, RMSE = 19.04% and
RMSE = 17.34% were observed for NDVI and SAVI respectively, while for a soil-variant method,
RMSE = 18.28% and RMSE = 19.17% were found for NDVI and SAVI. The woody cover estimated from
all models had a high correlation and significant relationship with LiDAR/SAR based estimates and a
woody cover map produced by Bucini. Woody cover maps are required for vegetation succession
monitoring, grazing impact assessment, climate change mitigation and adaptation research and
dynamic vegetation model validation.
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1. Introduction

Several vegetation indices such as Leaf Area Index (LAI), normalised difference vegetation index
(NDVI) and others, as well as biophysical parameters such as canopy height and aboveground biomass
(AGB) have previously been used for mapping woody plant abundance [1–3]. This is because woody
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fractional cover is needed as an input to many ecological models for the assessment of fire, deforestation,
degradation, urban expansion and hydrological dynamics [4–11]. Changes in woody cover can have
profound effects and unforeseen consequences for ecosystems functioning [12,13]. Information on
woody fractional cover provides immense benefit to ecological modelling and helps in understanding
ecosystem function in savannas [14,15], but spatially explicit information on woody fractional cover
is difficult to obtain [7,16,17]. A proper understanding of vegetation structure and phenological
characteristics is a key requirement for measuring woody cover [12].

Satellite remote sensing provides an indirect measurement of vegetation indices (e.g., NDVI)
and biophysical parameters (e.g., LAI, fAPAR, AGB and fractional vegetation cover [FVC]) [18–20].
Studies on woody cover estimation have been published previously [7,21–23], but the accuracy and
precision of woody fractional cover estimates vary with modelling approach, used datasets and
ecosystems [1,21,24]. Although estimates of land cover types using remote sensing data have an
associated error and uncertainty of unknown magnitude, the estimate of woody fractional cover is
very challenging, particularly in savannas. This is because savanna vegetation is not discrete but rather
a continuum of a varying mixture of tree and grass plant functional types (PFTs), which can show
clumping or patchiness at certain scales.

The existing vegetation continuous fields (VCF) product from MODIS does not accurately measure
woody fractional cover, especially for open forests [10,21]. White et al. [25] assessed MODIS VCF
products in the Western USA, a region spanning semi-arid deserts, sparse dry woodlands, and cool
mesic upland forests by using two independent ground-based tree cover databases. They reported
an underestimation of low tree cover and overestimation of dense canopies in the MODIS product.
An overall root mean squared error (RMSE) of 24% and 31% was found when comparing the MODIS
retrievals with ground-based Forest Inventory and Analysis (FIA) data (1176 field plots) and Southwest
Regional GAP (SWReGAP) datasets (2778 field plots). RMSE indicated a more positive values at > 10%
cover than 15% for FIA and 12% for SWReGAP. At canopy cover >60%, the error is high (49% for FIA
and 44% for SWReGAP).

Ibrahim et al. [26] estimated the fractional cover of PFTs in Kruger National Park (KNP) from
MODIS NDVI time series using harmonic analysis. In that study, harmonic analysis was used to
decompose the time series signal into amplitude, cycles, and phase. The field plot estimates of tree
cover showed a significant correlation with the amplitude (r = −0.59, p = 0.001), phase of the first
harmonic term (r = −0.73, p = 0.0001) and the number of cycles of the second harmonic term (r = 0. 56,
p = 0.002). The tree cover estimated from the phase of the strongest harmonic term showed a strong
linear relationship with field-measured tree cover (R2 = 0.55, p < 0.01, slope = 0.93, RMSE = 13.26%).
Ibrahim et al. [26] emphasized the importance of the phase of the significant harmonic terms for tree
cover estimation. In constrast, here the MODIS NDVI data are not decomposed using harmonic analysis,
but instead the impact of using a soil database for accounting for the variation of soil reflectance in
the NDVI calculation for woody cover estimation in KNP is assessed. We chose KNP because it is
dominated by savannah ecosystems (e.g., Skukuza thickets, open trees, dense trees, and bush savanna).
The plot data we collected from the KNP span different vegetation types, geological conditions, and
soil types and cover a gradient of woody/herbaceous mixtures that is very distinct in terms of structure,
type, density, and distribution [26–30].

Many studies have applied soil-variant and invariant approaches (with respect to spatial variability
of soil backgrounds in the NDVI) to estimate fractional vegetation cover [31–33]. Zeng et al. [34]
combined the International Geosphere-Biosphere Program (IGBP) land cover classification with 1 km
NOAA AVHRR NDVI data and employed the fifth percentile of the histogram of the maximum
NDVI for the barren or sparsely vegetated category as the NDVIsoil to calculate global FVC. Zeng’s
method assumed that NDVIsoil is invariant. Wu et al. [35] combined the Harmonized World Soil
Database (HWSD) and annual minimum NDVI to calculate NDVIsoil for different soil types and then
estimated global FVC. Wu’s et al. [35] method considers spatial variability of soil background. The
HWSD provides global soil types with a spatial resolution of 1 km. Ding et al. [36] investigated the
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influence of variations of NDVIsoil derived from FVC estimation using these two approaches proposed
by Wu et al. [35] and Zeng’s et al. [34]. However, Ding’s [36] methods used 564 reflectance spectra
of soils collected in Northeast China. Validation results indicated that this approach that considered
the spatial variability of soil background yields better estimates of FVC than using a soil-invariant
NDVIsoil value. The accuracy increases from RMSE = 7% to 10% [36]. The soil-variant method is more
robust when ground measurements of soil reflectance are available than using the soil database to
determine the NDVIsoil, but it is unclear whether ignoring NDVIsoil in the absence of field spectral
measurements yields higher errors than considering it using a global soil database like HWSD. This is
especially true for small areas with less soil variation and low NDVI (e.g., savanna) as the uncertainty
in determining the NDVIsoil is higher in areas of low vegetation [36].

In this study, we investigate different approaches for accounting for the spatial variation of soil
spectral signatures in estimating woody cover in African savanna using MODIS data. Specifically, the
study (1) evaluates the accuracy of woody cover estimation using different regression models without
accounting for soil background; (2) investigates whether accounting for NDVIsoil obtained from a soil
database reduces the woody cover prediction error; and (3) compares the estimated woody cover maps
with other existing satellite-derived woody cover products.

2. Materials and Methods

2.1. The Study Area

Kruger National Park (KNP) is South Africa’s largest nature reserve covering approximately
2,000,000 hectares. It extends 380 km from north to south and 60 km from east to west (Figure 1). Its
elevation ranges from 260 m to 839 m above mean sea level. The mean annual rainfall ranges from
440 mm in the north to 750 mm in the south. Figure 1 shows the mean annual rainfall for the year 2002
to 2015 for the three weather stations in the area.
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Figure 1. Location of the study area of Kruger National Park (KNP) (Southern part) in South Africa
and its main river courses, indicating the locations of the sample plots of the field data collection in
2015. Blue circles indicate the field plot locations. The red points indicate the mean annual rainfall for
the year 2002 to 2015 (14 years) of three stations in KNP.
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The area is divided into two main geological zones. The western part is situated on granite and
the east on basaltic bedrocks [26–30]. Geological bedrock influences soil formation processes, and
indirectly plant species and abundance distribution, and ecological processes [30]. KNP has diverse
vegetation types (more than 1900 plant species) including woody and herbaceous plant functional
types [27]. Figure 2 shows the soil types in KNP and the main soil types in the field plot areas based on
the soil database by the International Union of Soil Sciences (IUSS), the United Nations Environment
Programme, the FAO, and the International Soil Reference and Information Centre (ISRIC) [37].
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The park has been classified into landscapes (e.g., Skukuza thickets, open trees, dense trees, and
bush savanna) based on geomorphology, climate, soil and vegetation pattern [27–29]. The major
woody species in the southern part include Combretum apiculatum, Acacia nigrescens, Spirostachys africana,
Combretum hereroense, Sclerocarya birrea, Terminalia sericea, Combretum zeyheri, while the drier northern
part is dominated by Colophospermum mopane (mopane) savanna.

