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Abstract: An evapotranspiration (ET) ensemble composed of 36 land surface model (LSM) experiments
and four diagnostic datasets (GLEAM, ALEXI, MOD16, and FLUXNET) is used to investigate
uncertainties in ET estimate over five climate regions in West Africa. Diagnostic ET datasets
show lower uncertainty estimates and smaller seasonal variations than the LSM-based ET values,
particularly in the humid climate regions. Overall, the impact of the choice of LSMs and meteorological
forcing datasets on the modeled ET rates increases from north to south. The LSM formulations and
parameters have the largest impact on ET in humid regions, contributing to 90% of the ET uncertainty
estimates. Precipitation contributes to the ET uncertainty primarily in arid regions. The LSM-based
ET estimates are sensitive to the uncertainty of net radiation in arid region and precipitation in humid
region. This study serves as support for better determining water availability for agriculture and
livelihoods in Africa with earth observations and land surface models.
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1. Introduction

Accurately estimating evapotranspiration (ET) over West Africa is particularly important for water
resources management, weather monitoring and climate change impact assessment on agriculture
and food security due to a strong land-atmosphere coupling [1,2]. Also, ET, governed by the surface
water and energy budgets, plays an important role in West African monsoon development [3,4].
High uncertainty in ET estimates over West Africa from global models is an obstacle to investigate
temporal and spatial variability in the regional hydrology, especially in the context of climate change [5,6].
Understanding ET uncertainties can improve estimates of water availability for agriculture and
livelihoods in Africa. However, such a task is still a challenge in data-sparse regions [7–9]. Previously,
Kato et al. [10] performed a sensitivity study of land surface model (LSM) simulations, including ET,
under the Coordinated Enhanced Observing Period (CEOP) initiative, but none of the four reference
sites were located in West Africa.

Several intercomparisions of different model- and/or satellite-based ET estimates have been
carried out at different scales. At the global scale, the LandFlux-EVAL initiative [11,12] presented
the benchmark synthesis products based on the analyses of multiple global scale ET estimates from
LSMs, diagnostic (i.e., observation-based) datasets, and reanalyses. Other studies focused on Asia [13],
South America [14], Africa [8], West Africa [9,15,16], and smaller regions, such as the Volta basin [7,17]
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and the Ouémé River basin [18]. In particular, the African Monsoon Multidisciplinary Analysis
Land Surface Intercomparison Project (ALMIP) computed water budget components over the whole
West Africa in its first phase (ALMIP-1) [4] and smaller areas within the region in its second phase
(ALMIP-2) [19,20]. However, little is known about seasonal and regional ET uncertainty variations and
the impacts of the choice of LSM, radiation forcing datasets, and precipitation on the ET uncertainty
over West Africa. Few studies have only attempted to estimate annual ET uncertainties of regional
watershed basins (e.g., the Lake Chad basin and the Niger River basin) [5] and investigate uncertainties
and trends of global ET estimates using different combinations of ET models and meteorological
forcing datasets [6].

The ensemble of ALMIP-1 models revealed that total annual ET corresponds to 77% of the total
annual precipitation in West Africa and 85% in the Sahel [21]. The annual precipitation cycle is highly
subject to the West African monsoon [22]. Overall, the average precipitation rates increase southwards.
In the north, the hyper-arid, arid, and semi-arid regions are located within the Sahel region with
a single peak rainy season from July to September [8,23]. In the south, due to a north-south migration
of the Inter Tropical Convergence Zone (ITCZ), the sub-humid and humid regions are characterized by
two rainy seasons: the first rainy season from May to July and the second rainy season from August
to October. Although advances in climate modeling indicate oceans as the main contributor to the
recent drought persistence in the Sahel [24], Tian and Peters-Lidard [25] found that West African
land shows higher precipitation uncertainties associated with the ITCZ migration than its oceanic
counterpart. Also, Vinukollu et al. [6] revealed high ET uncertainties in the Sahel due to the high
variability of precipitation, radiation and other meteorological variables, leading to large differences
among the models.

