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Abstract: Underestimation of LiDAR heights is widely known but has never been evaluated for
several sensors and for diverse types of ecological conditions. This underestimation is mainly linked
to the probability of the pulse to reach the ground and the top of vegetation. Main causes of this
underestimation are pulse density, pattern of scan (sensors), scan angles, specific contract parameters
(flying altitude, pulse repetition frequency) and characteristics of the territory (slopes, stand density
and species composition). This study, carried out at a resolution of 1 × 1 m, first assessed the
possibility of making an adjustment model to correct the bias of the digital terrain model (DTM), and
then proposed a global adjustment model to correct the bias on the canopy height model (CHM).
For this study, the bias of both DTM and CHM were calculated by subtracting two LiDAR datasets:
high-density pixels with 21 pulses/m2 (first return) and more (DTM or CHM reference value pixels)
and low-density pixels (DTM or CHM value to correct). After preliminary analyses, it was concluded
that the DTM did not need specific adjustment. In contrast, the CHM needed adjustments. Among
the variables studied, three were selected for the final CHM adjustment model: the maximum height
of the pixel (H2Corr); the density of first returns by m2 (D_first); and the standard deviation of
nine maximum heights of the neighborhood cells (H_STD9). The modeling occurred in three steps.
The first two steps enabled the determination of significant variables and the shape of the equation to
be defined (linear mixed model and non-linear model). The third step made it possible to propose an
empirical equation using a non-linear mixed model that can be applied to a 1 × 1 m CHM. The CHM
underestimation correction could be used for a preliminary step to several uses of the CHM such as
volume calculation, forest growth models or multi-temporal analysis.

Keywords: LiDAR; canopy height model; digital terrain model; pulse density; LiDAR metrics;
stand structure

1. Introduction

Airborne LiDAR (Light Detection and Ranging) has been beneficial in the field of forestry for
several years because of its ability to produce very accurate information about terrain [1,2]. Among
the information obtained from LiDAR data, vegetation height is an important variable for forest
management. Furthermore, metrics related to height are key explanatory variables for many attributes
such as volume [3–5] or biomass [6,7]. The height is therefore used extensively, despite the fact that it
is well known for underestimation [8,9].

Several measurable factors have been proposed to explain underestimations, including: (i) pulse
density, (ii) pattern of scan (sensors), (iii) scan angles, (iv) contract specific parameters (flying altitude,
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pulse repetition frequency), (v) territory characteristics (stand density and species) and (vi) ground
overestimation [10–28].

Lefsky et al. [25] determined that pulse density is the principal parameter determining tree height
underestimation. According to several other studies, pulse density has an impact on underestimations
of height, depending on the scale of the study and on the mean pulse density of the LiDAR survey.
Bater et al. [24] analyzed, at plot scale, the impact of different pulse densities at the maximum height,
and concluded that maximum height was significantly different between pulse densities varying
within 2% to 4%. Treitz et al. [23] also studied the impact of pulse density (3.2 pulses/m2 decimated
to 0.5 pulses/m2) on several forest inventory variables such as tree top height, but concluded that at
plot scale, the pulse density had no significant effect on tree top height. Furthermore, at a tree scale,
Sibona et al. [17] concluded that heights obtained by LiDAR were not significantly different to those
measured in the field for pulse densities higher than 5 pulses/m2. Moreover, Yu et al. [27] demonstrated
that height underestimation increased as the pulse density decreased and that the underestimation
between 2.5 and 5 pulses/m2 was greater than between 5 and 10 pulses/m2. Additionally, Naesset
& Okland [26] stated that the most efficient way to increase the height precision is by increasing the
pulse density. Finally, Roussel et al. [10] demonstrated that at a 4 m2 scale, for a pulse density of
21 pulses/m2 or higher, underestimation would be smaller than 0.10 m. The authors also analyzed
the scale effect and concluded that for the same density, the scale also significantly impacted the
underestimation [10].

