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Abstract: Unmanned aerial vehicles have become a popular remote sensing platform for agricultural
applications, with an emphasis on crop monitoring. Although there are several methods to detect
vegetation through aerial imagery, these remain dependent of manual extraction of vegetation
parameters. This article presents an automatic method that allows for individual tree detection and
multi-temporal analysis, which is crucial in the detection of missing and new trees and monitoring
their health conditions over time. The proposed method is based on the computation of vegetation
indices (VIs), while using visible (RGB) and near-infrared (NIR) domain combination bands combined
with the canopy height model. An overall segmentation accuracy above 95% was reached, even when
RGB-based VIs were used. The proposed method is divided in three major steps: (1) segmentation
and first clustering; (2) cluster isolation; and (3) feature extraction. This approach was applied
to several chestnut plantations and some parameters—such as the number of trees present in a
plantation (accuracy above 97%), the canopy coverage (93% to 99% accuracy), the tree height (RMSE
of 0.33 m and R2 = 0.86), and the crown diameter (RMSE of 0.44 m and R2 = 0.96)—were automatically
extracted. Therefore, by enabling the substitution of time-consuming and costly field campaigns, the
proposed method represents a good contribution in managing chestnut plantations in a quicker and
more sustainable way.

Keywords: unmanned aerial vehicles; remote sensing; automatic plantation monitoring; chestnut
trees; image processing; photogrammetric processing; multi-temporal analysis

1. Introduction

In the early 1980′s, the European chestnut tree (Castanea sativa, Mill.) assumed an important
role in the Portuguese economy [1]. However, phytosanitary problems, such as: the chestnut ink
disease (Phytophthora cinnamomi) [2,3] and the chestnut blight (Cryphonectria parasitica) [2,4], along
with other threats, e.g., chestnut gall wasp (Dryocosmus kuriphilus) [5] and nutritional deficiencies [6],
are responsible for a significant decline of chestnut trees, with a real impact on production [7]. Thus,
to mitigate the associated risks, it is crucial to establish an effective monitoring process to ensure crop
cultivation sustainability. Usually, chestnut trees health condition assessment relies on time-consuming
and laborious in-field observation campaigns. Alternatively, the use of remote sensing platforms is
becoming attractive in performing dull tasks that are related with land monitoring operations, in which
vegetation monitoring can be included [8].
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Among the different available aerial remote sensing platforms, Unmanned Aerial Vehicles (UAVs)
can provide high-resolution imagery, which is acquired using different sensors with a remarkable
versatility, ease-of-use, and cost-effectiveness [9]. Data resulting from usage of Unmanned Aerial
Systems (UAS, composed of UAV, sensor(s), and ground station), along with photogrammetric
processing, enable reaching advanced data products, such as orthorectified mosaics (orthophoto
mosaics), digital elevation models (DEM), three-dimensional (3D) point clouds, and vegetation indices
(VI). Thus, vegetation monitoring is possible, since these types of outcomes enable vegetation detection
and features extraction, such as tree height, canopy area and diameter, and individual tree counting.
These features help to promote agriculture and forestry sustainability, in both single and multi-temporal
perspectives [9].

Järnstedt et al. [10] used airborne laser scanning (ALS), RGB, and colour infrared (CIR) imagery,
to generate 3D point clouds and high-resolution imagery from forests. In that way, it was possible to
extract vegetation height and perform vegetation monitoring operations while using high-resolution
imagery with cost-effectiveness in comparison to the LIDAR-based approaches. A comparison
between point-clouds driven from imagery and ALS was carried out to evaluate different attributes
in both models—e.g., tree crown diameter and height, basal area, and volume of growing stock.
Zarco-Tejada et al. [11] used a fixed-wing UAV that was equipped with RGB and NIR sensors to assess
olive trees height with discontinuous canopy, through photogrammetric processing. The results
highlighted that an approach based on consumer-grade cameras coupled in a hand-launched
UAV provide similar accuracies to those of the more complex and costly LIDAR systems, which
are commonly used in forestry and environmental applications. Mohan et al. [12] evaluated the
applicability of low-cost consumer grade sensors that were mounted in an UAV for automatic
individual tree detection, using a local-maxima based algorithm on Canopy Height Models (CHMs)
computed from UAV-based photogrammetric processing. In this way, the resulting model only contains
height information from objects above ground.

Regarding the automated Individual Tree Crown Detection and Delineation (ITCD) task, while
using remotely sensed data, it plays an increasingly significant role in the efficient, accurate, and
complete forests monitoring process [13,14]. ITCD algorithms have advanced focusing in two main
goals: the improvement of traditional algorithms to address specific issues and the development of
novel algorithms that take advantage of active data sources or the integration of passive and active
data sources. Wallace et al. [15] used high-resolution LIDAR data acquired from UAS to determine the
influence of detection algorithms and the point density on tree detection. The authors implemented
five different detection routines to directly delineate trees from the point cloud, the determination
of voxel space, and the computation of CHM. The method that used both the CHM and the original
point cloud information achieved the best performance. Liu et al. [16] developed a novel ITCD
approach using airborne LIDAR data in natural forests using crown boundary refinement, based
on the proposed Fishing Net Dragging (FiND) method and segment merging based on boundary
classification. The authors used a machine learning method (random forest) to classify the boundaries
between trees and between branches that belong to a single tree. There were some limitations in their
approach, since FiND is based on watershed segmentation, and might not work well over areas where
the valley shape between trees was not ‘V’ or ‘U’ shaped. Specifically, this limitation becomes serious
in cases where a small tree is close to a neighbouring big tree, resulting in a possible merged tree
crown. Eysn et al. [17] benchmarked and investigated eight ALS-based methods for individual tree
delineation. The authors claim that, in general, all of the methods achieved comparable results for the
matching rates, but they differ in the extraction rates and omission/commission rates.

Ok and Ozdarici-Ok [18] presented an approach to individually detect and delineate citrus trees
based in Digital Surface Models (DSMs) that were computed from the photogrammetric processing
of UAV-based imagery. The basis of their approach was the orientation-based radial symmetry
transform that was designed for an input as a DSM. The approach was tested in eight different DSMs.
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However, this approach detects and delineates every circular object above-ground that reduces its
precision performance.

Regarding the focus of this study, Martins et al. [7] carried out a study addressing chestnut trees
development, while using high-resolution aerial imagery. UAV-based data that was acquired in July
of 2014, at the average height of 550 m (ground sample distance—GSD ~16 cm), was compared with
the 2006 imagery, acquired by the Portuguese Forest Authority for the National Forest Inventory,
with 1 m GSD. The analysis process used by Martins et al. [7] was manually performed while using a
visual sample-based approach in GIS software, which is a time-consuming procedure. The method
that is proposed in this article consists of a fully automatic process to monitor chestnut plantations,
allowing for overcoming the major drawbacks that are associated with manual-based methodologies.
The area and the data presented in [7,19] and representative ground-truth data validate the method.
Algorithmic-driven tree identification and counting, individual extraction of tree height, tree crown
diameter and area features are at the core of the proposed method, aiming to improve data handling,
and processing time, thus ensuring effectiveness towards the outlined goal. Moreover, the proposed
method also supports multi-temporal analysis for a decision support system that correlates with
features extracted from aerial images of the same area, taken at different epochs.