2.2. Data

2.2.1. Field Data

Percent woody, herbaceous and bare soil cover were estimated for 25 field plots in the KNP during
a field campaign carried out in March 2015 at the end of growing season. An ocular method proposed
by Law et al. [38] was adopted for the estimation of percent cover for four structural vegetation types
and bare soil within the plots (trees > 6 m, tree and shrubs 1–6 m, forbs and grasses) located along
the road from Skukuza to Tshokwane (Figure 1). Three additional plots were added based on visual
interpretation of Google Earth images to incorporate areas with denser tree cover than what was
sampled in the field. The Google Earth imagery was acquired in May 2015. However, despite the
two months difference between the field data and the Google Earth imagery, we assumed that woody
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phenology does not vary much within this period. Previous studies found that woody phenology is
more stable over time than herbaceous phenology [28]. The field survey has considered the MODIS
satellite pixel size (250 m × 250 m) by a sampling plot almost equal to the size (200 m × 200 m) of the
pixel. Our observations in the field helped us to understand that vegetation cover does not vary that
much over that spatial distance. The uncertainty is considered minimal. The 28 plots were placed in
different vegetation types, geological conditions and soil types. Some of the tree species found in these
plots include Combretum zeyheri/apiculatum (e.g., plot 14, 10, 4), Dichrostachys cinerea, Sclerocarya birrea,
Terminalia sericea (e.g., plot 28), Acacia gradicortuna (e.g., plots 17, 25, and 19), Combretum hereroense
(e.g., plot 19) and Albizia harveyi (e.g., plot 9). A detailed description of the field data can be found in
Ibrahim et al. [26].

2.2.2. MODIS NDVI Data

MODIS NDVI data (MOD13Q1) were obtained from the National Aeronautics and Space
Administration (NASA) via https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl. MOD13Q1 is
a gridded level 3 product provided at 250 m spatial resolution every 16 days produced from
atmospherically corrected bi-directional surface reflectance factors (BRFs) and masked for water,
clouds, and cloud shadows [39,40]. A previous study developed a method based on MODIS Ross-Thick
and Li-Sparse kernels to estimates of BRDF effects in NOAA-AVHRR NDVI time series. The results
indicated that, in most cases, the uncorrected NDVI time series do not reflect actual seasonal and
interannual variation in vegetation greenness. It was found out that the techniques reduce BRDF
effects in AVHRR NDVI observations by about 50% to 85% [41]. MODIS NDVI has been used
widely for retrieving vegetation composition such as vegetation structure and annual net primary
productivity (ANPP) dynamics in grassland-shrub land areas [42], tree cover change [2], tree-grass
separation/green-up dates [28], for monitoring vegetation and land use dynamics [43,44] and for
the analysis of trends to assess the CO2 fertilization effect on vegetation [45]. NDVI has also been
used to examine the relationship between vegetation productivity and rainfall distribution along
environmental gradients [43,44]. Chamaille-Jammes and Fritz [44] investigated the relationships
between precipitation and primary production along a precipitation gradient. The variability of both
precipitation and primary production was measured as interannual coefficient of variations (CVs),
which decreased with increasing mean annual precipitation (MAP) (respectively F(1, 31) = 21,88,
p, 0.0001 and F(1, 31) = 12.28, p 0.0014). The CV of annual NDVI was positively correlated with the
CV of precipitation (F (1, 31) = 35.480, p, 0.0001). The study affirmed the finding of study that the
sensitivity of NDVI to precipitation decreases with increasing MAP. NDVI is used here as the proxy of
vegetation cover as numerous studies have identified a strong relationship between the NDVI and
NPP [46–48]. Prince and Goward [46] designed a Global Production Efficiency Model based on the
production efficiency concept. The model relies on variables (e.g., NDVI, temperature, etc.) that can be
remotely sensed at global scale. It is mechanistic and does not require a correlation between NDVI and
primary productivity. Moreno-de las Heras et al. [42] found the strong relationships between field net
primary production (ANPP) and the annual integrals (per growing cycle) of herbaceous (R2 = 0.67,
p < 0.001) and shrub (R2 = 0.65, p < 0.001) NDVI components. Zhu and Southworth [47] predicted
NPP from the GIMMS3g NDVI data and correlated it with annual MODIS NPP stratified by savannah
type. Highly significant linear correlations were found for tree savanna, bush savanna, and grassland
savanna with correlation coefficients of 0.77, 0.74, and 0.80, respectively.

2.2.3. MODIS SAVI Data

The Soil Adjusted Vegetation Index (SAVI) was developed specifically to minimize soil brightness
effects on vegetation indices derived from red and near-infrared (NIR) wavelengths [49]. In this
study, NDVI and SAVI vegetation indices were derived from MODIS images for the period 12 July to
29 August 2014 (before the start of season) and 9 May to 26 June 2015 after the end of season. This
season is best for modelling woody cover using passive optical data in savannah [50,51] because the
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remote sensing data for the beginning of the dry season provide the best discrimination of green woody
canopies from the senesced grass layer [50,51]. The SAVI index was calculated as follows:

SAVI= (NIR − R)/(NIR + R+ L) ∗ (0.5 + L), (1)

where the NIR is the near-infrared band, R is the red band and L stands for a soil correction factor
(ranges from 0 to 1). L = 0.5 was used in this study as it has been recommended for savanna ecosystems
by previous study [52].

2.2.4. MODIS Vegetation Continuous Field (VCF)

MODIS VCF is an Earth observation product describing percent tree cover, percent non-tree
vegetation (mostly herbaceous) and percent bare surface and is provided globally at 250 m resolution
by NASA, from the Land Processes Distribution Active Archive Centre (LP DAAC) available at
http://e4ftl01.cr.usgs.gov/MOLT/. It is called MOD44B as a standard MODIS product [53,54]. The
collection 5 of this product (version 0051) was used in this study, being the most recent version of this
dataset at the time of writing the manuscript. Specifically, MODIS VCF for the years 2008 and 2014
were used in this study for validation and comparison purposes.

2.2.5. Validation Datasets

Two woody cover map of KNP were used as independent validation dataset. A 2010 woody cover
map was produced using 14 dual-polarized (HV, HH) 12.5 m L-band ALOS PALSAR images trained
with a random forest algorithm and 25,000 ha of airborne LiDAR data [55]. The L-band Synthetic
Aperture Radar (SAR) data was shown to produce higher accuracy woody cover products compared
to C- and X-band data in southern African savannas [56]. The LiDAR data were acquired in April 2008
(end of wet season) when woody plants were leaf-on, and the SAR images in July–August 2008 (dry
season, leaf-off) to avoid soil moisture effects on the radar signal [56]. This was shown to be the best
season to model woody cover in the region with SAR data [6,57]. Woody plants of at least 1 m canopy
height were included. For details of the LiDAR and SAR datasets, see [56]. Validation of the SAR-map
with independent LiDAR data produced an R2 = 0.8 and RMSE = 7.7% [56]. The 12.5 m LiDAR/SAR
product was resampled to the 250 m MODIS resolution. In addition, the Bucini’s woody cover map
was provided by Scientific Services (GIS unit) of SANParks [50,51]. The map was modelled through
multiple regression techniques using a combination of optical Landsat ETM+ data, JERS-1 SAR scenes
(L-band, HH polarization), and field plots of woody cover. The best predictive model was selected
based on the Akaike information criterion [50,51], and the 90 m pixel size map represented woody
cover conditions for the years around 2000.