Other parameters may also influence the underestimation of the height. First, the scan pattern
used influences the distribution of pulses and therefore the pulses/m2. Optech and Leica sensors
use oscillating mirrors, while Riegl uses a rotating polygon. The first category produces zigzag scan
lines (heterogeneous distribution of pulses), while the second uses parallel scan lines (homogeneous
distribution of pulses) [11]. Second, scan angles influence the estimation of forest height. The effect
of this factor is different, depending on the forest structure [12]. For example, Holmgren et al. [13]
simulated four different forest types to evaluate the underestimation caused by scan angles. Their
results show that long crown species like spruce are more affected than short crown species like
pine. Furthermore, dense stands are less affected than sparser stands. Montaghi [14] compared
scan angles at nadir with scan angles between 0 to 20 degrees, and concluded that scan angles
smaller than 20 degrees have no significant impact on stand measured height. Third, higher flying
altitudes or increased pulse frequencies reduce the pulse intensity, and thus, require larger and denser
backscatter areas to return the pulse to the sensor. Ultimately, lower pulse intensities increase the
pulse penetration into foliage, and thereby, underestimate height [15]. Hopkinson [15] varied pulse
intensities between surveys for 24 plots and demonstrated that decreasing pulse intensity lead to an
increase in foliage penetration varying from 0.15 to 0.61 m with other parameters remaining constant.
Fourth, height underestimation is also influenced by crown shape [16], stand density and species
composition [8,17,18]. Sibona et al. [17] showed between three species that European larch had the
smallest mean absolute difference (0.95 m) compared to scots pine and European spruce, which had
respective underestimations of 1.4 m and 1.13 m. Furthermore, Yu et al. [27] demonstrated that
underestimation varied according to species. In order, pine is the most affected, followed by spruce
and birch. Finally, height underestimation is also influenced by an overestimation of the digital terrain
model (DTM). Hyyppä et al. [28] demonstrated that DTM error varies according to slopes, undergrowth
vegetation and forest cover type. Indeed, slopes can lead to overestimations, in part due to beam
divergence. Beam divergence has a greater effect on steep slopes than on flat ground. This divergence
causes horizontal errors, and consequently, on steep slopes, vertical errors [19,28]. Tinkham et al. [19],
for example, demonstrated that a slope greater than 30 degrees has a significant vertical DTM error
and that vegetation structure has no significant impact on the DTM values. Also, Hyyppä et al. [28]
demonstrated that DTM accuracy gradually decreases as the slope increases. Furthermore, the authors
show that resulting DTM error in forested areas is greater than in open areas. Finally, dense stands [20]
and understory vegetation [21] increase DTM overestimations.
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In conclusion, factors influencing the precision of altitude values from airborne LiDAR depend
on two main elements: (i) the capability of the pulse to reach the ground [19,22], and (ii) its probability
to hit the canopy. Both phenomena are analyzed in this work in order to evaluate their quantitative
impacts and to calculate models to correct the resulting difference between the reference value and the
value to correct (here and after called bias).

The goal of this study is first to propose an adjustment model to correct the DTM bias,
and ultimately, to propose an adjustment model to correct canopy height model (CHM) bias for a wide
range of site and acquisition conditions. Although several factors have been evaluated separately,
no study has accurately measured these factors and proposed adjustments on DTM and CHM in
a variety of forest conditions.

2. Materials and Methods

2.1. Study Area

A total of 29 study sites covering more than 3500 km2 were selected over a large spectrum of
climatic, topographic and ecological conditions existing in the boreal shield ecozone (Figure 1). Each
site is covered by two different LiDAR datasets acquired within half of a growing season in order to
minimize the differences caused by vegetation growth. All study sites were located in the province of
Quebec, Canada (Figure 1).
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The main forest species in the study areas were black spruce (Picea mariana (Mill.) B.S.P.), white
birch (Betula papyrifera Marsh.) and balsam fir (Abies balsamea (L.) Mill.). Several other species were
present, such as trembling aspen (Populus tremuloides Michx.), jack pine (Pinus banksiana Lamb.),
sugar maple (Acer saccharum Marsh.), yellow birch (Betula alleghaniensis Britt.), tamarack (Larix laricina
(Du Roi) Koch.), white pine (Pinus strobus L.), white spruce (Picea glauca (Moench) Voss) and red maple
(Acer rubrum (L.). The study areas were found along a vegetation gradient. From the north to the
south, coniferous (black spruce, balsam fir, tamarack), mixed (balsam fir, white birch, trembling aspen,
yellow birch) and deciduous (sugar maple, yellow birch) tree stands were found. A wide range of
forest attributes and ecological conditions were also covered, as shown in Table 1.

Table 1. Main forest characteristics.