Satellite-based ET datasets share some features with physical energy and water balance
descriptions of the LSM’s but are explicitly constrained by ‘diagnostic’ observations of surface
states (e.g., surface temperature, soil moisture, vegetation water contents or relative humidity) [26].
For better understanding of the characteristics of the ET uncertainties, we investigate 36 LSM-based
ET estimates and four diagnostic ET datasets from 2007 to 2011 during which all datasets overlap.
Using the diagnostic ET uncertainties to shed some additional light on the model ensemble uncertainty
can help give more insight to the variances and spread found among the ensemble of LSM-based
ET results, which can be useful in a multi-model ensemble approach. Also, in terms of individual
model spread across the different forcing data types, this study can offer some insights for assimilating
ET or soil moisture fields. In this study, evaluation of model performance and identification of
the primary sources of error in the ET estimates related to inaccurate forcing datasets and limited
model parameterizations are beyond the scope of this work. Ground-based ET observations are not
representative of LSM-based estimates due to spatial scale differences. The use of the satellite-based
reference datasets are more appropriate scale for the LSM ensemble and uncertainty evaluation

The objectives of this study are to: (1) quantify the uncertainty range of net radiation and
precipitation datasets as input parameters to estimate ET over West Africa; (2) compare spatial and
temporal characteristics between LSM-based and diagnostic ET estimates; (3) analyze the sensitivity of
LSMs in simulating ET to the uncertainty of net radiation and precipitation; and (4) investigate the
impact of the choice of the model parameterization, meteorological forcing dataset, and precipitation
on the LSM-based ET uncertainty. Because the annual precipitation has a latitudinal gradient in
West Africa, we divided the domain between 18◦W–25◦E and 5◦N–27◦N into five climate regions
(highlighted in Figure 1a). The classification of climate regions was based on similar aridity conditions
for the 1950–2000 period, as suggested in [27,28]. This study serves to offer further insight on improved
land surface modeling designs and better monitoring of water and energy budgets in West Africa.
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Figure 1. (a, b) Mean, (c, d) standard deviation (STD) maps, and (e, f) regional averages of the mean 
values from three net radiation (RAD, unit: W ∙ m−2) and five precipitation datasets (PRE, unit: 
mm∙day−1) for years, 2007–2011. The white lines in panel (a) delineate the five climate regions (i.e., I-
hyper-arid, II-arid, III-semi-arid, IV-sub-humid, V-humid, going from north to south). 

In addition to the ET formulation, model inputs and physics directly impacting ET estimates 
include meteorological forcing data, precipitation, land cover, soil type, infiltration rates, and 
drainage in the soil column. In this study, ET uncertainties attributable to these LSM formulations 
and parameters in the modeled ET rates, except for meteorological forcing and precipitation, are 
considered as ET uncertainty due to LSMs. For land cover classes, Noah and NoahMP use the 
International Geosphere-Biosphere Programme (IGBP) classification from the NASA’s Terra 
Moderate Resolution Imaging Spectroradiometer (MODIS) observations [45]. VIC and CLSM used 
the University of Maryland classification from the Advanced Very High-Resolution Radiometer 
(AVHRR) observations [46]. 

2.1.2. Meteorological Forcings  

LSMs were driven with three meteorological forcing datasets: NCEP’s Global Data Assimilation 
System (GDAS) [47], NASA’s Modern-Era Retrospective analysis for Research and Applications, 
version 2 (MERRA2) [48], and the Princeton global meteorological forcing datasets (Princeton) [49]. 
As the sum of net short wave and long wave radiation, net radiation has the largest effect on LSM-

Figure 1. (a,b) Mean, (c,d) standard deviation (STD) maps, and (e,f) regional averages of the mean values
from three net radiation (RAD, unit: W·m−2) and five precipitation datasets (PRE, unit: mm· day−1)
for years, 2007–2011. The white lines in panel (a) delineate the five climate regions (i.e., I-hyper-arid,
II-arid, III-semi-arid, IV-sub-humid, V-humid, going from north to south).

2. Data and Methods

2.1. LSM-based ET Datasets

All LSM-based ET outputs were produced daily on a 0.25◦ spatial resolution domain. The NASA
Land Information System (LIS) [29] was used as the modeling platform. Table 1 lists the details of the
36 model experiments.
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Table 1. Overview of ET datasets used in this study. An “x” indicates the input not used by the model.