2. Materials and Methods

2.1. Surveyed Area and Data Acquisition

The selection of an UAV for data acquisition is influenced by the specificities of each case study: the
size of the area together with UAV’s autonomy influence the ground sample distance (GSD), which may
make obtaining an acceptable spatial resolution impossible—this considering, of course, the completion
of a single flight. In this specific study, while considering the final purpose of the experiment and the UAV
characteristics, a fixed-wing UAV, the senseFly’s eBee (senseFly SA, Lausanne, Switzerland), was used
to collect aerial imagery. The flights were conducted over a chestnut trees area (438 ha), located in the
Padrela region (Valpaços, Vila Real, Portugal: 41º33′51′′N, 7º29′40′′W), Trás-os-Montes region (Northeast
of Portugal). This region concentrates the highest production of chestnuts in Portugal [20], representing
one of the major agronomical sources of income of the region [21]. Specific software was used to plan the
flights, wherein the user defines the area of interest, flight direction, longitudinal and lateral overlapping,
and GSD (Table 1). At each epoch, two flights respecting the same flight plan were carried out, each one
with a different imagery sensor. A standard RGB sensor and a modified sensor were used to collect colour
infrared (CIR) imagery in RedEdge (RE), green, and blue bands (Table 1). RE is the spectral region where
plant’s reflectance changes from low to high (from 680 nm to 750 nm). These data were acquired on 19
July 2014, 8 September 2015, and 10 July 2017. All of the flights were conducted close to the solar noon
time, minimizing shadows, and the same flight plan was used at 550 m height (GSD ~16 cm). Figure 1a
presents a general overview of the study area. For validation purposes, an extra flight was conducted in
June 2017, using the multi-rotor UAV, DJI Phantom 4 (DJI, Shenzhen, China), in two smaller areas within
the study area, as presented in Figure 1c, at 100 m height (GSD ~ 3 cm). Table 1 summarizes the main
characteristics of the flight campaigns.

Table 1. Flight campaigns (2014, 2015, 2017) characteristics and analysis results. UAV: unmanned aerial
vehicle; GSD: ground sample distance.

Date UAV Sensor and
Resolution

Overlap (%)
(front/side) GSD (cm) # Images Area Covered

(ha)

19 June 2014
Sensefly

eBee

RGB: Canon IXUS
12 7 HS (16.1 MP)

CIR: Canon
PowerShot ELPH
110 HS (16.1 MP)

75/60
16.21 85 RGB

85 CIR 490

08 September 2015 14.99 92 RGB
90 CIR 436

10 July 2017 16.2 86 RGB
84 CIR 517
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same area (200 ha), as shown in Figure 1a with 16.21 cm GSD. 

Figure 1. General overview of the surveyed area: (a) colour infrared (CIR) orthophoto mosaic computed
using data from the flight conducted on July 10, 2017; (b) complex area used for vegetation coverage
validation; and, (c) chestnut plantations used for tree height and tree crown diameter validation.
Coordinates in WGS84 (EPSG:4326).

2.2. UAV Imagery Pre-Processing

Pix4Dmapper Pro software (Pix4D SA, Lausanne, Switzerland) was used for the photogrammetric
processing of the UAV-based imagery. The following processing pipeline was applied: (1) imagery
coregistration—data corresponding to each sensor was separately processed in different projects and
throughout the identification of common point (tie points), allowing for the generation of a sparse
point cloud of the surveyed area, for each sensor’s imagery; (2) project merging—both blocks were
aligned relative to each other by using points that are clearly identifiable in the imagery and then
merged and geometric correction was applied using ground control points (GCPs), using both natural
features and artificial targets that are deployed in the area [19]; (3) dense point clouds computation–
two dense point clouds were computed (RGB and RE) using an high point density; (4) point clouds
combination—finally, the two sets of point clouds were combined, increasing the total number of points,
and ensuring, this way, height information for most of the trees, as shown in Figure 2. Orthorectified
mosaics, DSM and DTM were the main outcomes that were generated from this pipeline. Data from
each flight campaign has resulted in an excess of area surveyed and different GSDs (Table 1). As such,
a section was chosen and resampled to meet the same area (200 ha), as shown in Figure 1a with
16.21 cm GSD.
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Figure 2. Differences in the dense point clouds generated from data of each sensor: (a) RGB; (b) colour
infrared; and, (c) combination of both. Example of areas that benefited from the merging process
are highlighted.

The CHM is computed by subtracting the DTM from the DSM, which makes it almost invariant
with respect to terrain’s slope, as illustrated in Figure 3. The use of CHM is crucial, since it allows
for obtaining the height of the objects above ground level, enabling the filtering of undergrowth
vegetation, such as grass and shrubs, and only analysing the vegetation of interest—in this specific
case, chestnut trees.
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Figure 3. Computation of the canopy height model (CHM) obtained from the digital terrain model
(DTM) and digital surface model (DSM): (a) profile line upon four chestnut trees; (b) DTM and DSM
profiles; and, (c) resulting CHM profile line computed from the subtraction between the DTM and
the DSM.

Regarding the geometric correction of the obtained photogrammetric processed data, and from
a multi-temporal analysis perspective, it is mandatory to assure a subpixel alignment of all the
epochs, otherwise the results may be biased. The used UAVs’ navigation system includes a Global
Navigation Satellite System (GNSS) receiver, with a positional accuracy of a few meters. Thus, the
georeferencing that is achieved by this equipment does not follow the image’s pixel resolution, only
enabling an approximate location. Therefore, it is necessary to use tie points to refine the external
camera orientation. Ground Control Points (GCPs) must be distributed throughout the surveyed area
in order to avoid significant errors [22]. However, not only should good GCP coverage be done, but
also independent check points should be used to verify the quality of the extracted products. In an
urban environment, especially when road markings are present, it is relatively easy to find well-defined
points that can be used as GCP. However, in the specific case of this study, it was not always possible
to apply this method. In fact, only a few areas that were occupied by man-made objects allowed for
the identification of such points. As such, the option was to use targets (approximately with 1 m2

area [19]) with centre-marked crosses, placed before the flight at selected locations, and fixed with
metal studs (see Figure 4). In total, 16 (6 natural + 10 artificial) GCPs and 20 natural check points were
used in every flight.
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Figure 4. Example of an artificial ground control point (GCP) measuring 100 × 100 cm: (a) being
surveyed with a global navigation satellite system (GNSS) receiver placed in the middle of the marker,
(b) aerial image taken by the unmanned aerial vehicle. In the left, RGB representation, and in the right,
colour infrared representation.

The imagery geocoding was performed while using the 16 GCPs and the alignment quality
assessment was carried out using the 20 check points. For this case study, horizontal check points are
the most important, since they allow for controlling the geometric alignment of the different outcomes,
which crucial in implementing the multi-temporal analysis. These points are relatively simple to
acquire, since surveys of real time kinematic (RTK) GNSS can be quickly acquired in the marked points.
A GNSS receiver, in RTK mode, with an accuracy of approximately 2 cm, was used. For a check point
of coordinates (E, N), the residuals are calculated by subtracting the coordinates that were measured
by GNSS (EGNSS, NGNSS) and the corresponding point on the corresponding point interpolated over
the reference (ref ) orthophoto mosaic. The overall accuracy is given by the root mean square error
(RMSE), for the n observed check points, as in Equation (1). The mean and the standard deviation can
also be determined to assess whether some systematic trends may exist in the data. However, the final
results will not be influenced, since the orthophoto mosaics were independently geocoded and the
distribution and geometry of the GCPs remained [23].

RMSEE,N =

√√√√√ n

∑
i = 1

(
Ei,re f − Ei,GNSS

)2
+
(

Ni,re f − Ni,GNSS

)2

n
(1)

Depending on the combinations of campaigns, the reference orthophoto mosaics may vary.
The oldest orthophoto mosaics was used as reference and then the differences between the coordinates
of the remaining two epochs were computed to assess the geometric quality of the alignment.