Forest Characteristics Data

Mean annual temperature 0.1 ◦C to 5.1 ◦C [29]

Mean annual precipitation 860 to 1135 mm [29]

Forest cover
Deciduous 25%

Mixed 46%

Coniferous 29%

Growing degree days (>5 ◦C) Mean minimum 900 [30]
Mean maximum 1400 [30]

Range Mean Standard deviation

Height (m) 0–35 11.38 5.71
Crown closure (%) 0–100 72.2 19.1

2.2. LiDAR Data

A total of 30 different airborne LiDAR datasets covered the 29 study sites where some LiDAR
datasets covered more than one site. Main selection criteria were based on the availability of
two airborne LiDAR datasets for the same area within less than half a growth year. These
surveys were acquired between 2011 and 2017 using discrete return sensors 1064 nm in wavelength.
All were conducted in full leaf conditions with overlap between flight lines ranging from 20 to 30%.
All acquisitions had to fulfill accuracy requirements: 0.25 m in XY and 0.50 m in Z axes. The different
characteristics of each sensor are described in Table 2.

Table 2. LiDAR acquisition characteristics by sensor.

Sensors

Characteristics Riegl
LMS-Q680i

Optech ALTM
Gemini

Leica
ALS70-HP

Optech ALTM
Galaxy

Riegl
LMS-Q780

Optech
3100EA

Pulse repetition
frequency (kHz) 80–300 100–142 175–565 200–250 400 70

Ground flight
altitude (m) 700–1000 650–1200 800–1600 1300–1550 400 1250

Z accuracy (m) <0.15 [31] 0.05–0.30 [32] 0.07–0.16 [33] 0.03–0.20 [34] <0.15 [35] <0.15 [17]

2.3. Rasterization

2.3.1. Selection of Resolution

First, working in raster format (DTM and CHM) eliminates the noise due to the choice in the
tree detection algorithm. Kaartinen et al. [36] compared 13 different algorithms in boreal forest
conditions and demonstrated that the chosen algorithm is the main factor influencing tree detection.
Wallace et al. [37] evaluated the influence of point density in tree detection and concluded that
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a minimum density of 5 pulses/m2 is necessary for individual tree level analysis which is higher than
the density used in this study.

Inspired by Vepakomma et al. [38], the optimal grid resolution determined was chosen and relied
on two criteria: (1) to have a minimum number of raster pixels without any return and (2) to have a
maximum number of pixels with 21 pulses/m2 or more. For all of the 30 different airborne LiDAR
grid datasets, rasters were produced with two grid resolution (1 × 1 m and 2 × 2 m). For this study,
1 × 1 m resolution was chosen for all rasters.

2.3.2. Generation of the Rasters

First, ground and non-ground LiDAR returns were classified with LAStools algorithms
(Rapidlasso, GmbH). No filter was applied and the basic settings were preserved. For each of the two
datasets covering a study site, a DTM (reference DTM (DTM_ref) and DTM to correct (DTM2Corr)),
a canopy surface model (CSM) and some of the LiDAR variables detailed in Table 3 were rasterized
by LAStools. DTM was defined as the central altitude value of each pixel obtained by the linear
interpolation of ground returns triangulation and CSM as the altitude value of the highest return
(all returns) by m2. The height value comprised in CHM (reference height (H_ref)) and height to
correct (H2Corr)) were obtained by subtracting the DTM from the CSM. Because the forest structure
influences the height bias [12,13], the maximum height standard deviation was tested as a forest
structure parameter (hereafter called H_STD). Focal statistics from ESRI Spatial Analyst was used to
rasterize several neighbourhood scales (5, 9 and 13 (Figure 2)). All LiDAR variables, their characteristics
and algorithms used are detailed in Table 3. Scan angles were treated in absolute value to take into
account the overlap zone. The minimum and maximum angle per m2 and the average of all scan angle
pulses per m2 were used.
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Table 3. LiDAR acquisition variables calculated.

LiDAR Variables Description Unit
Values Algorithm Used

Range Mean Standard Deviation

First return density (D_first)
Number of first

return or number of
pulses per m2

Pulses/m2 1–20 4.98 3.81 LAStools – Lasgrid

Ground point density (D_ground) Number of ground
point per m2 Pulses/m2 0–20 0.76 1.31 LAStools – Lasground

Scan angles
Minimum per m2 Degrees 0–34 7.29 4.93 LAStools – Lasgrid

Mean per m2 Degrees 0–34 9.15 5.52 LAStools – Lasgrid

Maximum per m2 Degrees 0–38 10.82 6.83 LAStools – Lasgrid

Terrain slopes Mean slopes per m2 Degrees 0–84 8.09 7.71 LAStools – Las2dem

Maximum height standard deviation
for 5 neighbourhood cells (H_STD5)