2.3. Woody Cover Estimation

The data sets, approaches and the processing procedure implemented for the estimation of woody
cover are summarized in Figure 3. The reference plot data from the field were used to extract the
MODIS data (NDVIpixel and SAVIpixel). The NDVIpixel and SAVIpixel and invariant and variant NDVI
and SAVI generated from the original data were used for model calibration using regression models.
Woody cover was then extrapolated using the regression equations. The woody cover estimates were
validated using the half of field data on woody cover. We validated the LiDAR/SAR, Bucini, and
MODIS VCF products using our field data. We compared our estimates of woody cover with the
LiDAR/SAR, Bucini, and MODIS VCF products (Figure 2). All statistical analyses were carried out in R.
Detailed explanation on methods is given in the following sections.

http://e4ftl01.cr.usgs.gov/MOLT/
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2.3.1. Woody Cover Estimate Using NDVIpixel and SAVIpixel

The mean NDVI and SAVI over the dry period were calculated and taken as woody (NDVIpixel

and SAVIpixel). In this ecosystem, woody species have two growing cycles at the time when the
herbaceous layer is dormant. Grass usually dries up before the woody species lose their leaves in
autumn so that two short periods with dry grass and a green woody canopy exist (before and after the
wet seasons). These periods occur before and after the wet season or in autumn and spring (April–May,
and October–November, respectively). The wet season starts from October and ends in April. This
is considered useful in capturing the phenology of woody plants. Some woody species fully green
up before the first significant rains (e.g., Sclerocarya birrea, Acacia nigrescens). Woody species in KNP
usually take eight weeks to reach full leaf flush from the woody leaf-out onset. However, some woody
species such as Combretum apiculatum are usually late in their leaf flush but take shorter periods to
develop full leaf cover than early leaf flushers [28]. To reduce an overlap of woody and herbaceous
phenology occurring probably due to a delayed start or end of season, the images chosen were for the
months of July and August (12 July to 29 August 2014) before the start of season and May and June
(09 May to 26 June 2015) after the end of season.

The assumption we make is that the influence of bare soil on the NDVI is minimal over a small area.
The soil correction factor usually applied to derive SAVI reduces the influence of bare soil. Although
both vegetation indices are sensitive to fractional vegetation cover, they are also sensitive to the soil
background [4,36]. While the SAVI approach is subject to some uncertainty in woody cover estimation,
the effects of soil reflectance due the nature of soil type characteristics (e.g., such as soil brightness,
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moisture) is likely to be negligible because of the small spatial scale being considered [58]. In addition,
the soil background reflectance values are lower than the canopy reflectance due to high albedo in the
tropics [33]. Jiang et al. [51] found out that the nonlinearity of NDVI over partially vegetated surfaces
is more prominent with darker soil backgrounds and shadow [59].

The aim of this study is to establish the fundamental relationships between NDVIpixel, SAVIpixel

and field data on woody cover to develop a calibration technique to assess the extent to which such
relationships are able to estimate woody cover. Both linear and nonlinear regression analyses methods
have been used for data calibration as the relationship between NDVI and measurements of canopy
structures vary with vegetation types and seasonality [60].

2.3.2. Woody Cover Estimation Using NDVIsoil Determination Methods

In this method, it is first assumed that each pixel consists of three fractional covers: woody cover
(T), bare soil cover (S), and grass cover (G). In savannas, during the dry season, most of the non-woody
fraction is occupied by bare soil or dry grass while, in the wet season, green grass fractional cover makes
up most of the contribution [28,61]. In the dry season, the grass layer becomes non-photosynthetic and
dries up. The green grass layer (fraction of photosynthetically active vegetation) decreases from 85%
to 8% while the fraction of non-photosynthetic vegetation of the same layer increases from 7% to 79%
between the beginning and end of dry season [62]. Furthermore, an investigation using field reflectance
measurements of bare soil, grass and woody indicated that dry grass had the lowest NDVI [62]. Hence,
in this study, the non-photosynthetic grass layer was merged with bare soil. NDVIpixel was attributed
to only woody and bare soil as expressed in Equation (2). The same was applied to SAVIpixel:

NDVI ∗ f_t + NDVIsoil ∗ (f_s + f_g) = NDVIpixel, (2)

where f_t is tree percent cover, f_s is fractional cover of bare soil, f_g is grass percent cover and
NDVIpixel is the mean dry season NDVI from the MODIS data.

This means that the influence of bare soil in the vegetation index does not usually allow spectral
signals of vegetation to vary. To indicate the spatial variability of PFTs, the contribution of bare soil
should be accounted for. Different techniques of vegetation fractional cover estimation have previously
been proposed, which account for bare soil contribution. Some of these techniques are invariant to soil
types and characteristics [31–33]. These methods rely upon the assumption that pixels with FVC = 1
and 0 exist in an image. These are described by NDVIveg and NDVIsoil for maximum vegetation and
bare soil, respectively. Hence, FVC is calculated as [63]:

FVC =
NDVIpixel−NDVIsoil
NDVIveg−NDVIsoil

. (3)

Gutman and Ignatov [31] used low spatial resolution data (0.15 × 0.15) and estimated NDVIveg as
0.52 ± 0.03 and NDVIsoil as 0.05 ± 0.03. Similarly, Sobrino and Raissouni [32] provided a threshold
NDVIveg of 0.5 and NDVIsoil of 0.02 [35]. In this study, the methods by Zeng et al. [34] and Wu et al. [35]
were adopted with slight modification due our study site being relatively small, the spatial resolution,
and the fact that we lacked soil spectral reflectance field measurements [31]. The first method is
invariant to soil characteristics for determining NDVIsoil. Zeng et al. [34] determined NDVIsoil by
utilizing the percentile of vegetation types using the IGBP land cover classification. They used the fifth
percentile of the histogram of the maximum NDVI for the barren or sparsely vegetated category as the
NDVIsoil, which was 0.05, to estimate global FVC. Note, however, that only woody cover is estimated
as opposed to Zeng et al. [34] whose aim was to assess statistically most likely FVC using spectra of
soil collected from different datasets. Therefore, woody fractional cover is estimated as:

FVC =
NDVIpixel−NDVIsoil
NDVIveg−NDVIsoil

. (4)
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The same was applied for SAVI as follows:

FVC =
SAVIpixel− SAVIsoil
SAVIveg− SAVIsoil

. (5)

The procedure requires that the histogram for each land cover is computed. Considering the size
of the study area, the histogram for the whole image was computed. The minimum and maximum
values of NDVI are 0.12 and 0.65. Since the maximum NDVI for this image is 0.65, a lower NDVIsoil is
suggested for barren and sparsely vegetated areas. In this case, NDVIveg and NDVIsoil are approximated
as 0.02 and 0.7 for bare soil and maximum vegetation, respectively. The 0.7 is the maximum vegetation
for the whole KNP. The 0.02 is the threshold for NDVIsoil. The SAVIsoil is thresholded at 0.05 and
for maximum vegetation at 1.32 (the maximum for the whole KNP). However, the contribution of
the NDVIsoil for each pixel has been determined from the pure pixels based on its fractional cover
of bare soil. The estimation of NDVIsoil can be performed with considerable accuracy if available
soil reflectance data from in situ measurements exist for the major types of soil in a given study
area [4,35,36]. Unfortunately, it is challenging to acquire this information [4]. Consequently, many
previous studies have relied on the Harmonized World Soil Database and IGBP land cover to assign
NDVIsoil for each vegetation type, especially at regional scale [34,35].