2.3. Proposed Method

The outputs that are described in Section 2.2 were processed to extract the chestnut trees features.
Figure 5 shows the main steps of the method that was developed in this research. The different steps are
described in detail in the next sub-sections. Two imagery data sets (RGB and CIR orthophoto mosaics)
and the CHM are loaded as inputs to fully exploit the proposed method. It should be noted that the
method remains functional, even if RGB or CIR images are individually used as input. This way,
the proposed method still fully operational, even in the cases where only imagery resulting from
cost-effective platforms, which normally only supports RGB sensors, is available.
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In addition, the proposed method also supports multi-temporal analysis, enabling the temporal
vegetative evolution monitoring of chestnut plantations.

2.3.1. Segmentation and First Clustering

The first step relies on the preliminary selection of pixels that represent all of the vegetation,
mainly associated to chestnut trees. To achieve this, common segmentation thresholding techniques
are not appropriate, since those techniques will not distinguish between vegetation and non-vegetation
areas, resulting in an image with other objects besides vegetation (e.g., infrastructures, bare soil, roads,
and the possible shadowing effects from the chestnut trees canopy). To overcome this issue, the use
of broadband spectral VIs was considered. A comparison of different segmentation techniques and
vegetation indices was conducted to select the most performant. Appendix A presents the results of
this study.

The image resulting from the application of VI-based segmentation (Figure 6b) enables the
creation of a vegetation mask by applying the Otsu’s method [24] (Figure 6c). From this selection,
a binary image is created that contains all of the pixels that potentially correspond to vegetation.
The same approach is applied to the CHM being binarized using a height threshold, then both binary
images are joined with a logical AND operation. Next, a set of morphological operations is applied
to the thresholding operation result. A 3 × 3 morphological structuring element is used for the
open operation (to remove small objects from the foreground), and to the close operation (to remove
small holes in the foreground, changing small islands of background into foreground). Thus, the
implemented morphological operations allow for simplifying the resultant binary image by improving
the detection of sets of interconnected pixels C (i.e., clusters of pixels), forming a set of all clusters C,
where C ∈ C, which enables the individual analysis of the regions. When located close to each other,
the larger trees may be represented as being connected in the binary image (overlapped trees) and,
consequently, grouped into the same cluster (Figure 6d).

To prepare the proposed method’s step 2—cluster isolation—a data structure is created with
individual cluster parameters. Those parameters are retrieved from the binary image and they
are composed of the clusters’ area and centroid. The cluster’s centroid is crucial in associating an
identification (ID). At this stage, the cluster’s area value will be used to find clusters that represent
inter-connected trees.
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Figure 6. Segmentation and first clustering: (a) the original colour infrared image; (b) colour-coded
image resulting from the application of ExRE vegetation index; (c) binary image resulting from both the
threshold and morphological operations; and, (d) clusters including connected trees highlighted in red.

2.3.2. Cluster Isolation

The approach that is applied in the first step of the method can correctly remove most of the
non-vegetative areas, allowing for the detection of large vegetation areas. However, even though
chestnut trees plantations for chestnut production are usually evenly distributed across the field, their
canopy can grow considerably in height and width, forming connected tree crowns, resulting in clusters
with interconnected pixels that may include several trees, in the segmented images. Due to this fact, it
is necessary to individually distinguish each tree for precise chestnut trees’ monitoring. To achieve
this, an individual analysis per cluster C, detected in the first step, needs to be performed. Chestnut
plantations generally have a group of trees that typically depict the tree canopy coverage area. As such,
the presence of interconnected trees can introduce significant differences on clusters’ area, which can
result in a skewed distribution. Therefore, the statistical mode of this set of values—that represents the
value appearing most often, i.e., the value that is most likely to be sampled—is determined and a 10%
threshold is applied to this value. Clusters’ area mode is used to define the reference area (AMo), which
will then be compared—in an iterative process—with the area of each detected cluster AC. Areas
higher than AMo are divided by it, to estimate the number of trees (T̂) present in each cluster, as shown
in Equation (2). Figure 7a presents an example of clusters meeting this condition.

T̂ =

⌊
AC

AMo

⌉
(2)

Afterwards, a morphological operation of erosion (see the example of Figure 8) is performed.
It consists in interactively removing a line with a pixel thick from the borders, until a new cluster is
formed. This new cluster is removed from the selection and the process continues until T̂ is achieved
(Figure 8b). Finally, the application of the thickening morphological operation to properly separate
the clusters by using a one pixel-thick line reverses the process (Figure 8c). This process is achieved
by adding pixels to the boundaries of the unconnected clusters (as shown in Figure 7b), nevertheless
preserving the total number of clusters, without connecting them. The resulting image is also known as
skeleton by zone of influence (SKIZ). Figure 7c presents an example of this operation, being highlighted
in red. The SKIZ mask is then used to separate the initially connected clusters by performing per-pixel
binary AND operation, resulting in the disconnection of the previously connected clusters. The newly
created clusters will be submitted to a second pixel clustering to update the original set, created in
step 1. Figure 7d presents the result of this operation, highlighting the separated clusters.
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Figure 7. Cluster isolation operation applied to an entire chestnut plantation: (a) clusters with area
higher than the reference area value, highlighted in red; (b) eroded image; (c) skeleton by zone of
influence boundaries, in red, on top of the eroded image; and, (d) image with the separated clusters
highlighted in red.
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Figure 8. Cluster isolation process: (a) original cluster composed by five connected chestnut trees;
(b) clusters resulting from the morphological erosion operation represented with their centroids; and,
(c) effect of the thickening morphological operation, resulting in five unconnected clusters.

2.3.3. Parameters Extraction

At this point, each cluster corresponds to a single tree and their centroids are used to extract the
tree crown diameter, canopy area, and height. Combining the masks that were obtained from the
previous pixel clustering process, it is possible to extract the correct parameters from each chestnut
tree. Regarding the diameter extraction, the centroids are overlapped to the binary image that was
obtained in the method’s second step. The diameter is extracted by measuring each cluster’s Euclidean
distances. Thus, the maximum distance is selected and transposed to estimate each tree’s crown
diameter. The same approach is applied to obtain the tree’s height. However, the height value is
directly extracted from the CHM, by matching the cluster’s centroids with the corresponding CHM and
retrieving the maximum value, which is then assumed to be the tree crown’s top. The mean vegetation
index value per cluster can also be computed. This value can be interesting to assess chestnut trees
vigour and the potential presence of phytosanitary problems.

Furthermore, it is also possible to calculate parameters of the whole plantation, such as the
total number of trees and total canopy coverage area and its percentage, by summing out all of the
individual areas.

2.3.4. Multi-Temporal Analysis

Data acquired in different epochs can be used to create time series, allowing for the comparison
between different periods. It is an excellent tool for the management of chestnut plantations, enabling
the evaluation of their evolution over time both at the plantation scale and at the individual tree
scale. In addition to parameters extraction, it is also possible to detect missing trees and new
plantations over the years, through a multi-temporal analysis. This achieved by applying the
proposed method to different epochs. By overlapping the detected clusters, missing and new trees
can be detected. The implemented multi-temporal analysis can also be performed at the tree crown
level. Performing a pixel-wise comparison between the evaluated epochs achieved the chestnut
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tree canopy growth/decline. The following scenarios may occur: (1) common vegetation in both
epochs—vegetation is present in both epochs in the same pixel (i,j) coordinates; (2) vegetation
growth—vegetation is not detected in the first epoch, but it is detected in the second epoch, meaning a
chestnut tree growth; and, (3) vegetation decline—pixels considered as vegetation in the first epoch that
were not represented in the second epoch. Chestnut trees with a decline percentage greater than 15%
are signalled as potentially having phytosanitary problems, meaning that they need to be inspected
in the field, reducing time-consuming and laborious field inspections. Therefore, these results can be
analysed both at a plantation level and at the individual tree level.