Category Name
(Reference) PET Scheme Met. Forcing Precip. Spatial

Resolution
Temporal
Resolution Time Period

Land Surface
Models

Noah
[30,31] Penman

GDAS
GDAS

0.25 deg Daily 01/2007–12/2011

TMPA

CHIRPS

MERRA2
MERRA2

TMPA

CHIRPS

Princeton
Princeton

TMPA

CHIRPS

NoahMP
[32,33]

Penman–Monteith

* **

VIC
[34] * **

CLSMF
[35,36] * **

Diagnostics

GLEAM
[37]

Priestley-Taylor

CFS-R MSWEP 0.25 deg Daily 01/1980–12/2015

ALEXI
[38] ERA-Interim X 0.05 deg Weekly 01/2007–12/2015

MOD16
[39] Penman–Monteith GMAO X 0.01 deg Monthly 01/2000–12/2012

FLUXNET
[40] X X X 0.50 deg Monthly 01/1982–12/2011

*, ** Each of the four LSMs was forced with three meteorological forcing datasets and two additional observation-based
precipitation datasets, generating a total of 9 experiments.

2.1.1. Land Surface Models

Four LSMs are used in this study to simulate the water and energy fluxes in West Africa,
including the Noah land surface model (Noah), version 3.3 [30,31], Noah land surface model with
Multi-Parameterization (NoahMP), version 3.6 [32,33], the Variable Infiltration Capacity (VIC), version
4.1.2 [34], and Catchment Land Surface Model (CLSM), version Fortuna 2.5 [35,36]. CLSM and
NoahMP were selected in this study because of their ability to explicitly represent groundwater and
high performance of data assimilation framework within the NASA LIS system [41,42]. Noah and VIC
were included to investigate the impact of different LSM parameterizations on modeling ET estimates
and to increase the number of ensemble members included in the uncertainty analysis

All four LSMs calculate ET as the sum of water loss from bare soil and canopy intercepted water
(i.e., evaporation) and transpiration via the canopy leaves. In each model, the actual ET is computed as
a modification of a potential value, using the Penman equation [43] for potential ET in Noah or the
Penman–Monteith [44] in the other three LSMs. The Noah model applies additional resistance factors
as a variation on Penman–Monteith [30]. The Penman–Monteith equation calculates actual ET typically
through scaling coefficients related to different vegetation or crop types. The Penman–Monteith is
more sensitive to vegetation specific parameters and allows for a composited plant stomatal resistance
to vapor transport, whereas the Penman equation assumes a continuously available water source and
no canopy resistance.

In addition to the ET formulation, model inputs and physics directly impacting ET estimates
include meteorological forcing data, precipitation, land cover, soil type, infiltration rates, and drainage
in the soil column. In this study, ET uncertainties attributable to these LSM formulations and
parameters in the modeled ET rates, except for meteorological forcing and precipitation, are considered
as ET uncertainty due to LSMs. For land cover classes, Noah and NoahMP use the International
Geosphere-Biosphere Programme (IGBP) classification from the NASA’s Terra Moderate Resolution
Imaging Spectroradiometer (MODIS) observations [45]. VIC and CLSM used the University of Maryland
classification from the Advanced Very High-Resolution Radiometer (AVHRR) observations [46].
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2.1.2. Meteorological Forcings

LSMs were driven with three meteorological forcing datasets: NCEP’s Global Data Assimilation
System (GDAS) [47], NASA’s Modern-Era Retrospective analysis for Research and Applications,
version 2 (MERRA2) [48], and the Princeton global meteorological forcing datasets (Princeton) [49].
As the sum of net short wave and long wave radiation, net radiation has the largest effect on LSM-based
ET estimates in relation to energy balance terms. In Figure 1, the mean of net radiation from the three
meteorological forcing datasets ranges from 50 W/m2 for the hyper-arid to 150 W/m2 for the humid
region. Standard deviations in net radiation are generally 10–20 W/m2, but coastal areas at longitudes
between −13◦ and 10◦ show higher variations. When considering the three meteorological datasets,
MERRA2 has the lowest net radiation of these datasets, whereas Princeton has the highest in both
hyper-arid and arid regions. GDAS has the highest values in semi-arid, sub-humid, and humid regions.

2.1.3. Precipitation

Additional experiments were conducted replacing the precipitation fields from the aforementioned
meteorological reanalysis forcings with two other precipitation datasets: the Tropical Rainfall Measuring
Mission Multi-Satellite Precipitation Analysis product 3B42, version 7 (TMPA) [50] and the Climate
Hazards group InfraRed Precipitation with Stations (CHIRPS) [51]. In Figure 1, the mean and standard
deviation of the five precipitation datasets increase linearly from north to south, associated with the
ITCZ precipitation band. The mean and standard deviation maps show a local effect at longitude 10◦

and latitude 5◦, showing higher values (than 10 mm/day in mean and 5 mm/day in standard deviation;
not shown in Figure 1). A comparison of the five precipitation datasets illustrates that GDAS and
CHIRPS provides lower precipitation rates in both arid and semi-arid regions, but higher rates in the
humid region.