Wu et al. [35] used the Harmonized World Soil Database (HWSD) Version 1.21 which was produced
by the International Institute for Applied Systems Analysis (IIASA) and the Food and Agriculture
Organization of the United Nations (FAO) to determine NDVIsoil for each soil type. The HWSD does
not cover all the major soil types in KNP due to missing data from the map especially for the region
of our field data. Hence, a global soil and terrain database at a scale of 1:1 million developed by the
International Union of Soil Sciences (IUSS), the United Nations Environment Programme, the FAO,
and the International Soil Reference and Information Centre (ISRIC) [37] was used here. Based on
Wu et al. [35], the NDVIsoil for the three types of soil in our plot locations (which include Regosols,
Luvisols, and Nitisols) were thresholded at 0.21, 0.24, and 0.32, respectively. This approach slightly
differs from Wu et al. [35]. First, a linear method is applied as opposed to Wu et al. [35]. Given
the small size of the study area, NDVIsoil is considered for each soil type and for each plot, while a
single value for maximum NDVI (NDVIveg) was considered for all locations. For the NDVI, Regosols,
Luvisols, and Nitisols have been thresholded at 0.015, 0.02, and 0.02, respectively, while, for SAVI,
the thresholds were 0.04, 0.05, and 0.06. The three types of soils are described based on the World
Reference for Soil Resources (2014) according to the International Soil Classification System of the Food
and Agriculture Organization (FAO) of the United Nations [64]. Regosols are characterised as the
very weakly developed mineral soils in unconsolidated materials that do not have a mollic or umbric
horizon. They are generally fine-grained material and are particularly common in semi/arid areas [64].
Luvisols have a higher clay content in the subsoil than in the topsoil, as a result of pedogenetic processes
(especially clay migration) leading to an argic subsoil horizon [64]. Nitisols are deep, well-drained, red
tropical soils with diffuse horizon boundaries and a subsurface horizon with at least 30 percent clay.
Nitisols are some of the most productive red tropical soils [64].

2.4. Regression Analyses

In this study, different types of regression models were used to assess the relationship between the
percent woody cover from the field campaign in 2015 and the independent variables (NDVI or SAVI
vegetation index). Only 50% of the field data on woody cover (14 plots) was used for model calibration
while holding the remaining 50% back for validation. The power of our study design was assessed
by using the Power and Sample Size Calculation software provided by Dupont et al. [65]. In this
study, with reference to sample size (14 plots), we found statistical power following Dupont et al. [65]
methods for sample size and power calculations. Our sample size results in a statistical power of
0.98. The type of regression analysis depends on the nature of the phenology metric being used. The
procedure assumes that the NDVI-fractional vegetation cover relationship (or SAVI) is a function of
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vegetation type, the influence of understory and bare soil [60,66–68]. The regression model applied for
each phenology metrics is explained below:

(1) Since the assumption to use the mean of the images of chosen MODIS data (NDVIpixel and
SAVIpixel) does not preclude the presence of bare soil, different regression models were tested for
estimating woody cover. Although it has previously been reported that the relationship between
vegetation indices (especially NDVI) and percent cover depends largely on vegetation type [60], or
may even have a strong linear relationship with sparse vegetation [66,67], it is not well known how the
relationship with woody cover would be in KNP. Therefore, simple linear, polynomial and logarithmic
models were tested for both vegetation indices to find the best fit for percent woody cover estimation.

(2) Only a simple linear regression was applied to NDVIsoil and SAVIsoil determination methods.

2.5. Assessment of Model Performance

The assessment of model performance for fractional woody cover from the MODIS NDVI/SAVI time
series data uses the remaining field plot data (14 plots) not used for calibration. The LiDAR/SAR-based
woody cover map and the MODIS VCF datasets were first compared to the field observations to
quantify their accuracies. The validation of MODIS VCF with field data uses the MODIS VCF data for
the year 2014 since the field campaign was in 2015. To assess model performance for woody cover
estimated in this study, the coefficient of determination (R2) of the regression model was used to
measure the strength of the relationship between the predicted and the observed values. The predicted
data for each model are taken as the independent variable and the observed as the dependent [69].
In addition, RMSE was used to determine the goodness-of-fit. All MODIS NDVI/SAVI woody cover
estimates were validated with field data are from year 2014/15.

2.6. Comparison of Woody Cover Estimates with LiDAR/SAR and Bucini Woody Cover Maps

The Pearson correlation coefficient is the measure of the bidirectional linear correlation between
two variables and was used to assess whether woody cover estimates from this study as well as the
MODIS VCF product are related to the LiDAR/SAR and Bucini woody cover maps. The significance of
the relationship was also assessed at alpha = 0.05.

3. Results

3.1. Model Calibration

3.1.1. NDVIpixel and SAVIpixel for Woody Cover Estimate

Data on woody and herbaceous cover, and NDVIpixel and SAVIpixel used for woody cover
estimation are shown in Table 1. Figure 4 shows the relationship between NDVIpixel and SAVIpixel and
percent woody cover surveyed during the 2015 field campaign. The NDVIpixel versus the percent tree
cover (Figure 4a,c,e) had moderate coefficient of determination with R2 between 0.53–0.58 and p < 0.01.
The relationships for linear and polynomial regressions yielded the strongest fits (R2 = 0.56, p < 0.01
and R2 = 0.58, p < 0.01. Although the difference between linear and nonlinear regression (Figure 4e:
R2 = 0.53, p < 0.01) is not important, the nonlinearity of the NDVI increases with increasing species
composition. In the dry season, the woody species are active while other PFTs (e.g., grasses) are dry
making NDVI more sensitive to vegetation. The accuracy of SAVIpixel is higher (Figure 4b,d,f) than that
of NDVIpixel with R2 = 0.56 to 0.67 (p < 0.01). The saturation of NDVIpixel occurs at a higher percent
cover than that of SAVIpixel. This is expected since SAVI applied correction factors, which minimise the
effect of the soil background. Overall, the existing relationship between the NDVIpixel, SAVIpixel with
percent woody cover implies that they can both be used to estimate percent woody cover.
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Table 1. Woody, grass, bare soil, NDVIpixel and SAVIpixel for woody cover estimation.