As described in
Figure 2 Meters 0–26.65 1.95 1.45 ESRI focal statistics of

Spatial analyst

Maximum height standard deviation
for 9 neighbourhood cells (H_STD9)

As described in
Figure 2 Meters 0–25.66 2.73 1.54 ESRI focal statistics of

Spatial analyst

Maximum height standard deviation
for 13 neighbourhood cells (H_STD13)

As described in
Figure 2 Meters 0–26.50 2.37 1.51 ESRI focal statistics of

Spatial analyst
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2.4. Database

2.4.1. Shift in X, Y, Z

To make sure that no shift in X, Y or Z occurred between the two airborne LiDAR datasets, several
analyses based on Vepakomma et al. [38] were made. First, for the planimetry shifts (X and Y), visual
analyses were done. Second, for the altimetry shift (Z), the elevation in bare ground were compared.
Thus, roads were selected in each overlap and the DTMs were then compared in these selected
zones. When the mean difference was higher than 0.2 m, the overlapped datasets were excluded.
This threshold value was determined because this corresponds to the mean LiDAR Z error [39].

2.4.2. Generation of the Database

For each study site, all pixels originating from raster dataset 1 (R1) and having 21 pulses/m2

or more were selected. The DTM altitude (DTM_ref) and the maximum height (H_ref) in this pixel
were calculated and were associated with the values originating from raster dataset 2 (R2), having
D_first values between 1 to 20 pulses/m2. Values associated from R2 are DTM altitude (DTM2Corr),
maximum height (H2Corr) and LiDAR variables detailed in Table 3. Thereafter, the opposite process
was performed: DTM_ref and H_ref from pixels having 21 pulses/m2 or more of R2 were associated
with corresponding values from R1 (Figure 3).
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A database was thus generated where DTM_ref and H_ref enabled respectively, the evaluation of
DTM and CHM biases. The DTM bias was calculated as DTM2Corr subtracted from DTM_ref and the
CHM bias as H2Corr subtracted from H_ref. For graphic representations, a positive bias represented
a height underestimation and a negative bias a height overestimation. The choice of pixels having
21 pulses/m2 or more, as reference value pixels, was based on Roussel et al. [10] who suggested that
the maximal height had no significant bias for this type of pixels. Although the two surveys of each
zone were not necessarily flown with the same sensor and the same acquisition parameters, it was
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assumed that these pixel values could be considered as the reference regardless of the sensor type and
the parameters.

Some exclusions have been carried out in the two datasets (1 and 2) in order to minimize false
biases due to anthropic or water level changes between the acquisitions. Thus, pixels located on water
bodies, wetlands, agricultural areas, power lines, or gravel pits have been excluded. This filtering was
conducted using Quebec’s existing ecoforest map [40]. Also, reference value pixels without ground
returns were also excluded because the ground altitude value could be biased from neighbouring cells
interpolation. Furthermore, pixels whose height was smaller than 0.5 m for one of the two datasets
were also excluded in order to avoid adjusting bare soil areas (e.g., roads, recent cuts and gravel pits).

3. Modeling

Modeling the adjustments for DTM and CHM values consisted of three methodological steps
that involved developing first a linear mixed model, followed by a non-linear model, and finally a
non-linear mixed model. These steps were done for both DTM and CHM adjustment models with SAS
(version 9.4, SAS Institute Inc., Cary, NC, USA).

3.1. Linear Mixed Model

For DTM and CHM adjustments, linear mixed regressions were performed to determine the
independent variables contributing to the models. The independent variables tested were H2Corr
(Table 1), LiDAR variables shown in Table 3, the sensor and the study sites. At this point, continuous
variables were converted into classes to find the form of the relationship that reflects the effect of the
variables. The variables D_first and D_ground were already in a class format as integer numbers.
The number of classes per variable were respectively of 13, 8, 8, 8, 3, 9 for H2Corr, H_STD5, H_STD9,
H_STD13, scan angles and slopes. We constructed models having a maximum of three independent
variables including all interactions between them. At the beginning, a limit of three independent
variables was imposed in order to have an easy to use model. To verify that more variables were not
needed, residuals of the other variables were tested in each model. If residuals had revealed that more
variables were needed, the maximum number of variables would have been adjusted.

Random effects among the 26 sites were estimated by testing the intercept coefficient using
conditional and marginal predictions. First, conditional predictions were tested, taking into account
the random effects of the study sites, and second, marginal predictions were tested by omitting these
effects. For each linear mixed model, residuals were tested against all LiDAR acquisition variables to
evaluate if variables that were not included in the fixed effects were explaining the residual variation.