2.4. Validation

To validate the proposed method and the feasibility of the data that was obtained from
photogrammetric processing of the UAV-based imagery, different tests were conducted for different
parameters, namely: VI selection; vegetation coverage area assessment; number of detected trees; and, tree
crown diameter and tree height estimation. This way, five test areas were selected for this purpose. All of
the chestnut trees present within each area were manually segmented for validation purposes. The first
test area represents about 23% of the whole surveyed area (46.89 ha), as presented in Figure 1b. The area
was selected, since it includes several types of elements/objects. Beyond recently planted chestnut trees,
non-controlled chestnut plantations, several vegetation outliers (e.g., lawns), and infrastructures, such as
buildings and roads cover the area. It was considered to analyse the general behaviour of the method
when facing outliers and it was only tested in vegetation coverage area. Apart from this area and since
the proposed method focus is the monitoring of chestnut plantations, four other chestnut plantations
were selected and analysed as the test areas (Figure 9). Plantation #1 (Figure 9a) has approximately 1.45
ha, Plantation #2 (Figure 9b) has 1 ha, Plantation #3 (Figure 9c) has an area of 0.26 ha, and the area of
Plantation #4 (Figure 9d) is about 1.3 ha. While Plantations #1 and #2 are composed of fully developed
chestnut trees, Plantation #3 has chestnut trees at different development stages and Plantation #4 is mainly
composed of more recent chestnut trees. These four areas were used for determining the area coverage,
assessing the number of trees detected, and for selecting the optimal vegetation indices (Appendix B).
Reference masks of these areas were manually created for the three available flight campaigns.
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2.4.1. Vegetation Coverage Area

The purpose of this validation is to evaluate the behaviour of the proposed method in the
detection of chestnut trees vegetation. The method was applied in a large and heterogeneous area
(Figure 1b) with different vegetation covers, in an uncontrolled environment, and to four different
plantations (Figure 9). The computational time of the algorithm to perform in the complex area was
measured to be compared with the time that is required to manually create the reference mask of
the same area. Validation was conducted comparing the method’s obtained results with the binary
images that were created from the manual segmentation. This way, each pixel (i,j) was analysed,
and it is classified as being true and false positive (TP/FP, exact/over detection), which refer to the
number of correct/incorrect pixels that are classified as chestnut vegetation and similarly true and
false negatives (TN/FN, exact/under detection) for non-chestnut trees vegetation. For this purpose,
different parameters were evaluated, namely: producer’s accuracy, user’s accuracy, and the overall
accuracy. Producer’s accuracy is obtained by the percentage of how many pixels on the map are
correctly labelled as corresponding to chestnut and to non-chestnut vegetation, encompassing errors of
omission. User’s accuracy is obtained by the percentage of all pixels that were identified as a chestnut
and non-chestnut vegetation that were correctly identified, encompassing errors of commission.

2.4.2. Number of Detected Trees

This validation consisted in the comparison of the number of trees that were detected by the
proposed method with the real number existing into a specific plantation at a specific epoch. Since
the area that is used for vegetation detection validation contains thousands of trees, which makes the
segmentation difficult, it was decided to use a controlled environment consisting of the four different
plantations (Figure 9). The selection was done assuring the representativeness of most real cases
present in the study area.

In what regards this validation, different parameters were evaluated: (1) good detection—the
three was correctly detected when compared with the reference mask; (2) missed detection—the tree
was not detected; (3) extra detection—corresponding to a wrongly detected chestnut tree; (4) over
detection—a single chestnut tree being classified in multiple clusters; (5) under-detection—multiple
trees classified in a single cluster; (6) larger detection—tree is larger than its actual size; and, (7) smaller
detection—chestnut tree is smaller than its actual size.

2.4.3. Tree Height and Crow Diameter Estimation

To validate trees height estimation, 12 chestnut trees, as presented in the right side of Figure 1c,
were measured in the terrain using a laser rangefinder with a precision of ± 20 cm (TruPulse 200,
Laser Technology, Inc., Colorado, United States of America). Chestnut experts from University of
Trás-os-Montes e Alto Douro have consistently monitored Padrela’s region regarding chestnut trees
cultural practices, environmental context, phytosanitary conditions, and an evolution, in recent decades.
This monitoring activity resulted in several publications [1,7,19,25–30], which conclude that both cultural
practices and environmental context are identical throughout the region. Therefore, the 12 trees selected
from plantation #2—the selection was made based on the main characteristics of an adult chestnut tree,
well represented in this Plantation—can be considered representative for the entire area under study.
Regarding tree crown diameter estimation validation, two groups of trees were selected: the 12 trees
that were used for the tree height estimation validation composed the first group and 28 chestnut trees
composed the second group (both areas presented in Figure 1c). These measurements were obtained in
the 2017 flight campaign day. Tree crown diameter were obtained by tape measuring. Two measurements
were considered that corresponded to the four quadrants and the mean value was used as ground-truth.
These values were compared with those that were estimated from the proposed method. Finally, a
comparison was performed and the overall agreement between the observed in-field measurements (o)
and the root mean square error (RMSE) verified the estimated values (e), as in Equation (3), where n
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represents the total number of analysed trees. In general, RMSE is a good metric to evaluate (punctually)
the quality of the method’s measurements.

RMSE =

√
∑n

i = 1(ei − oi)
2

n
(3)

The coefficient of determination (R2), which consists in a statistical measure of how close the data
is to the fitted regression line, was also calculated.

3. Results

This section presents the results of accomplishing the validation procedures that are described in
Section 2.4, concerning the proposed method’s validation and extracted features reliability. Moreover,
a multi-temporal analysis, by applying the proposed method to four chestnut plantations in three
different epochs, is also presented.

3.1. Data Alignment

Table 2 presents data from the three campaigns combinations, namely the results from their
accuracy analysis. Analysing the values that were obtained for the residuals mean and standard
deviation—the mean value is close to zero meters and standard deviation is lower than RMSE—means
that there are no systematic errors. The results presented in Table 2 also allows to conclude that the
geometric adjustment between epochs is very similar in less than one pixel. These results validate the
multi-temporal analysis that is performed by applying the proposed method.

Table 2. Geometric quality of the orthophoto mosaics used in the multi-temporal analysis.

Orthophoto
Mosaics

Compared

N.
Checkpoints RMSE (px) RMSE (cm)

Standard
Deviation

(px)

Mean of
Residuals

(px)

Min/max
Residuals

(px)

2014–2015
20

0.61 9.94 0.25 0.06 −0.93/1.28
2014–2017 0.90 14.44 0.38 0.10 −1.12/1.82
2015–2017 0.71 11.38 0.32 −0.04 −1.36/1.03

3.2. Vegetation Coverage Area

Figure 10 illustrates the result of the proposed method, when compared with the manual
segmented image, in an uncontrolled environment (RGB representation presented in Figure 1b).
The proposed method obtained 94.31% of exact detection and an error rate of 5.69%, from which 3.05%
is of under detection (FN) and 2.63% over detection (FP).

According to the manual binary mask, in a total area of 48.2 ha, only 12 ha contains chestnut
trees, corresponding to 25% of the total area. From this area, the proposed method identified 12.2 ha of
chestnuts trees, which corresponded to an over estimation of 1.6%. Producer’s accuracy was around
88% and user’s accuracy is 89.5% (see Table 3 for further results).
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Figure 10. Validation of the vegetation coverage area by comparing the automatic binary mask, in an
uncontrolled environment, produced by the proposed method, with the reference mask, represented in
three colours, overlaid in the orthophoto mosaic, in the left. In the right, contours of the detected trees
of the area marked in the dashed polygon. Coordinates in WGS84 (EPSG:4326).