Plot Woody Cover Grass Cover Bare Soil NDVIpixel SAVIpixel

1 5 85 10 0.336 0.485
3 6 85 9 0.289 0.454
4 10.5 45 44.5 0.264 0.434
7 12 67 21 0.3492 0.544
9 17 78 5 0.349 0.499

10 20 70 10 0.3547 0.520
12 30 45 25 0.352 0.511
15 31 55 14 0.335 0.498
16 32 35 33 0.375 0.557
19 35 22 43 0.341 0.502
21 41 35 24 0.389 0.551
22 42 30 28 0.346 0.515
24 45 45 10 0.330 0.562
27 69 20 11 0.471 0.691
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3.1.2. NDVI and SAVI for Woody Cover Estimation with NDVIsoil Determination Using a Modified
Procedure by Zeng et al. [34] and Wu et al. [35]

Table 2 shows the field plots data for the percent woody, herbaceous, bare soil and the type of
soil for each calibration plot. Table 2 also indicates the fraction of the NDVI (NDVIZeng and NDVIWu)
and SAVI (SAVIZeng and SAVIWu) estimated using the two soil background effect correction methods.
Figure 5a–d shows the calibration results for NDVI and SAVI. NDVI estimates for both methods show
an increased accuracy much better than when NDVIsoil is not removed. The invariant method for
which an NDVIsoil threshold of 0.02 was used has a strong relationship with percent woody cover:
R2 = 0.67, p < 0.01 (Figure 5a) while the other approach which considered the Harmonized World Soil
Database to determine the NDVIsoil for each soil type in the plot locations also had a strong relationship
with percent cover (R2 = 0.67, p < 0.01, Figure 5c). There is a slight difference between the two vegetation
indices as only three types of soil were found in the plot locations based on the soil database.

The invariant soil determining method for SAVIZeng which threshold NDVIsoil at 0.05, is not very
effective as its accuracy (R2 = 0.50, p < 0.01) is slightly lower than the initial relationship for which
the soil contribution is unaccounted. This means that the invariant method applied here may be less
accurate in inferring woody cover compared to other approaches though validation results might show
otherwise, while, when considering the soil type in determining the NDVIsoil, a strong relationship is
observed between the SAVIWu and percent woody cover (R2 = 0.80, p < 0.01). In this case, the NDVIsoil

0.04 was threshold for Regosols while Luvisols and Nitisols at 0.05 and 0.06, respectively. Overall, all
vegetation indices have shown a good relationship with the percent woody cover.

Table 2. Estimates of percent cover using NDVI and SAVI with soil determining methods using a
modified procedure by Zeng et al. [34] and Wu et al. [35]

Plot Woody
Cover

Grass
Cover

Bare
Soil

Grass
& Bare

Soil

Soil
Types

NDVIpixel NDVIZeng NDVIWu SAVIpixel NDVIZeng NDVIWu

1 5 85 10 95 Nitisols 0.336 0.290 0.290 0.485 0.404 0.384
3 6 85 9 94 Nitisols 0.289 0.244 0.244 0.454 0.469 0.354
4 10.5 45 44.5 89.5 Regosols 0.263 0.220 0.231 0.434 0.504 0.371
7 12 67 21 88 Luvisols 0.349 0.306 0.306 0.544 0.426 0.466
9 17 78 5 83 Regosols 0.349 0.310 0.320 0.499 0.501 0.440

10 20 70 10 80 Regosols 0.354 0.316 0.326 0.520 0.447 0.463
12 30 45 25 70 Regosols 0.352 0.318 0.327 0.511 0.454 0.461
15 31 55 14 69 Luvisols 0.335 0.302 0.302 0.498 0.451 0.437
16 32 35 33 68 Luvisols 0.375 0.342 0.342 0.557 0.488 0.497
19 35 22 43 65 Regosols 0.340 0.309 0.317 0.502 0.447 0.456
21 41 35 24 59 Luvisols 0.389 0.361 0.361 0.551 0.438 0.499
22 42 30 28 58 Regosols 0.346 0.319 0.326 0.515 0.493 0.474
24 45 45 10 55 Nitisols 0.330 0.304 0.304 0.562 0.578 0.504
27 69 20 11 31 Luvisols 0.471 0.457 0.457 0.691 0.683 0.664Remote Sens. 2019, 11, 898 13 of 25 
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3.2. Comparison of LiDAR/SAR, Bucini and MODIS VCF Woody Cover with Field Data at Plot Level

LiDAR/SAR, Bucini and MODIS VCF woody cover estimates were assessed with field observations
collected (28 plots) in 2015 (Figure 6). The assessment with field estimates indicates that the LiDAR/SAR
woody cover map has the highest accuracy (R2 = 0.45, p < 0.001, Slope = 0.5, RMSE = 15.90%) followed
by Bucini (R2 = 0.55; p < 0.001, Slope = 0.5, RMSE = 17.54%) compared to MODIS VCF (R2 = 0.53,
p < 0.001, Slope = 0.05, RMSE = 27.5%). The difference between these woody cover estimates is more
obvious in the RMSE and Slope (Figure 6).Remote Sens. 2019, 11, 898 14 of 25 
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estimates (2001) observed woody cover from the field plot data 2015.

3.3. Validation of Woody Cover Estimates

3.3.1. MODIS NDVIpixel and SAVIpixel Woody Cover Maps

Table 3 shows field validation plots and NDVIpixel, SAVIpixel as well their corresponding woody
cover estimated from simple linear, polynomial and logarithmic regression equations. Figure 7a,c
presents an accuracy assessment of woody cover from the NDVIpixel and SAVIpixel (mean of dry
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season images for 2014/2015) using the field data from 2015. The estimated woody cover using linear
regression has an R2 = 0.40, p < 0.01, slope = 1.01 for NDVIpixel, RMSE = 15.26% and R2 = 0.32, p < 0.03,
slope = 0.79, RMSE = 16.39% for SAVIpixel. The level of accuracy for NDVIpixel and SAVIpixel with
polynomial regression are not far from the simple linear regression (NDVIpixel: R2 = 0.40, p < 0.01,
slope = 0.89, RMSE = 15.21%; SAVIpixel: R2 = 0.32, p < 0.03, slope = 0.78, RMSE = 15.39%). The
logarithmic model is slightly less accurate for both vegetation indices (NDVIpixel: R2 = 0.40, p < 0.01,
slope = 0.79, RMSE = 15.44%; SAVIpixel: R2 = 0.32, p < 0.03, slope = 0.82, RMSE = 16.51%). These
results suggest that both NDVIpixel and SAVIpixel are sensitive to percent woody cover. However, with
reference to the scatterplots (Figure 7a,c), the nonlinearity of the two relationships is evident.

Table 3. Validation of MODIS NDVIpixel and SAVIpixel woody cover estimates.

Plot No.
Woody

Cover (%)
NDVIpixel SAVIpixel

NDVIpixel Estimated Woody Cover SAVIpixel Estimated Woody Cover

Linear Polynomial Logarithmic Linear Polynomial Logarithmic

2 5 0.307 0.486 16.17 16.99 16.24 19.35 19.35 19.32
5 11 0.359 0.550 31.21 29.74 31.98 34.80 34.78 35.73
6 11 0.385 0.582 38.42 37.07 38.71 42.43 42.41 43.14
8 12 0.345 0.502 27.08 25.88 27.89 23.19 23.19 23.59

11 21 0.401 0.573 43.04 42.20 42.80 40.23 40.21 41.04
13 30 0.371 0.517 34.47 32.95 35.08 26.69 26.68 27.37
14 30 0.350 0.514 28.41 27.10 29.23 26.13 26.12 26.77
17 35 0.347 0.511 27.78 26.52 28.60 25.41 25.40 26.00
18 35 0.374 0.547 35.24 33.74 35.80 34.08 34.06 35.00
20 35 0.338 0.503 25.26 24.27 26.04 23.50 23.50 23.93
23 45 0.338 0.489 25.22 24.24 26.01 19.99 19.99 20.03
25 55 0.366 0.544 33.20 31.68 33.88 33.19 33.17 34.11
26 65 0.425 0.625 49.99 50.53 48.65 52.84 52.84 52.62
28 70 0.489 0.710 68.22 75.92 62.53 73.12 73.17 69.35
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3.3.2. NDVI and SAVI Woody Cover Estimation from the NDVIsoil Determination Methods by
Zeng et al. [34] and Wu et al. [35]