Models tested the influence of D_first, D_ground, H2Corr and H_STD for the three neighborhood
scales (H_STD5, H_STD9 and H_STD13). For the DTM adjustment models, there were no significant
variables. The residuals were tested for sensors, terrain slopes, and scan angles. As a result,
the methodology stopped here for the DTM and no specific adjustments were made.

For the canopy height adjustment models, the significant variables which were selected were
H2Corr, D_first and H_STD9. An analysis of the residuals of these three independent variables
indicated that it was appropriate to remove the pixels with terrain slopes greater than 45 degrees from
the other analyses. Above these slope angles, the distribution of residuals showed a pattern indicating
that this effect should be considered by the model. Even though the three neighbourhood scales for
the height standard deviation were significant, the nine-cell neighbourhood was selected among the
three based on R2 values. Moreover, marginal prediction was selected because the R2 barely increased
when the study site was considered (mean difference of 1%). We concluded that in the case of this
database, the study site (contractor, sensor, flight altitude and pulse frequency) did not influence height
adjustment. Also, this led to a general model applicable to all the conditions tested in this study.

Based on visual observation, H_STD9 greater than five were recoded to five. This manipulation
was applied because theses pixels represented forest canopy opening extremity (Figure 4). In these
pixels, height was very variable depending on where pulses fell. As the adjustment increased with
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STD, unrealistic adjustments were predicted in these areas (8% of the pixels). A final linear mixed
model was performed and an adjustment average was calculated for each combination of variable
class (2080 combinations resulting from 20 D_first, 8 H_STD9 and 13 H2Corr classes). These averages
were the inputs for the non-linear model.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 20 
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3.2. Non-Linear Model

A non-linear model was used to find the shape of the equation. This model was weighted with the
number of observations by class in order to give a more important weight for the more frequent values.

First, to visualize the equation form, one model was made for each H_STD9 and H2Corr class
according to D_first. Thereby, the equation of the global form of the adjustments was simplified in the
following way:

Height adjustment = α + (β • D_firstω) (1)

where α, β andωwere the model parameters.
Second, the estimates of parameter β were visualized for each H2Corr class according to H_STD9.

It was concluded that it was best represented by a linear equation:

β = β0 + β1 • H_STD9 (2)

Thereafter, estimates of β0 and β1 were visualized according to H2Corr. They respectively
followed a simplification of the differential form of the Chapman-Richards equation and of an
exponential curve.

Finally, the visualization of the two other parameters (ω and α) for each H2Corr classes according
to H_STD9 simplified the selection of parameters during the modeling process.

Consequently, the non-linear model final equation was:

Height adjustment = α + ((β0 + β1 • H_STD9) • D_firstω) + εjm (3)
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where:
β0 = (β01 • e(−β02 • H2Corr) × (1 − e(−β02 • H2Corr))) − β00 (4)

β1 = β11 • e(−β12 • H2Corr) (5)

where εjm was the error term of the jth pixel and for the mth study site.

3.3. Non-Linear Mixed Model

The final non-linear model equation was used in a non-linear mixed model to find the fixed
coefficients with SAS® NLMIXED procedure. The random coefficient (δm) was added on the vertical
intercept (α). The database included 3,263,872 pixels. For this model, 50% of the pixels from the
original database of each site were randomly selected and used for the calibration.

3.4. Validation

The other 50% of the pixels were used for the validation. The CHM adjustment model was
validated using this validation dataset. Thus, the model was applied on H2Corr and was compared
with H_ref. The R2, the remaining bias on the corrected LiDAR height and the RMSE were
then calculated.

4. Results

4.1. Selection of Resolution

By increasing the raster resolution from 1 to 2 m, the number of cells having 21 pulses/m2 or
more decreased by 16.9 times and the number of cells without pulse only increased by 9.4 times. Based
on these results, the 1 × 1 m resolution was chosen.

4.2. Shift in X, Y, Z

No planimetry shifts (X and Y) were detected using visual analyses across study sites. An altimetry
shift higher than 0.2 m was detected over three study sites. These study sites were excluded, resulting
in 26 study sites for the analysis.

4.3. Digital Terrain Model (DTM) Adjustment Model

Without any adjustments, the comparison of DTM_ref and DTM2Corr generated a RMSE of
0.25 m and a bias of −0.03 m.