Table 3. Chestnut trees vegetation coverage results for the bigger and complex area in 2017 epoch and
in four plantations (P#epoch) for the three epochs (2014, 2015, and 2017). Area of true and false positives
(TP/FP) and true and false negatives (TN/FN), in m2 along with producer’s accuracy (PA) and user’s
accuracy (UA) for chestnut vegetation, and overall accuracy (OA) percentage values. Mean values for
the plantation in all parameters are also presented.

Area/Plantation TP (m2) FP (m2) FN (m2) TN (m2) UA (%) PA (%) OA (%)

Complex area 107610 14698 12687 346582 89.45 87.98 94.31
P114 4951 246 365 9630 93.13 95.27 95.97
P115 5096 425 366 9305 93.30 92.30 94.79
P117 5248 187 752 9004 87.47 96.55 93.82
P214 3460 415 186 6355 94.91 89.28 94.23
P215 3632 471 161 6152 95.77 88.51 93.93
P217 3929 446 262 5780 93.75 89.80 93.20
P314 554 57 33 2033 94.42 90.62 96.64
P315 569 75 55 1977 91.20 88.31 95.13
P317 719 149 36 1773 95.25 82.84 93.09
P414 780 44 147 11645 84.15 94.66 98.49
P415 1216 99 299 11002 80.28 92.45 96.85
P417 1648 223 174 10572 90.46 88.09 96.86

Mean of P 2650 236 236 7102 91.17 90.72 95.25

For reference, the manual mask was created in eight hours, while the method was performed in
approximately 10 min using a laptop computer with an Intel core I7-4720HQ CPU @ 2.6 GHz, 8 GB of
RAM, a NVIDIA GeForce GTX 950 GPU with 2 GB of dedicated memory, and a 700 GB HDD. For a
more realistic study, four chestnut plantations, as presented in Figure 9, were selected for evaluation.
Figure 11 shows a visual interpretation of the results. Table 3 provides the results per plantation,
in each epoch, for the parameters that were considered in this evaluation. Producer’s and user’s
accuracy was only evaluated for chestnut vegetation class. Regarding, the non-chestnut vegetation
class was not deeply analysed, but it was higher than 95% in most of cases, with a mean of 97% for
producer’s accuracy and 96% for User’s accuracy.
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Figure 11. Validation of the vegetation coverage area by comparison of the automatic binary mask,
produced by the proposed method, in four chestnut plantations, with the reference mask, represented
in three colours: (a) Plantation 1; (b) Plantation 2; (c) Plantation 3; and, (d) Plantation 4. Left represents
2014; centre 2015, and in the right 2017. Percentage and area of exact, over and under detection are also
presented. Coordinates in WGS84 (EPSG:4326).

When analysing the four chestnut plantations in the three epochs, the mean overall detection
reaches 95%. Evaluating these results in a plantation basis, higher detection values were observed
in plantation #4 (97.4%) and lower in plantation #2, with 93.8%. The remaining plantations reached
accuracies of around 95%. When observing results by epoch, the highest detection rates were obtained
in 2014 (96.3%), whereas 2017 reached the lower mean values (94.2%). As for the 2015 flight campaign,
its mean accuracy value was of 95.2%. The higher values were obtained for plantation #4, in 2014,
and the lowest was 93.1%, for plantation #3. As such, it can be stated that the method is suitable for
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chestnut detection, with accuracy greater than 93% and varying up to approximately 99%, depending
on the plantation characteristics.

3.3. Number of Detected Trees

To evaluate the number of trees detected by the proposed method, the same test plantations that
are presented in Figure 9 (see Figure 1 for location) were used. The results were compared with the
manual counting of the number of trees present in the plantations and the three epochs (2014, 2015,
and 2017) were evaluated. Table 4 presents the obtained results, per plantation in each epoch.

Table 4. Chestnut trees detection accuracy in four plantations (P#epoch) for the three epochs with
number of estimated trees and its detection type.

Plantation Number
of Trees

Estimated Trees
(Variation)

Detection Type (%)

Good Missed Extra Over Under Larger Smaller

P114 146 145 (−1) 97.93 0.69 - - - 0.69 1.38
P115 146 147 (+1) 98.64 0.68 - 0.68 - 0.68 -
P117 148 147 (−1) 97.96 1.36 - 0.68 - - 1.36
P214 80 80 (0) 100.00 - - - - - -
P215 80 80 (0) 97.50 - - - - 2.50 -
P217 80 79 (−1) 93.67 1.27 - - - 1.27 5.06
P314 44 43 (−1) 93.02 - - - 2.33 - 4.65
P315 43 42 (−1) 85.71 - - - 2.38 4.76 7.14
P317 44 44 (0) 86.36 - - 2.27 2.27 6.82 2.27
P414 91 88 (−3) 89.77 3.41 - - - - 10.23
P415 97 89 (−8) 91.01 8.99 - - - 3.37 5.62
P417 93 90 (−3) 92.22 3.33 - - - 2.22 5.56

Mean detection (%) 93.65 1.64 - 0.30 0.58 1.86 3.61

In total, 1092 chestnut trees were included in the analysis. The proposed method was able to detect
1074 chestnut trees. However, six of those corresponded to wrongly estimated trees (approximately
0.5%), i.e., trees classified as extra, over or under detections. Globally, 1068 trees were correctly
classified, representing an accuracy rate of about 98%. This way, exclusively concerning the detection
of chestnut trees (i.e., good, larger, and smaller detections), the method has a mean classification of
99%, per flight campaign. Regarding this detection in a plantation basis, the mean accuracy of all flight
campaigns is also of about 99%, being the lower value corresponding to plantation #3 (approximately
97%). Moreover, no cases of wrongly estimated trees (extra detections) were observed. In total,
19 chestnut trees were not detected (1.7%).

3.4. Tree Height and Crow Diameter Estimation

Figure 12 presents the results that show the relationship agreement between in-field measurements
(ground-truth data) and the measurements that were estimated by applying the proposed method.
The height values ranged from 7.6 m to 10.2 m, with a mean value of 8.8 m. For the model with
16 cm GSD (Figure 12a), the linear regression presents a R2 = 0.79 and a RMSE of 0.69 m, and the
estimated maximum, minimum, and mean values were 10 m, 6.4 m, and 8.2 m, respectively. Using
data resulting from a flight at lower height, there was a significant increase in this parameter accuracy.
Indeed, to test the influence of the flight height in tree’s height estimation, a 100 m height (GSD ~ 3 cm)
flight was carried out with DJI Phantom 4, in the same area. In this case, the accuracy significantly
improved—R2 = 0.86 with a RMSE of 0.33 m (Figure 12b), the maximum, minimum, and mean height
values were also closer to the measured values, being, respectively, 10.2 m, 7.3 m, and 8.8 m.



Remote Sens. 2019, 11, 855 16 of 32

Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 32 

 

accuracy of all flight campaigns is also of about 99%, being the lower value corresponding to 

plantation #3 (approximately 97%). Moreover, no cases of wrongly estimated trees (extra detections) 

were observed. In total, 19 chestnut trees were not detected (1.7%).  

3.4. Tree Height and Crow Diameter Estimation 

Figure 12 presents the results that show the relationship agreement between in-field 

measurements (ground-truth data) and the measurements that were estimated by applying the 

proposed method. The height values ranged from 7.6 m to 10.2 m, with a mean value of 8.8 m. For 

the model with 16 cm GSD (Figure 12a), the linear regression presents a R2 = 0.79 and a RMSE of 0.69 

m, and the estimated maximum, minimum, and mean values were 10 m, 6.4 m, and 8.2 m, 

respectively. Using data resulting from a flight at lower height, there was a significant increase in 

this parameter accuracy. Indeed, to test the influence of the flight height in tree’s height estimation, a 

100 m height (GSD ~ 3 cm) flight was carried out with DJI Phantom 4, in the same area. In this case, 

the accuracy significantly improved—R2 = 0.86 with a RMSE of 0.33 m (Figure 12b), the maximum, 

minimum, and mean height values were also closer to the measured values, being, respectively, 10.2 

m, 7.3 m, and 8.8 m.  