Table 4 shows field validation plots and their corresponding woody cover estimated using two
approaches which account for NDVIsoil and SAVIsoil in the estimation. Figure 8a shows the validation
of woody cover estimates from a modified procedure of vegetation fractional cover estimation by
Zeng et al. [34] for NDVI (Figure 8a) (R2 = 0.40, p < 0.01, slope = 1.06; RMSE = 19.04%) as well as for
SAVI (Figure 8a) (R2 = 0.32, p < 0.3, slope = 1.06; RMSE = 17.34%). The woody cover estimated for both
vegetation indices using Zeng’s procedure indicated that the approach can be used to infer woody
fractional cover using dry season images even though the accuracy of the estimated woody cover were
slightly lower than when NDVIsoil were unaccounted for. There is an overestimation of woody cover
in the lower percent cover where the contribution of soil is higher demonstrating the implication of an
invariant NDVIsoil removal approach. Figure 8b shows the validation of woody cover estimated from
the modified procedure of vegetation fractional cover estimates by Wu et al. [35] (NDVI: R2 = 0.40,
p < 0.01, slope = 0.98; RMSE = 18.28%, SAVI: R2 = 0.32, p < 0.02, slope = 0.88; RMSE = 19.17%). The
accuracy of this approach is slightly higher than for the previous method. The difference between the
two methods is more obvious in the RMSE and slope demonstrating the importance of the NDVIsoil

determination method that considers soil type characteristics.

Table 4. Validation of MODIS NDVI woody cover maps estimated using two methods of soil
signal removal.

Plot No.
Observe
Woody

Cover (%)
NDVIpixel SAVIpixel

Estimated
Woody

Cover (%)
(Zeng et al.)

Estimated
Woody

Cover (%)
(Wu et al.)

Estimated
Woody

Cover (%)
(Zeng et al.)

Estimated
Eoody

Cover (%)
(Wu et al.)

2.00 5.00 0.307 0.486 28.52 28.99 29.382 33.39
5.00 11.00 0.359 0.550 39.94 43.83 40.757 47.17
6.00 11.00 0.385 0.582 45.57 51.16 46.445 54.06
8.00 12.00 0.345 0.502 31.36 32.68 32.225 36.83
11.00 21.00 0.401 0.573 43.95 49.05 44.845 52.12
13.00 30.00 0.371 0.517 33.94 36.04 34.892 40.06
14.00 30.00 0.350 0.514 33.53 35.50 34.358 39.42
17.00 35.00 0.347 0.511 33.00 34.81 33.825 38.77
18.00 35.00 0.374 0.547 39.40 43.14 40.224 46.52
20.00 35.00 0.338 0.503 31.59 32.98 32.403 37.05
23.00 45.00 0.338 0.489 28.99 29.60 29.915 34.03
25.00 55.00 0.366 0.544 38.75 42.29 39.691 45.88
26.00 65.00 0.425 0.625 53.27 61.17 54.088 63.32
28.00 70.00 0.489 0.710 68.25 80.65 69.195 81.63

Remote Sens. 2019, 11, 898 16 of 25 

 

Table 4. Validation of MODIS NDVI woody cover maps estimated using two methods of soil signal 
removal. 

Plot 
No. 

Observe 
Woody 
Cover 

(%) 

NDVIpixel SAVIpixel 

Estimated 
Woody 

Cover (%) 
(Zeng et al.) 

Estimated 
Woody Cover 
(%) (Wu et al.) 

Estimated 
Woody Cover 

(%) (Zeng et al.) 

Estimated 
Eoody Cover 

(%) (Wu et al.) 

2.00 5.00 0.307 0.486 28.52 28.99 29.382 33.39 
5.00 11.00 0.359 0.550 39.94 43.83 40.757 47.17 
6.00 11.00 0.385 0.582 45.57 51.16 46.445 54.06 
8.00 12.00 0.345 0.502 31.36 32.68 32.225 36.83 

11.00 21.00 0.401 0.573 43.95 49.05 44.845 52.12 
13.00 30.00 0.371 0.517 33.94 36.04 34.892 40.06 
14.00 30.00 0.350 0.514 33.53 35.50 34.358 39.42 
17.00 35.00 0.347 0.511 33.00 34.81 33.825 38.77 
18.00 35.00 0.374 0.547 39.40 43.14 40.224 46.52 
20.00 35.00 0.338 0.503 31.59 32.98 32.403 37.05 
23.00 45.00 0.338 0.489 28.99 29.60 29.915 34.03 
25.00 55.00 0.366 0.544 38.75 42.29 39.691 45.88 
26.00 65.00 0.425 0.625 53.27 61.17 54.088 63.32 
28.00 70.00 0.489 0.710 68.25 80.65 69.195 81.63 

 
Figure 8. Validation of NDVI and SAVI woody cover estimates from the (a) modified procedure by 
Zeng et al. [34] and the (b) modified procedure by Wu et al. [35]. 

3.3.3. Comparison of Estimated Woody Cover with LiDAR/SAR-Derived and Bucini’s Woody 
Cover Estimates Using Pearson Correlation Analysis and RMSE 

Table 5 presents a correlation coefficient and RMSE of NDVI, SAVI, and MODIS VCF tree cover 
estimates with LiDAR/SAR and Bucini using 14 validation plots from the field campaign in 2015. All 
vegetation indices have a significant relationship with previous tree cover estimates except the 
polynomial model in NDVIpixel with LiDAR/SAR. The linear model had the highest correlation for 
both vegetation indices (NDVIpixel: r = 0.52, p = 0.05 with LiDAR/SAR and r = 0.63, p = 0.014 with Bucini; 
SAVIpixel: r = 0.53, p = 0.05 with LiDAR/SAR and r = 0.59, p = 0.02 with Bucini). However, the 
logarithmic model recorded the lowest RMSE in both NDVIpixel (RMSE = 15.99) and SAVIpixel (RMSE= 
14.93) compared to linear (NDVIpixel: RMSE= 16.46 and SAVIpixel: RMSE = 15.15) and polynomial models 
(NDVIpixel; RMSE = 17.14 and SAVIpixel: RMSE= 15.98). The correlation between MODIS VCF with the 
previous tree cover estimates is however not significant r = 0.39, p = 0.16, RMSE =23.36 with 
LiDAR/SAR and r = 0.40, p = 0.17, RMSE =40.83 with Bucini) and had higher RMSE. 

Table 5. Correlation and RMSE of estimated woody cover with LiDAR/SAR and Bucini estimates. 

Figure 8. Validation of NDVI and SAVI woody cover estimates from the (a) modified procedure by
Zeng et al. [34] and the (b) modified procedure by Wu et al. [35].