The best linear mixed model that was developed contained only one variable: D_first. The R2 of
this model was 2%. In Table 4, all Pr > [t] are greater than 5%, which demonstrates that predictions are
not significantly different from zero for all D_first. The RMSE and bias for D_first values are shown in
Figure 5 to demonstrate the effect of D_first on accuracy statistics.

Table 4. Marginal predicted means (m) of D_first effect on DTM adjustment linear mixed model.

D_first Estimate Pr > [t] D_first Estimate Pr > [t]

1 −0.045 0.0957 11 −0.016 0.5599
2 −0.040 0.1414 12 −0.013 0.6391
3 −0.036 0.1899 13 −0.012 0.6542
4 −0.035 0.2009 14 −0.011 0.6800
5 −0.033 0.2220 15 −0.011 0.6969
6 −0.028 0.3012 16 −0.012 0.6459
7 −0.026 0.3377 17 −0.015 0.5820
8 −0.023 0.3882 18 −0.018 0.4987
9 −0.021 0.4334 19 −0.023 0.3921

10 −0.019 0.4806 20 −0.029 0.2940
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The second best model also included only one variable: D_ground. The R2 of this model was
exceptionally low (0.05%). As for the previous model, Pr > [t] demonstrates that the model is not
significantly different from zero. Bias and RMSE were calculated for D_ground values as shown in
Figure 6. For this analysis, the D_ground values were between 1 and 10 ground pulses/m2 because
insufficient observations were found above this value.
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4.4. Canopy Height Model (CHM) Adjustment Model

The fixed coefficients of the non-linear mixed model are presented in Table 5 and the random
coefficients according to study sites are found in Table 6. All acquisitions met Z precision requirements
of ±0.50 m. All site random coefficients were lower than this value. The R2 of the final non-linear
model was 22.8%.
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Table 5. Fixed coefficients of height adjustment model for CHM (Equations (3)–(5)).

Coefficients Value p-Value

α −0.9142 <0.0001

β00 0.1196 <0.0001

β01 7.7737 <0.0001

β02 0.0496 <0.0001

β11 2.6155 <0.0001

β12 0.2160 <0.0001

ω −0.3021 <0.0001

Table 6. Random coefficients (δm) of height adjustment model for CHM.

Study Sites * Value p-Value Study Sites Value p-Value

1 0.07 0.0405 14 −0.08 0.0299

2 0.00 0.9338 15 0.27 <0.0001

3 0.25 <0.0001 16 0.08 0.0371

4 0.24 <0.0001 17 −0.01 0.7966

5 0.27 <0.0001 18 −0.08 0.0389

6 0.09 0.0202 19 0.10 0.0073

7 −0.09 0.0868 20 −0.33 <0.0001

8 0.05 0.1967 21 −0.16 0.0006

9 −0.12 0.0107 22 −0.17 0.0006

10 −0.19 <0.0001 23 −0.07 0.0961

11 0.22 <0.0001 24 −0.10 0.0105

12 0.17 0.0009 25 −0.40 <0.0001

13 0.02 0.6196 26 −0.04 0.3022

* Study sites are described in more detail for species and sensors in Appendix A.

Figure 7 shows, for six D_first, the adjustment based on H2Corr and H_STD9 values.
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Finally, H_STD9 is closely related to the forest cover type when compared with the ecoforest
map [40] as shown in Table 7 which represented mean H_STD9 related to the mean H2Corr and forest
cover type. As expected, coniferous stands had higher mean H_STD9 values than deciduous stands
because of their conic shape and more irregular canopy.

Table 7. Mean H_STD9 according to the H2Corr and the forest cover.

Forest Cover Type

Deciduous Mixed Coniferous

Mean H2Corr (m) Mean H_STD (m)

<12 1.27 1.50 2.10

22 to 12 1.69 1.99 2.45

>22 1.90 2.57 3.09

4.5. Canopy Height Models Validation

Based on the validation dataset, RMSE and bias were calculated before and after the regression.
RMSE was 1.46 m and 1.30 m and bias was 0.70 m and 0.02 m respectively, before and after processing
the regression. The mean bias and the RMSE were shown by H_STD9, D_first or H2Corr (Figure 8).
The R2 between the H_ref and H2Corr was 92% (before the adjustment) versus 94% between H_ref
and the corrected LiDAR height (after the adjustment).
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5. Discussion