2.2. Diagnostic ET Datasets

The four diagnostic ET datasets are used in this study, including the Global Land Evaporation
Amsterdam Model, v3.0a (GLEAM) [37], the Atmosphere-Land Exchange Inverse (ALEXI) [38],
the Moderate Resolution Imaging Spectroradiometer (MODIS) land ET product 16 (MOD16) [39],
and FLUXNET [40]. Our study time period is limited to the 5-year overlap between these datasets from
January 2007 to December 2011. Most of arid and hyper-arid regions in the ALEXI and MOD16 datasets
correspond to missing data as they are deemed unreliable. Diagnostic ET datasets were averaged to
monthly values and re-scaled to a 0.25-degree spatial resolution, whenever necessary.

For PET estimation, ALEXI and GLEAM use the Priestley-Taylor equation, whereas MOD16 uses
the Penman–Monteith equation. The Priestley-Taylor equation estimates evaporation from an extensive
wet surface under conditions of minimum advection by removing the aerodynamic terms from the
Penman–Monteith equation and adding an empirically derived constant factor [52]. Forcing inputs
for the Penman–Monteith equation (used in MOD16) include vapor pressure deficit, air temperature,
net solar radiation, wind speed and air pressure whereas the Priestly-Taylor equation (used in ALEXI
and GLEAM) uses only net radiation or solar irradiance. GLEAM includes a running water balance,
using precipitation input (i.e., the Multi-Source Weighted-Ensemble Precipitation) [53], assimilating soil
moisture observations, and combining them with microwave vegetation optical depth to parameterize
evaporative stress. ALEXI uses observed morning changes in temperature to diagnose the partitioning
of the surface energy balance between sensible and latent heats. MOD16 estimates the surface resistance
based on Leaf Area Index (LAI). FLUXNET is based on upscaling eddy-covariance flux measurements
of ET with satellite-based vegetation indices. The FLUXNET database is composed of regional and
global analysis of observations from over 750 micrometeorological tower sites, including two flux
towers over West Africa, starting in 2010, with a limited time period as provided with the latest version
of the FLUXNET 2015 Tier 1 dataset.
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2.3. Uncertainty Analysis

The evapotranspiration uncertainty analysis is performed separately on LSM-based and diagnostic
datasets to compare their spatial and temporal characteristics and quantify their uncertainty ranges.
The analysis is also performed separately for the five West African climate regions.

To compare the mean and standard deviation between LSM-based and diagnostic ET datasets,
the relative difference (RD) of the two ET products are computed as:

RD =
E1 − E2

E
× 100 (%) (1)

where E1 and E2 represent ETLSM and ETDIAG, respectively, and E is the mean of the products E1 and
E2. Also, to incorporate the bias-insensitive and multiple component nature of evaluation metrics for
a comprehensive comparison, the spatial efficiency metrics (SPAEF) [54,55] are computed as:

SPAEF = 1−
√
(α− 1)2 + (β− 1)2 + (γ− 1)2

α = corr(E1, E2), β = ( σE1
µE1

)/( σE2
µE2

) and γ =

∑n
j=1 min(K j,L j)∑n

j=1 K j

(2)

where α is the Pearson correlation coefficient, β is the fraction of the coefficient of variation and γ is the
histogram intersection for the given histograms K and L of the E1 and E2 patterns, respectively.

The impact of the choice of LSM, meteorological forcing datasets (MET), and precipitation-only
(PRE) on the uncertainty in the LSM-based ET estimates (ETLSM) is estimated through the standard
deviation attributable to each of the three components at each grid cell location as follows:

σx
ET(LSM)

= sqrt


∑T

t=1
∑L

l=1 σ
2
[
ETx,t,l

LSM1, . . . , ETx,t,l
LSM4

]
T × L

 (3)

σx
ET(MET) = sqrt


∑T

t=1
∑M

m=1 σ
2
[
ETx,t,m

MET1, . . . , ETx,t,m
MET3

]
T ×M

 (4)