 

Figure 12. Trees’ height estimation validation: comparison between the trees’ height retrieved by the 

proposed method and those measured in-field using a: (a) 16 cm GSD data and (b) 3 cm GSD data. 

Concerning tree diameter validation, analogously to tree height validation, the estimated 

diameter values that were obtained from the proposed method were compared with ground-truth 

data, where the 40 chestnut trees’ diameter ranged from 2.45 m to 12.23 m, with a mean value of 6.71 

m. Figure 13 presents the relationship between in-field measurements and those that were estimated 

by the proposed method. From the data acquired at 550 m (GSD ~ 16 cm), the linear regression 

presents a R2 = 0.92 (Figure 13a), which indicates that the estimated tree crown diameter fits the real 

data in an 92% accuracy rate. As for the RMSE value, an error of 0.44 m was obtained. Regarding the 

minimum, maximum, and mean values that were estimated from the 16 cm GSD data were 2.1 m, 

10.66 m, and 6.73 m, respectively. Concerning tree’s crown diameter estimation that was obtained 

when using the flight conducted at 100 m height (GSD ~ 3 cm), similarly to tree height estimation, 

there was an improvement in this parameter (see Figure 13b). The linear regression presents a R2 = 

0.96 and the RMSE shows a value of 0.44 m, minimum, maximum, and the mean estimated values 

were, respectively, 2.92 m, 11.55 m, and 6.67 m. 

Figure 12. Trees’ height estimation validation: comparison between the trees’ height retrieved by the
proposed method and those measured in-field using a: (a) 16 cm GSD data and (b) 3 cm GSD data.

Concerning tree diameter validation, analogously to tree height validation, the estimated diameter
values that were obtained from the proposed method were compared with ground-truth data, where
the 40 chestnut trees’ diameter ranged from 2.45 m to 12.23 m, with a mean value of 6.71 m. Figure 13
presents the relationship between in-field measurements and those that were estimated by the proposed
method. From the data acquired at 550 m (GSD ~ 16 cm), the linear regression presents a R2 = 0.92
(Figure 13a), which indicates that the estimated tree crown diameter fits the real data in an 92% accuracy
rate. As for the RMSE value, an error of 0.44 m was obtained. Regarding the minimum, maximum,
and mean values that were estimated from the 16 cm GSD data were 2.1 m, 10.66 m, and 6.73 m,
respectively. Concerning tree’s crown diameter estimation that was obtained when using the flight
conducted at 100 m height (GSD ~ 3 cm), similarly to tree height estimation, there was an improvement
in this parameter (see Figure 13b). The linear regression presents a R2 = 0.96 and the RMSE shows
a value of 0.44 m, minimum, maximum, and the mean estimated values were, respectively, 2.92 m,
11.55 m, and 6.67 m.
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3.5. Multi-Temporal Analysis

One of the major advantages of the proposed method, compared to the actual state of the art,
consists of its capacity to perform multi-temporal analysis, both at the tree and plantation levels.
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3.5.1. Plantation-Level Analysis

The data available from the 2014, 2015, and 2017 campaigns was used to perform a multi-temporal
analysis. The number of chestnut trees in the plantation and their respective coverage areas were
compared. The same plantations that are presented in Figure 9 (see Figure 1 for location) were used.
Table 5 shows the occupation area of the chestnut trees in the four plantations for each flight campaign,
along with the mean values of tree height, canopy diameter, and area. Figure 14 shows the evolution
over time of the four chestnut plantations, representing the differences between 2014–2015, 2015–2017,
and 2014–2017 campaigns.

Table 5. Multi-temporal analysis at the plantation level for: total chestnut area, chestnut coverage area
(CA), and mean values of chestnut trees present at the plantation (height, canopy diameter, and area).
Values retrieved from four chestnut plantations in each epoch (P#epoch).

Plantation Chestnut Area
(m2)

Chestnut CA
(%)

Mean Tree
Height (m)

Mean Tree
Diameter (m)

Mean Tree
Area (m2)

P114 5197 34.2 6.2 7.0 36
P115 5521 36.3 6.0 7.2 38
P117 5436 35.8 6.7 7.4 37
P214 3876 37.2 6.6 8.1 48
P215 4104 39.4 6.7 8.5 51
P217 4375 42.0 7.1 8.6 55
P314 611 22.8 3.2 4.4 14
P315 645 24.1 3.9 4.7 15
P317 868 32.4 4.2 5.3 20
P414 824 6.5 4.1 3.6 9
P415 1315 10.4 4.6 4.5 15
P417 1870 14.8 5.2 5.3 21

Regarding the number of trees (Figure 15), plantation #4 presented more changes during the
analysed period, constituting a total of 20 new or missing chestnut trees (10 new trees and 10 missing
trees). Plantation #1 presented a total of four changes: a missing tree and a new tree were detected
in the 2017 period; two new trees were also detected in the 2015 period. Five changes were observed
in plantation #2: two new trees were detected in 2015; and, three were considered as missing in 2017.
When considering plantation #3, four chestnut trees were considered missing, two in each period (2015
and 2017), and four new trees were detected, one in 2015 and three in 2017, performing a total of eight
changes. Potential phytosanitary problems were also detected in all of the analysed plantations.

3.5.2. Tree-Level Analysis

The proposed method is also able to perform a multi-temporal analysis at the tree-level. This is
only possible due to method’s step 3—cluster isolation—where the trees are properly separated.
To illustrate the method’s performance, Figure 16 highlighted the results of ten trees. Those trees refer
to the line of trees that is present in the top of plantation #2 (Figure 9b) and it is used to illustrate the
behaviour of the proposed method.
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Figure 15. Missing trees, new trees and trees with potential phytosanitary problems detected in
the multi-temporal analysis of the chestnut plantations and the period when the detection occurred:
(a) Plantation 1; (b) Plantation 2; (c) Plantation 3; and (d) Plantation 4; and, (e) example of a tree affected
by ink disease from plantation 2.
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Figure 16. Multi-temporal analysis at the individual tree-level: (a) RGB image from 2014 campaign;
(b) RGB image from 2017; and, (c) difference mask retrieved by the application of the proposed method.

Table 6 presents the quantitative results obtained from applying the proposed method to the ten
trees selected.
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Table 6. Multi-temporal analysis at the individual tree-level: canopy coverage area (CA), canopy
diameter (D), and trees’ height (H) estimation for each tree presented in the studied plantation.

2014 2015 2017

ID CA (m2) D (m) H (m) CA (m2) D (m) H (m) CA (m2) D (m) H (m)

1 65.7 10.1 7.2 63.9 9.5 7.4 73.1 10.2 8.1
2 51.8 8.9 7.2 47.1 8.2 6.6 55.4 9.1 6.4
3 45.4 8.4 6.4 43.3 8.1 6.8 59.1 9.3 7.1
4 35.2 7.7 5.6 34.7 7.2 5.5 33.7 7.1 4.0
5 33.7 7.4 5.6 24.7 6.4 5.5 9.2 4.8 4.8
6 39.2 7.3 6.3 37.2 7.2 6.0 45.5 7.9 6.8
7 44.3 7.8 7.0 43.0 7.9 6.8 48.7 8.2 7.2
8 61.9 9.5 8.2 64.5 9.8 8.4 72.1 10.1 8.4
9 54.9 9.2 7.4 55.4 9.5 7.5 63.7 9.5 8.1

10 52.1 8.3 6.7 54.1 8.9 6.9 62.5 9.2 7.7

4. Discussion

4.1. Vegetation Coverage Area

The method achieved good overall results, even in the presence of a complex and larger scenario
(Figure 11), which constitutes an extreme limit situation. For the complex area (Figure 1b), there was
a slight tendency for the method to overestimate chestnut vegetation rather than underestimate it.
Still, both of the values are around 11%. Concerning these errors, it was observed that a large part
of the over detection is related to the difficulty of discriminating some lawns—since there were trees
within the lawns—and due to some undergrowth, which have a considerable height in the CHM,
making it difficult to discriminate. This was also reported in [31]. Regarding under detection, some
errors were observed on the VI in trees that had few leaves and from the CHM in some recent chestnut
trees where the height information was not representative, causing misclassifications from the method.
These problems persist, even when considering higher resolution UAV-based imagery [32,33]. Probably,
those trees may be misclassified due to the absence of leaves, while considering the imagery resolution.
At the same time, this fact may be used in a multi-temporal approach to highlight the trees that are
potentially affected by phytosanitary problems. An important aspect is that non-vegetation features
present in this area were correctly classified as being so, which includes most of undergrowth vegetation
and infrastructures as buildings, which have height values that are similar to some chestnut trees.