Remote Sens. 2019, 11, 898 16 of 24

3.3.3. Comparison of Estimated Woody Cover with LiDAR/SAR-Derived and Bucini’s Woody Cover
Estimates Using Pearson Correlation Analysis and RMSE

Table 5 presents a correlation coefficient and RMSE of NDVI, SAVI, and MODIS VCF tree cover
estimates with LiDAR/SAR and Bucini using 14 validation plots from the field campaign in 2015.
All vegetation indices have a significant relationship with previous tree cover estimates except the
polynomial model in NDVIpixel with LiDAR/SAR. The linear model had the highest correlation for
both vegetation indices (NDVIpixel: r = 0.52, p = 0.05 with LiDAR/SAR and r = 0.63, p = 0.014 with
Bucini; SAVIpixel: r = 0.53, p = 0.05 with LiDAR/SAR and r = 0.59, p = 0.02 with Bucini). However,
the logarithmic model recorded the lowest RMSE in both NDVIpixel (RMSE = 15.99) and SAVIpixel

(RMSE = 14.93) compared to linear (NDVIpixel: RMSE = 16.46 and SAVIpixel: RMSE = 15.15) and
polynomial models (NDVIpixel; RMSE = 17.14 and SAVIpixel: RMSE = 15.98). The correlation between
MODIS VCF with the previous tree cover estimates is however not significant r = 0.39, p = 0.16,
RMSE = 23.36 with LiDAR/SAR and r = 0.40, p = 0.17, RMSE = 40.83 with Bucini) and had higher RMSE.

Table 5. Correlation and RMSE of estimated woody cover with LiDAR/SAR and Bucini estimates.

Woody Cover Estimates LiDAR/SAR 2008 Bucini 2001

r p-Value RMSE (%) r p-Value RMSE

NDVIpixel (Linear) 0.52 0.05 16.46 0.63 0.014 15.15
NDVIpixel (Polynomial) 0.49 0.07 17.14 0.62 0.016 15.98
NDVIpixel (Logarithmic) 0.52 0.05 15.99 0.63 0.014 14.93

NDVI (Zeng’s et al.) 0.52 0.05 19.28 0.59 0.02 12.85
NDVI (Wu et al.) 0.52 0.05 22.85 0.59 0.02 12.78
SAVIpixel (Linear) 0.53 0.05 16.74 0.59 0.02 16.66

SAVIpixel (Polynomial) 0.53 0.05 16.74 0.59 0.02 16.67
SAVIpixel (Logarithmic) 0.53 0.05 16.42 0.58 0.02 16.28

SAVI (Zeng’s et al.) 0.52 0.05 19.94 0.59 0.02 12.51
SAVI (Wu et al.) 0.52 0.05 25.49 0.59 0.02 12.50

MODIS VCF 0.39 0.16 23.36 0.40 0.17 40.83

4. Discussion

4.1. Comparison of LiDAR/SAR, Bucini and MODIS VCF Data

The previous products on woody cover have been validated by the providers and were found
relatively accurate. The LiDAR/SAR and Bucini woody cover map have been found the most accurate
using our field data (Figure 6). Despite the differences between the times of field campaign data that
were used for this study (2015), the LiDAR/SAR and Bucini [48] woody cover maps are consistent with
our field measurements (Figure 6). Although LiDAR/SAR woody cover has an advantage since LiDAR
has the ability to measure vegetation in three dimensions [29,70], another important consideration is
acquiring the SAR images in July–August 2008 (dry season, leaf-off) to avoid soil moisture effects on the
radar signal [6]. The Bucini woody cover map was produced from the synergy between optical (Landsat
ETM+ and JER-S) and SAR data. The accuracy of this product might result due to consideration of
phenology of woody species (dry season images for the optical dataset to maximize discrimination of
woody vegetation) as well as for accounting the effects of climate, soil characteristics, topography, fire
frequency and herbivory in a regression analysis to estimate woody cover.

Despite reported strengths of MODIS VCF datasets observed in many studies [9,70–72], the
accuracy of the products is lower in savannas, particularly when certain statistical observations are
put into consideration. The accuracy of MODIS VCF has the highest RMSE (28.6%) of all datasets
compared here, probably due its model calibration, which only considered cover of trees taller than
5 m (Figure 6). This simply means that there is an underestimation of tree or woody cover from the
MODIS VCF in this region where many trees are lower than 5 m. The underestimation of woody cover
from the MODIS VCF compared to in situ data observed here is similar to the study by Brandt et al. [3],
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whose estimate of woody cover in the Sahel was nine times higher than the MODIS VCF. Consequently,
low accuracy of MODIS VCF as a proxy for overall woody cover has been reported in the scientific
literature [7,25,73].

The use of a large number of phenology metrics acquired in different periods regardless of
vegetation dynamics [72,74], the presence of bad pixels (haze, cloud cover and shadow), the training
datasets (regression tree usually require large samples), and limitations inherent in the MODIS viewing
geometry (the effects is more with the individual bands than the vegetation index-NDVI) may be
responsible for the limitations of the MODIS VCF in savannas. None of the MODIS VCF (2014)
pixel values was of bad quality within the field plots used for this study. Consideration of the
seasonal vegetation dynamics is useful for global scale mapping of woody cover in savannas using
space observations. This is due to large differences in vegetation phenology during the wet and dry
seasons [75] and consequent limitations such as cloud cover and sensor viewing geometry, which may
affect the interannual and seasonal variation of woody/herbaceous phenology [41,76].

4.2. The NDVIpixel and SAVIpixel

The composite dry season images used for vegetation indices to estimate woody cover in KNP were
accurate (Figure 7a–c). The validation of woody cover estimated from the NDVI showed a lower error
(RMSE = 15.26%, 15.21%, 15.44% for the linear, polynomial and logarithmic model respectively) for all
models compared to SAVIpixel (RMSE = 16.39%, 16.39%, 16.51% for linear, polynomial and logarithmic
model, respectively) (Figure 7a–c), illustrating the strong dependence of NDVI on woody canopy
structure during the dry season in KNP. This also demonstrated the presence of a photosynthetically
active woody layer in the dry season as previously observed [50]. The relationship between the NDVI
and PFT types depends on the nature of the ecosystem in question [33,41,60].

The relationship between NDVIpixel / SAVIpixel and percent woody cover is approximately linear
(Figure 7a). Most of the plots used for woody cover in this study are within the granitic zone, where
soil types differ from the basaltic zone. The results discussed in this section agree with previous
studies [60,66,67]. A recent study found a linear relationship between FVC and the EVI as well as the
SAVI vegetation index. In the same study, the relationship between the NDVI and FVC was nonlinear
due to saturation effects at high vegetation fractions, the presence of shadow as well as the influence of
soil background [77].

There is strong correlation between SAVIpixel / NDVIpixel and Bucini / LiDAR/SAR woody cover
(Table 5). At the lower percent woody cover, the points are clustered. This demonstrated the influence
of radiative transfer from the surface on canopy reflectance especially where there is mixed woody,
herbaceous and bare soil fractions [70,78–80]. Therefore, in a sparse vegetation cover, radiative
interactions cause soil to be prominent and canopy visible reflectance will contain a strong backscatter
component. The soil reflectance effect is less prominent in the NIR canopy reflectance, since multiple
scattering of NIR radiation by vegetative components dominate. Hence, the influences of soil reflectance
reduces with decreasing canopy gaps [36,81].