5.1. Digital Terrain Model (DTM) Adjustment Model

Both D_first (from 1 to 20 pulses/m2) and D_ground (from 1 to 10 ground pulses/m2) had no
significant relationship with the DTM adjustment model. This was probably caused by the fact that
the 1 × 1 m pixels preserved in the study contained at least one pulse. According to Watt et al. [22],
a gradual decline in DTM accuracy can be detected from D_first between 0.7 and 1 pulses/m2. Our
analysis concluded that for a DTM at a 1 × 1 m pixel size, D_first from 1 to 20 pulses/m2 has no
significant difference on DTM altitude accuracy. However, it is important to note that this conclusion is
only applicable at a 1 × 1 m pixel scale. Also, a LiDAR survey with a density of 1 pulses/m2 should be
uniformly acquired at this pulse density to claim an accurate DTM (no pixel without pulse). In reality,
for an acquisition aimed at 1 pulse/m2, some pixels have no pulse at all. These gaps should have
influenced the DTM accuracy, but this study did not cover this aspect. Based on these results, we can
conclude that a user should avoid obtaining pixels without pulses as much as possible to ensure an
accurate 1 × 1 m DTM. In several cases, an average density of 2 to 3 pulses/m2 would be sufficient to
minimize pixels without data. This was similar to Watt et al. [22], who recommended this density for
accurate DTM.

In Figures 5 and 6, the RSME is similar to the sensor accuracy (Table 2) and mean LiDAR
Z error measured by Suàrez et al. [39]. This is also similar to the random DTM errors found by
Hyyppä et al. [28]. In this study, authors demonstrated that DTM error is smaller than 0.2 m for most
of the boreal forest conditions except for the slope where the error is greater.

The fact that significant adjustments are not necessary according to the parameters studied does
not indicate that biases are inexistent in the DTM; this only shows that the parameters do not influence
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its global bias. Therefore, it is possible that within both low- and high-density surveys, biases remain
locally in DTM and subsequently in CHM.

5.2. Canopy Height Model (CHM) Adjustment Model

The CHM adjustment model developed in this study was based on H2Corr, H_STD9 and D_first
as dependent variables. Even though the R2 of the non-linear mixed model is low, 22.8%, the model
is, however, significant and could be applicable over large areas. Some factors could explain this
low R2: randomness in the distribution of LiDAR pulses, and the geographic shift between LiDAR
datasets due to LiDAR precision. Nevertheless, the fact that the biases practically disappeared (0.70 m
to 0.02 m) and that the RMSE was either stable or decreased slightly showed that the model gave
accurate adjustments (Figure 8). These results were similar to those observed by Roussel et al. [10]
who found an almost null bias and a reduced RMSE.

Resulting adjustments obtained from this model, as shown in Figure 7, presented noticeable
observations. First, height adjustment decreased as both D_first and H2Corr increased while H_STD9
decreased. Second, H_STD9 had more impact on the results of the model for smaller H2Corr values.
However, for low H_STD9 values (0 to 1 m), H2Corr values had a very small impact on the results of
the model. Finally, the relationship between variables and resulting adjustments were similar to those
observed by Roussel et al. [10] and Hirata [41]. Indeed, the adjustment followed an exponential curve,
decreasing rapidly from D_first 1 to 10 pulses/m2 and more particularly from D_first 1 to 4 pulses/m2.

Furthermore, when the model gives a negative adjustment it is best not to adjust the height value.
Figure 8 shows that not applying an adjustment instead of a negative adjustment reduced the bias in
low H_STD9, high H2Corr, and high D_first. For D_first greater than 18, it prevented the bias from
being greater after versus before adjustment.

Even though the R2 of the linear mixed model only increased by 1% when the study site was
considered, Table 6 shows some differences amongst study sites. A link between the sensors or the
flight parameters and the difference amongst the sites was not possible with the current dataset.
The addition of study sites in the coming years could make it possible to study such relationships and
reduce the effect of the study sites.

The results demonstrated that the model decreased CHM bias over large areas. However, the user
must take into account several factors. First, even though the equation gives a height adjustment for
1 × 1 m pixels, it is important to take into account that it gives an average corrected height value and
not an exact height value per pixel. Second, it was important not to apply the model on steep slopes
(more than 45 degrees), water bodies, wetlands, agricultural areas, power lines and gravel pits because
these areas were excluded from the model. Third, this model was only applicable on discrete return
LiDAR sensors and in leaf-on conditions. Finally, despite these aspects that the user has to keep in
mind, the study demonstrated that the model could be applied to a very large range of ecological
conditions in the Canadian boreal shield ecozone and to a wide range of LiDAR acquisition parameters.