It is worth noting that this large area (Figure 1b) is not representative of a chestnut plantation
used for economic purposes. Indeed, most chestnut plantations, namely the more recent ones, follow a
well-defined alignment. In these cases, the method’s performance reaches higher overall accuracies (93
to 99%). However, when excluding non-chestnut vegetation (true negatives: soil and undergrowth
vegetation), the results differ from the overall accuracy. When considering the producer’s accuracy, its
mean value is 90.7%, being that the higher and lower values were reached in the 2017 campaign, for
plantations #1 (96.6%) and #4 (88.1%), respectively. When analysing the results in a plantation-basis,
plantation #1 obtained the higher values in this parameter (94.7%), while plantation #3 obtained the
lowest producer’s accuracy (87.3%). When considering the producer’s accuracy per epoch, this value
is closer, with lower precision in 2017 (89.3%), while the higher values were obtained in 2014 (92.5%).
In 2015, this value was of 90.4%. As for user’s accuracy, which encompasses all chestnut vegetation
present in the image (i.e., also considers chestnut vegetation classified as being not), plantation #4 is the
most influenced by these errors (mean of 85.0%). This fact can be related with the type of trees present
in this plantation—more recent than other plantations—and due to the lack of pixels that represent
each tree at this GSD, which caused the method to not detect part of the canopies. On the other hand,
plantation #2 provided higher rates in all of the seasons, with a mean value of 94.8%. The epoch with
lower user’s accuracy was 2015 (90.1%), followed by 2014 (91.65%) and 2017 (91.7%).
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Despite the mean user’s and producer’s accuracy values being similar (~91%), it can be sated
that the method tends to overestimate chestnut vegetation (FP), rather than underestimate it (FN).
Plantation #1 was the less influenced by FP and FN, while plantation #4 was the most influenced,
especially by FN. These results clearly contrast with the ones that were obtained in the overall accuracy,
where plantation #4 obtained higher overall accuracy (97.4%) the remaining with accuracy around 94%
to 95%. If only accuracy was analysed, the results could be wrongly interpreted, since the non-chestnut
part in some plantations is considerably higher than other plantations. Indeed, the area of FN and FP is
not so different and is, in most of the cases, mainly located in the borders of canopies. This way, when
considering the obtained results, it can be pointed out that plantation #1 was the area with the best
results, while plantation #4 was the less performant in chestnut vegetation detection. Nevertheless,
another aspect is that reference masks were manually created, which means that small errors can
be present.

The proposed methodology was developed with the underlying premise that it was to be used
to detect and monitor chestnut trees plantations whose own characteristics and those of the trees
that constitute them lead to few crown overlaps. Nevertheless, regular development of trees may
bring—even when regarding with ordered plantations—canopy overlaps. These are well resolved by
applying the proposed method (Figure 8). The study area also has some older (and therefore disordered)
chestnut plantations, where the proposed method presented high precision results (Figure 10 right).
As such, the proposed method may be potentially adapted to other plantation types. Nevertheless,
further studies are needed to evaluate this issue.

4.2. Number of Detected Trees

Despite the high accuracy in the results that was obtained in the evaluation of this parameter
(presented in Table 3), some trees were not detected, mostly in cases where trees crown was too small.
This is the case of plantation #4, where the missing detection reached a mean value of 5%, when
considering the three epochs. Being this mainly related to the used data, since flights were performed
at 550 m height, making these small trees almost imperceptible in the image. Moreover, detection
also fails when the trees present few or no foliage due to phytosanitary problems, making it almost
impracticable to detect canopy vegetation through VIs. This is the case of a tree with considerable
size (approximately 50 m2), which was not detected in plantation #2 on the flight campaign of 2017
(see Figure 11b right). However, this apparent limitation constitutes a strong point of the method,
since when applied in a temporal perspective, it allows for the detection of trees that are potentially
affected by phytosanitary phenomena. As for over detection cases, these are related to the method’s
cluster separation in chestnut trees that had an irregular canopy shape, causing it to be divided into
multiple clusters. However, the number of cases is relatively small (mean of 0.3%). In regards to under
detection, it was only verified in plantation #3, being caused by a small tree adjacent to a considerably
larger tree. Larger detections mainly occurred in chestnut trees with a considerable canopy area (see
Figure 11b), in the other hand, smaller detections cases were observed in smaller chestnut trees (see
Figure 11d). The proposed method accuracy is above or in line with the existing similar methods for
tree detection. In Mohan et al. [12], an open canopy mixed conifer forest was surveyed and a total
of 312 trees were detected by their method, from a total of 367 reference trees with an accuracy of
85%, missing 55 trees. However, 46 trees were over detected, performing a total of 358 trees. Ok and
Ozdarici-Ok [18] evaluated individual citrus trees delineation from UAV-based DSMs, and an overall
precision of 91.1% in a pixel-based analysis and 97.5% in the object-based analysis was obtained by
the method. The results from the proposed method are also greater or in line with the ones that were
obtained from the application of complex and expansive LIDAR data [15,16].