σx
ET(PRE) = sqrt


∑T

t=1
∑N

n=1 σ
2
[
ETx,t,n

PRE1, . . . , ETx,t,n
PRE5

]
T ×N

 (5)

where σ2 is variance, x is the grid cell, T (=60) is the total number of monthly time step t, for years
2007–2011. A number of the combined experiments (L = 9 from 3 METs times 3 PREs, M = 8 from
4 LSMs times 2 additional PREs, N = 12 from 4 LSMs times 3 METs) with the four LSMs, the three
METs, and the five PREs are used for each of the ET uncertainties σx

ET(LSM)
, σx

ET(MET), and σx
ET(PRE),

respectively. To separate the temporal ET variability from the uncertainty analysis, uncertainties
are estimated by averaging standard deviations over the ET datasets at the same time, t, and then
calculating the temporal average of the standard deviations.

3. Results and Discussion

3.1. Comparison of LSM-Based and Diagnostic ET Estimates

Figure 2 shows the spatial distribution maps of the mean, standard deviation, and relative
difference from the LSM-based and diagnostic ET datasets over West Africa for years, 2007–2011.
Overall, arid regions at the higher latitudes show lower values in mean ET rates and standard deviations
than for the humid regions at lower latitudes. Specifically, lower standard deviations are found in the
hyper-arid and arid regions when mean ET values are less than 1 mm/day. This threshold is reached in
the arid region, resulting in standard deviations of 0.2 mm/day and greater below 15◦N. Compared to
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diagnostic ET datasets, LSM-based ET datasets show the similar mean ET rates in West Africa except
at longitudes between −5◦ and 25◦ in the hyper arid region, ranging from −30 to −30 % in relative
difference. Overall, the LSM-based ET dataset has higher standard deviation values with positive
relative differences over West Africa, except for a part of the hyper-arid region. Comparing the four
LSMs demonstrates that Noah and NoahMP provides lower mean ET rates than CLSM and VIC for all
climate regions (Figure 2g). The order of the spatially averaged mean ET rates, from the highest to
the lowest, is CLSM, VIC, Noah, NoahMP. These results are likely due to the differences of the model
physics and parameters, including land cover datasets of IGBP classification (used in CLSM and VIC)
and UMD classification (used in Noah and NoahMP). For the diagnostic model datasets (Figure 2h),
ALEXI has the highest ET rate (except in the hyper-arid region), whereas MOD16 has the lowest ET
rates (except in humid region) for all climate regions. Also, it is noteworthy that GLEAM, in model
structure such as a running water balance driven with precipitation dataset, is more consistent with
FLUXNET-based observations. On the other hand, ALEXI and MOD16 are more pure diagnostic
estimates that do not use antecedent information (e.g., water balance estimates).
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datasets combined.

Figure 3 shows monthly climatologies of mean, standard deviation and relative difference values
for the five West African climate regions. The LSM-based and diagnostic ET datasets show the similar
temporal variations of their mean ET rates. Compared to diagnostic datasets, LSM-based mean ET
rates show lower values during winter and spring, slightly higher during summer, and similar in
fall. This finding is consistent with that the LSMs tend to underestimate ET during winter and spring
seasons when local rainfall is not the primary source of water available for ET [26]. The hyper-arid
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region shows low mean ET rates over the year, whereas the arid region presents a range from 0.3 to
1.5 mm/day, mainly from June to October. The humid region shows a bimodal ET cycle with two peaks
with high ET rates (>3 mm/day) from April to November, whereas semi-arid and sub-humid regions
show one peak in September.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 16 
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and (c,f) relative difference (%) from the LSM-based and diagnostic ET datasets for the five West African
climate regions. Values represent the average for each climate region.

For the standard deviation of monthly climatologies, the diagnostic ET datasets (Figure 3e) show
values lower than LSM-based ET estimates (Figure 3d), particularly in the semi-arid, sub-humid and
humid regions. The hyper-arid and arid regions show the standard deviation increasing with mean
ET and peaking in late summer or early fall. The semi-arid region shows more similar patterns of ET
uncertainty in the monthly climatology as humid regions than the other arid regions. This suggests
that the behavior of ET is dependent on water and energy budget variables, which can lead to
different characteristics than climate regions determined by similar annual precipitation cycle or aridity
condition. Compared to the LSM-based ET datasets, the diagnostic ET datasets show lower seasonal
variation in their standard deviations for the semi-arid, sub-humid, and humid regions. LSM-based ET
datasets show higher standard deviations for all four seasons than the diagnostic ET datasets in humid
region. Also, it is noteworthy that uncertainties of the LSM-based ET estimates increase during winter
for the humid region. This can be explained by the fact that CLSM generates the low peaks in ET rates
for April, lagging by two months behind the low peaks of the other LSMs, which occur in February for
the humid region.