4.3. Woody Cover Estimated Using Two NDVIsoil and SAVIsoil Determination Methods

The assessment of woody cover maps from the soil determination methods indicated a moderate
linear relationship between the predicted and observed percent woody cover (Figure 8a,c). Although
the slope of the regression line for both vegetation indices were higher (slope ranges from 0.88 to 1)
(Figure 8a,c) compared to woody cover estimates without removal of the soil signal (slope ranges
from 0.78 to 1) (Figure 8a), the RMSE is still high with soil determination methods. The RMSE for
woody cover estimates without soil signal removal ranges between 15.21–16.51%. In contrast, the
RMSE for the invariant method is 19.04% and 17.34% for the NDVI and SAVI vegetation indices
estimates, respectively, while the RMSE for the variant method is 18.28% and 19.17% for the NDVI
and SAVI estimates, respectively. Therefore, RMSE increases to more than 3% for the NDVI and about
5% for SAVI. The RMSE for SAVI vegetation index increases to about 2% with an invariant method
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and 4% with variant method. The SAVI vegetation index was found to be less sensitive to soil signal
removal than the NDVI. SAVI is one of the vegetation indices specifically developed to reduce soil
backgrounds effects. Although soil colour is useful for differentiating soil reflectance [80], soil moisture
was considered an important factor in influencing vegetation indices [82]. From the results in Figure 8,
uncertainty in the estimates of percent woody cover at lower cover is high in all methods. The second
approach of the soil determination methods overestimated low percent woody cover values. This
can be explained by the sensitivity of the canopy NDVI or SAVI to soil background or the result
of changing canopy structure, which might decrease in the NIR reflectance and increasing visible
reflectance consequently leading to reduced NDVI. In addition, the sensitivity of vegetation indices
to soil backgrounds was found to be greatest in the intermediate level of vegetation cover [36,83].
It is usual to overestimate percent woody cover whenever soil contribution is underestimated and
vice versa [4]. Overall, despite the uncertainty in the estimation of percent woody cover with the soil
determination approaches used in this study, heterogeneity is present in the woody cover estimates
derived from these approaches.

4.4. The Uncertainties and Sources of Errors and Proposed Improvements

While our results demonstrated the potential of MODIS data to estimate percent woody cover
from vegetation indices, woody cover estimated in this study has some limitations and remaining
uncertainties that must be considered:

(1) Phenology
Phenology of PFTs in savannas is usually influenced by many environmental factors [84]

Specifically, woody phenology is influenced mainly by temperature and day length [85], or precipitation
and disturbance in certain conditions [86]. For these reasons, the estimates of percent woody cover
from passive optical remote sensing are less accurate compared to high-resolution datasets. While high
resolution data such as LiDAR (active optical data) can determine woody canopy cover by measuring
its 3D structure, the estimates from the passive optical imaging datasets mostly rely on the green
canopy cover within a pixel [3].

The grass layer (fraction of photosynthetic vegetation) in savannas may have changed from 85%
to 8% and the fraction of non-photosynthetic vegetation of the same layer may increase from 7% to 79%
between the beginning and end of dry season [62]. Although careful attention was given to defining
the dry season, woody/herbaceous cover separation can be affected by certain grass species that are
supported by soil moisture and temperature [28]. In savannas, certain environmental factors favor
grass growth and influence its phenology, productivity and biomass allocation [87,88]. Temperature
and soil moisture are generally not limiting factors of grass productivity in KNP [28]. This might
contribute to the overestimation of woody cover, especially in a highly mixed woody/herbaceous
area. In addition, the time differences between the LiDAR/SAR, Bucini, and field data campaign
may affect the accuracy assessment of the two products from MODIS compared here. Although the
MODIS vegetation indices (e.g., NDVI) are less sensitive to illumination than individual bands, as
previously reported in the literature, the estimates of woody cover in this study may well contain
remaining uncertainties despite being specific to a particular season [41,76]. The temporal granularity
of the MODIS NDVI products of 16 days limits the temporal precision of the detection of changes in
greenness. Denser time-series data would be preferable.

(2) The ground data (field plot data on percent woody/herbaceous cover)
The calibration data used in our models may not be the representative of all species over the KNP

landscape. The field method for woody cover estimation is a visual approach which may also constrain
the accuracy of our models due to remaining uncertainties in the field data collection. However,
the results presented in this study demonstrated that percent woody cover can be estimated from
vegetation indices in savannas, and that a single regression model based on our field data indicated
RMSE between 15–21%. However, while the accuracy assessment indicates lower errors, percent
woody cover of <40%, where spectral signatures are probably dominated by understorey (dry grass)
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and soil, is not highly correlated with the field measurements. This might arise due to the presence
of soil and dry grass, underestimation of percent woody cover in the field campaign or changes in
woody phenology due to fire over the period [89]. For both calibration and validation plots, there are
only a few plots with percent woody cover >40%. This means that, if the regression models are to be
developed and applied consistently over the large area, it is important that they are established on a
much larger sample than as presented in the current study. This may reduce uncertainty and increase
model accuracy.

(3) NDVIsoil estimation
The use of in situ measurements of soil reflectance remains a crucial step for an effective

determination of NDVIsoil in a pixel to estimate woody cover fraction [4,82,90], especially in savannas
where the availability of vegetation indices at MODIS resolution of 250 m is essential for capturing
vegetation and bare soil. One of the greatest challenges for woody cover estimation is the lack of soil
reflectance since soil reflectance varies with soil type and characteristics (e.g., soil moisture).

In this study, as demonstrated by the validation results using different models, the influence
of NDVIsoil is minimal. Though the estimates of woody cover from the linear regression using soil
determining methods had a slope closer to 1 (Figure 8a,b) for both vegetation indices, the NDVIpixel

and SAVIpixel had the lowest RMSE (Figure 7a). This might be due to smaller size of the field plot
data as well as difficulties in matching the soil type characteristics for both validation and calibration
plots. Woody cover estimation with these approaches might introduce errors in a situation where only
woody cover is being estimated. Challenges in woody/herbaceous or soil separation remain critical
to model accuracy. However, the methods would have been more accurate if a larger environment
is considered as some of these approaches are insensitive to a particular land cover type [34]. The
influence of spectral response pattern of both vegetation and soil can have strong temporal and spatial
effects [58]. The spatial effects may be negligible if a small area is considered. The temporal effects for
soil [91] and vegetation are important as the species keep changing throughout the growing period,
coupled with sensor limitations [33,41,92].

Smallman et al. [88] evaluated the role of repeated woody biomass estimates in constraining the
dynamics of the major ecosystem carbon pools. They highlighted the challenges with dead organic
carbon stocks and soil using the Harmonised World Soil Database (HWSD) to account for bare soil. In
their estimates of carbon stocks, the in situ soil carbon observations have a lower uncertainty than
those based on the HWSD. They stressed that the impact of the HWSD prior is reduced due to lack
of a robust assessment of the uncertainty associated with the database and the lack of information
on the time for which the priors are representative, necessitating a conservative use of the database.
In situ measurements of soil reflectance (if available) would be more useful regardless of spatial
scale [36,82,91].

5. Conclusions

A remote sensing-based model of woody cover retrieval in African savanna was developed from
vegetation index metrics based on NDVI and SAVI derived from MODIS data and field data from 28
sites in KNP. The models were developed on the understanding that during the dry season only woody
species are photosynthetically active. A strong linear relationship was found between the phenology
and woody cover observations from a field campaign in 2015. The accuracy of the estimated woody
cover had R2 = 0.40, p < 0.01, slope = 1.01, RMSE = 15.26% and R2 = 0.32, p < 0.03, slope = 0.79,
RMSE = 16.39% for NDVIpixel and SAVIpixel, respectively. The percent woody cover estimated from
the soil determination methods had an improved slope for both NDVI and SAVI but a slightly higher
RMSE. Although it was not the primary objective of this study, it turns out that the LiDAR/SAR
estimate is more accurate for woody cover estimates (R2 = 0.45, p < 0.001, Slope = 0.5, RMSE = 15.90%)
than other products tested in this study. The maps of woody cover will be useful in understanding
woody/grass interactions in wooded savannas. Future work will have to ascertain the transferability of
the method to savanna sites worldwide.
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