6. Conclusions

The goals of this study were to propose an adjustment model to correct a DTM bias, and ultimately,
to propose an adjustment model to correct CHM bias for a wide range of terrain and acquisition
conditions. According to our database and the chosen 1 × 1 m resolution, no variable significantly
influenced the DTM correction model and consequently, no models was calculated for DTM. However,
three variables were selected for the final CHM adjustment model based on the database in this study
and the variables studied: H2Corr, D_first and H_STD9. This model resulted a reduction of the mean
bias from 0.70 m to 0.02 m. Also, several notable observations emerged from this study. Among
them, the height adjustment decreased as both D_first and H2Corr increased and H_STD9 decreased.
The H_STD9 variable had more impact on the adjustments of model for smaller H2Corr values.

This study was a first attempt to correct LiDAR heights according to a wide range of conditions:
6 sensors studied, diverse angles or pulse densities and study sites covering 3 500 km2 and located on
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different ecological conditions. Also, results obtained support most of height underestimation studies
in the literature. The CHM underestimation correction is a preliminary step to several uses of the CHM
such as volume calculation, forest growth models or multi-temporal analysis. For example, before
modeling growth with multi-temporal LiDAR data, the underestimation bias on each CHM should be
removed; the present work can thus be used in this context.

Finally, its application on various additional data sets in the near future may result in
an improvement of models, and may provide better analyses of sensor effects.
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Appendix A

Table A1. Metadata of the 26 study sites used for the study.

Study Site/
Dataset 1-
Dataset 2

Dataset 1 Dataset 2 Species Composition
Based on the Quebec

Ecoforest Map [40]
(Max 4 Main Species *)Sensor ** Altitude Frequency Sensor ** Altitude Frequency

1/A-B OPGE 650 125 LEHP 1200 190 BF, BS, WB, TA
2/C-D OPGE 750 125 LEHP 1350 385 BS, BF, WB, JP
3/C-E OPGE 750 125 OPGE 750 125 BF, WB, EN, BJ
4/E-C OPGE 750 125 OPGE 750 125 BF, WB, EN, BJ
5/E-F OPGE 750 125 LEHP 850 250 BS, BF, WB, TA
6/I-J OPGE 650 125 LEHP 1375 385 BF, YB, SM

7/K-L OPGE 950 100 O3100 1250 70 BS, T, WB, BF
8/K-M OPGE 950 100 OPGE 1000 100 T, WP, JP
9/B-A LEHP 1200 190 OPGE 650 125 BF, BS, WB, TA

10/D-C LEHP 1350 385 OPGE 750 125 BS, BF, WB, JP
11/F-G LEHP 850 250 LEHP 850 250 SM, RM, TA, YB
12/G-F LEHP 850–1600 250–320 LEHP 850 250 SM, RM, TA, YB
13/G-H LEHP 850 250 RL680 700 300 WP, RM, TA, SM
14/J-I LEHP 1375 385 OPGE 650 125 BF, YB, SM

15/O-N LEHP 1936 385 OPGA 1300 250 BS, WS, WB, JP
16/P-N LEHP 800–1600 175–330 OPGA 1300 250 WB, BS, WS, YB
17/O-P LEHP 1936 565 LEHP 800–1600 175–330 BS, JP, TA, WB
18/P-O LEHP 800–1600 175–330 LEHP 1936 565 BS, JP, TA, WB
19/H-G RL680 700 300 LEHP 850 250 WP, RM, TA, SM
20/Q-R RL680 900 80 OPGE 800 142 JP, BS, TA
21/S-W RL680 850 240 RL780 850 400 BS, JP, T
22/S-X RL680 1000 240 RL780 850 400 BS, BF, WB, TA
23/U-Y RL680 900 240 RL780 850 400 YB, BF, WB, TA
24/V-Z OPGA 1550 300 RL780 850 400 RM, YB, SM, BF
25/N-O OPGA 1300 250 LEHP 1936 565 BS, WS, WB, JP
26/N-P OPGA 1300 250 LEHP 800–1600 175–330 WB, BS, WS, YB

* Black spruce = BS, White birch = WB, Balsam fir = BF, Trembling aspen = TA, Jack pine = JP, Sugar maple = SM,
Yellow birch = YB, Tamarack = T, White pine = WP, White spruce = WS, Red maple = RM. ** Riegl LMS-Q680i = RL680,
Optech ALTM Gemini = OPGE, Leica ALS70-HP = LEHP, Optech ALTM Galaxy = OPGA, Riegl LMS-Q780 = RL780,
Optech 3100EA = O3100.
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