Figure 4 shows SPAEF-based comparison of mean and standard deviation of the LSM-based and
diagnostic ET datasets combined. Compared to metrics of standard deviation (Figure 4b,d), all three
metrics (i.e., correlation coefficient, coefficient of variation, histogram match) and SPAFE values of the
spatially averaged mean ET rates (Figure 4a,c) are closer to the optimal condition, one. This supports
that larger difference between LSM-based and diagnostic ET datasets exists in their standard deviation
than the mean ET rates. Monthly climatologies of the mean ET rates (Figure 4e) show lower histogram
match between LSM-based and diagnostic ET datasets than those of the standard deviation (Figure 4f),
which leads to reduced SPAEF values despite high correlation coefficient and coefficient of variation
for all four seasons. This implies that seasonal variation of the mean ET rates between two different ET
datasets are not consistent as much as one spatially averaged for the whole time period 2007–2011.
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Figure 4. Comprehensive comparison of (a,c,e) mean and (b,d,f) standard deviation of the LSM-based
and diagnostic (i.e., DIAG) ET datasets. Correlation coefficient (CORR), coefficient of variation (CV),
histogram match (HistoMatch), SPAEF values are spatially averaged for (a–d) the 2007–2011 period
and (e–f) monthly climatologies.

3.2. Uncertainty Analysis of LSM-Based ET Estimates

Figure 5 shows the spatially distributed impacts of model parameterization, meteorological
forcing datasets, and precipitation uncertainties on the LSM-based ET uncertainty, as defined in
Equations (3)–(5). Overall, LSM-based ET uncertainties attributable to LSM, MET, and PRE increase
from north to south in West Africa. The ET uncertainties are mostly attributed to LSM, or the differences
in model physics and parameterizations, particularly in the two humid climate regions plus the
semi-arid region. This is consistent with a previous sensitivity study of land surface simulations against
1-year field measurements [10]. Arid regions with little precipitation have ET values much lower than
PET, whereas humid regions have ET values closer to PET values. This implies that the choice of PET
equations in LSMs provide more diversity in our ET estimations over West Africa as compared to the
forcing data. This is also supported by the evidence that the ET uncertainties between the potential
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evaporation products are higher than ones between the different actual evaporation products over the
African continent [8].Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 16 
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Figure 5. LSM-based ET uncertainties are calculated from standard deviations (mm·day−1) attributable
to (a) LSM, (b) MET, and (c) PRE for each grid cell location. The impacts of MET and PRE
uncertainties on LSM-specific ET estimates are shown for (d,e) CLSM, (f,g) Noah, (h,i) VIC, and
(j,k) NoahMP, respectively.

The impacts of MET and PRE uncertainties on LSM-specific ET estimates are also investigated.
In arid regions, the four LSMs show the similar impact of MET and PRE uncertainties on the modeled
ET estimates. However, CLSM and VIC in humid regions show higher effects from MET and PRE than
Noah and NoahMP with higher mean ET rates (see Figure 2g). MET and PRE uncertainties generate
a local effect in the modeled ET uncertainties, having higher values along the coast for CLSM and at
longitudes between −12◦ and −8◦ in humid region for VIC. This is related to the fact that CLSM and
VIC are more sensitive to high uncertainties of radiation and precipitation in these areas (shown in
Figure 1c,d) than Noah and NoahMP.

Figure 6 shows the sensitivity of ET uncertainties to the uncertainties of both radiation and
precipitation. The sensitivity is calculated by dividing the ET uncertainties (Figure 5b,c) by the uncertainty
of the radiation (Figure 1c) and precipitation (Figure 1d). From north to south, the sensitivity of ET
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uncertainties to the uncertainties of radiation decreases, whereas the sensitivity of ET uncertainties to
precipitation increases. This indicates that ET uncertainties in arid regions with little water are more
sensitive to the uncertainty of net radiation, whereas humid regions have a higher sensitivity of ET
uncertainties to the uncertainty of precipitation.
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Figure 6. Sensitivity of modeled ET uncertainties to the uncertainties of the meteorological based
(a) net radiation (mm·day−1/W·m−2) and (b) precipitation (mm·day−1/mm·day−1).

When examining the monthly climatology of the impacts of the LSM, MET, and PRE uncertainties
on the LSM-based ET uncertainty, LSM shows the largest effect in Figure 7. This leads to the fact that
seasonal variation of standard deviations due to LSM shows the most similar seasonal variation of the
modeled ET uncertainty (shown in Figure 3d) with lower uncertainty values for all climate regions.
The standard deviations attributable to meteorological forcing datasets show clear seasonal variations
except in hyper-arid region. Interestingly, the standard deviations attributable to precipitation show
lesser seasonal variation in humid region with different peak seasons in June for sub-humid region
and in August for the other three arid regions.
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Figure 8 shows that LSM physics and parameters contribute to more than 90% of the uncertainty
of the LSM-based ET estimates for semi-arid (91%), sub-humid, (95%) and humid (97%) regions.
The impact of the choice of LSM includes the calibration process on inaccurate input data including
meteorological forcing datasets and precipitation. Thus, it implies that standard deviations attributable
to meteorological forcing dataset and precipitation can be reduced by the LMS physics. In arid regions,
precipitation forcing contributes to the ET uncertainties (>90%) primarily, and the meteorological
forcing datasets have the smallest impact on the ET uncertainty. This can be explained by the fact that
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ET estimates in arid regions are more governed by water availability (e.g., precipitation) than energy
availability (e.g., net radiation).
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4. Summary and Conclusions

We quantified evapotranspiration uncertainties for five West African climate regions for the
2007–2011 period. Uncertainty is defined as the standard deviations, and the analysis is performed
using four LSM-based and four diagnostic ET estimates. Results show clear regional ET uncertainty
variations, increasing southward from the hyper-arid to humid regions. Diagnostic ET datasets show
lower uncertainties and smaller seasonal variations than the LSM-based ET datasets, particularly in
the humid climate regions and semi-arid region. This suggests that assimilating diagnostic ET datasets
into LSMs or hydrological models could improve ET simulations. This finding is supported by a recent
study that assimilated MODIS-based actual ET data and showed improved simulated discharge [56].
The NASA LIS system incorporates a data assimilation (DA) framework and supports a variety of
model and DA type approaches, which could support future ET assimilation studies, accounting for
uncertainty in the model and observational ET reference-type datasets (e.g., MODIS products).

In addition to the ET uncertainty quantification, we demonstrated that LSMs have the biggest
impact in humid regions, contributing to more than 90% of simulated ET uncertainties. Also,
the seasonal variation of the ET uncertainties is mostly affected by the uncertainties attributable to
LSMs. Humid regions have ET values close to PET. This can be explained by the fact that the model
physics differentiate most in their parametrization of evaporative stress when conditions are closer to
potential ET. The precipitation uncertainty has higher influence on ET uncertainty in all West African
climate regions than the net radiation uncertainty. Specifically, in both hyper-arid and arid regions,
precipitation has the biggest effect on the modeled ET estimates. The sensitivity analysis reveals that
the modeled ET estimates are more sensitive to the uncertainty of net radiation in arid regions and
precipitation in humid regions, respectively.

Major rivers, wetlands, lakes, and floodplains flowing through arid regions, such as the Niger
River and, in particular, its inner delta, located in Mali, are main sources of evaporation. However,
this process is neglected in all LSM-based ET estimates used in this study. As a result, the actual
ET rates over West Africa could be higher than what has been reported in the literature and also in
this study. These limit our approach to quantify ET uncertainty and analyze error sources of our ET
datasets. Also, further studies based on more diversified LSM attributed from a choice of different
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land cover datasets, vegetation parameters, and soil physics are recommended to better quantify the
uncertainties of the model ET estimates.

Multiple land surface models are used in Land Data Assimilation Systems (LDAS) such as
Global LDAS (GLDAS), North American LDAS (NLDAS), and FEWS NET LDAS (FLDAS) to increase
simulation skill along with the use of hybrid forcing ensembles [57,58]. Also, a multi-model ensemble
framework is used to develop estimates of model uncertainty and understand the level of similarity
and dissimilarity between the constituent models. The utility of the multi-model ensemble can be
increased when sufficient dissimilarity among the constituent models is guaranteed. The results from
this study could suggest that by including certain LSMs to these LDAS, additional information would
be provided for enhancing the water availability monitoring for agriculture and livelihoods in Africa.
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