4.3. Tree Height and Crow Diameter Estimation

The results that were obtained for tree height and crown diameter estimation are in line or even
better than the ones from another studies. Tree height estimation was the less accurate when comparing
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both parameters. However, when considering that the instrument used in the measurements has an
intrinsic error of about 20 cm, this accuracy is perfectly acceptable [12]. Moreover, some errors can
be related to the used digital elevation models, since the flight was performed at 550 m height (GSD
~16 cm). When considering the differences for the flight performed at 100 m height (GSD ~3 cm), as
expected, there is a direct correlation between height accuracy and image resolution: the better the
spatial resolution the better the reached accuracy. It is worth noticing that, in most cases, the flight
height will be lower than 120 m (UAV regulations [34]), which assures the method’s effectiveness, even
in the estimation of trees’ height. The results prove the effectiveness of the proposed method in the
estimation of structural properties (tree height and canopy diameter) of chestnut trees, with a good
hit rate and with a relatively low error. Zarco-Tejada et al. [11] conducted a tree height assessment
of 152 olive trees, with heights that range between 1.16 and 4.38 m, a R2 = 0.83 and a RMSE of 35 cm
was obtained. Similarly, to this study, the results tended to be less precise in lower spatial resolutions.
Panagiotidis et al. [35] obtained a R2 = 0.72 to 0.75 and RMSEs of 3 m in two plots (48 and 39 trees,
ranging from 15 to 35 m). As for tree crown diameter a RMSE of 0.82 and 1.04 m and R2 = 0.63 and 0.85,
for plot 1 and 2, respectively, with a diameter varying from 11 to 19 m. Díaz-Varela et al. [36] acquired
UAV-based imagery to estimate parameters from olives (150 trees, heights ranging between 1 and
3 m) with 7 cm GSD, obtaining a RMSE of 0.45 (R2 = 0.07) for tree height and for tree crown diameter
obtained an RMSE of 0.32 (R2 = 0.58), with values that range from 1 to 2.5 m. Lim et al. [37] evaluated
tree detection using DSM from photogrammetric processing of UAV-based imagery, and obtained a
RMSE of 0.84 m for tree height coniferous trees and 2.45 m for deciduous coniferous trees, tree crown
width of crown an RMSE varying from 1.51 m to 1.53 m was obtained for each area. Iizuka et al. [38]
obtained a RMSE of 1.7m from heights that ranged from 16 to 24 m. Guerra-Hernández et al. [39]
compared the accuracy in tree detection using ALS and UAV-based imagery in eucalyptus trees with
heights that ranged from 10 to ~20m. The authors obtained RMSE values from 1.83 to 2.84 and
correlation coefficient (r) 0.61 to 0.69. Moreover, it was reported that ALS performed better in steep
slope areas. Guerra-Hernández [40] extracted properties from 52 Pinus pinea L. trees also evaluating
crown diameter and tree height using UAV-based imagery (GSD of 6.23 cm). Obtaining R2 = 0.81 and
RMSE of 0.45m for tree height (7 to 12 m), as for tree crown diameter, the authors found an RMSE of
0.63 m and R2 = 0.95 for tree diameter (6 to 14 m). Pádua et al. [32] obtained R2 values that ranged from
0.91 to 0.96 from an area that was composed mostly by chestnut trees, in flights ranging from 30 to
120 m and RMSEs from 0.6 to 0.33 m. Despite the overall good results, the flights at lower heights had
lower accuracies than flights that were performed higher, it was also reported that double-grid flights
had an increase in accuracy. Popescu et al. [41] obtained R2 from 0.62 to 0.63 for tree crown diameter
estimation and a RMSE 1.36 to 1.41 m using LIDAR data for pines and deciduous trees. Despite
both parameters showing a good regression agreement, further studies must be done, especially by
evaluating recent chestnut plantations composed of trees with lower heights and, therefore, irregular
canopy shapes [33]. Different spatial resolutions can also be evaluated.

4.4. Multi-Temporal Analysis

UAV-based multi-temporal analysis remains a topic not broader explored, and some studies have
focused on this topic. Guerra-Hernández et al. [42] proposed a method for multi-temporal analysis
to monitor the growth of Pinus pinea L. with different treatments. Michez et al. [43] employed a
multi-temporal analysist for riparian forests monitoring. UAVs can carry different sensors, providing
more properties to be evaluated for chestnut trees monitoring, as, for instance, UAV-based thermal
infrared imagery can provide insights on water status level of trees [44,45], or vegetation indices, from
multispectral imagery, to provide plant vigour and disease detection [46].

Concerning the multi-temporal analysis that was conducted in Section 3.5, the four plantations
had a growth in its chestnut canopy area, for the spanned period addressed in this study. The higher
development was observed in plantation #4, with a growth of more than 1000 m2 (126%). A similar
behaviour is also noticeable in the mean tree development values, with +1.1 m in height, +1.6 m in
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canopy diameter, and 11.5 m2 in canopy area. This plantation was mostly composed by younger
chestnut trees when compared to the other plantations, then with a greater margin of development.
The plantation with the lowest development was plantation #1, which had a growth of around
240 m2 (4.6%) in the period of 2014 to 2017. However, a case of chestnut decline was verified in this
plantation from 2015 to 2017 period with −85 m2 (−1.5%). As for the remaining two plantations,
plantation #2 had an overall growth of 499 m2 (12.9%) and plantation 3 growth was 257 m2 (42.1%).
By analysing the obtained results, it can be stated that plantations that contained more recent chestnut
trees had the higher growth rates (plantations #3 and #4), whereas plantations with adult chestnut
trees presented lower growth rates (plantations #1 and #2), which was expected. When observing
the mean chestnut tree parameters per plantation, the higher values were verified in plantation #4, as
previously mentioned, followed by plantation #3, with a mean growth of approximately 1 m for tree
height and canopy diameter, and finally by plantations #1 and #2, which presented 0.5m growth for
tree height, as tree diameter plantation #2 presented a mean growth of 0.5 m and plantation #1 showed
the lower value of 0.3 m. Regarding the mean canopy area, plantation #2 presented 6.9 m2 growth,
while plantation #3 presented 5.5 m2 growth. Again, plantation #1 showed the lower growth value,
being 1.1 m2.

As for the number of trees in the plantations (Figure 15), it was observed that more changes
were verified in more recent plantations (plantations #3 and #4), with this being mainly related
to some chestnut trees that were cut off from the plantation as well with the detection of smaller
trees, whereas the older chestnut plantations presented less changes. Concerning the detection of
potential phytosanitary problems, for plantations #2 and #4, these cases were only verified in data from
2017 campaign. There was one case in plantation #3 of a chestnut tree with potential phytosanitary
problems detected in 2015, which lead to the tree to be removed and become missing in 2017 campaign.
Consecutive decline was verified in two trees from plantation #1. Two trees that were detected in
plantation #4, in 2015, where signalled as potentially affected by phytosanitary problems in 2017.
Thus, the method showed its effectiveness in the multi-temporal analysis of chestnut plantations.
Figure 15e presents a chestnut tree that was infected by ink disease, as observed in the 2017 campaign
at plantation #2. This represents that, despite some problems in the development of young trees and
the presence of phytosanitary problems, there is still an interest in the this crop, as reported in [1,19].

Regarding the results from the multi-temporal analysis of individual trees, as presented in
Section 3.5.2, a growth in the canopy coverage and diameter of the analysed chestnut trees was verified
(Figure 16 and Table 6). However, trees #4 and #5 showed a regression in those parameters. Particularly,
chestnut tree #5 had a coverage area regression of 25.3 m2 (−78%) and a decrease of 3.6 m in its diameter
(−53%). A field campaign confirmed that this decline was due to the chestnut ink disease (Figure 15e).
Apart from these two cases, the chestnut trees that are represented in Figure 16 had an average growth
of 7.5 m2 (+15%) in their canopy coverage area and 0.6 m (+7%) in their diameter. Regarding trees’
height, it was referred before that the model quality influences the measurement quality. However,
chestnuts trees #2, #4, and #5 showed a regression in height well beyond the expected error. Despite
these regressions in the trees’ height, the remaining chestnut trees showed an average growth of 0.4
m (+5%).

This way, the method that is proposed in this study as the ability to individually detect chestnut
trees and to extract dendrometric parameters in chestnut plantations with the ability to perform
multi-temporal analysis and to detect trees with potential phytosanitary problems. When considering
other remote sensing platforms, this approach makes use of the flexibility that is provided by
UASs to acquire data on-demand with higher spatial resolution that other platforms, which cloud
coverage [9] and lower operational costs can also affect, when compared to manned aircrafts [47].
When comparing the UAV-based approach against field surveys, the method can quickly cover larger
areas in a lower temporal window and directing management operations to trees with potential
phytosanitary problems.



Remote Sens. 2019, 11, 855 24 of 32

5. Conclusions and Future Work

An automatic method was developed to assist chestnut tree management operations from aerial
images. The presented research used several types of chestnut plantations with mixed tree density,
size, and background covers, covering most of the real-world scenarios to develop and validate the
proposed method, which includes image segmentation, based on CHM and VIs, and the extraction of
chestnut tree parameters.

For image segmentation, different VIs that are based on NIR and RGB bands combinations were
evaluated on a complex area composed of thousands of trees in a mixed environment. Moreover, a
novel VI was proposed for vegetation segmentation in CIR imagery, ExRE. The segmentation accuracy
on a pixel-based level was evaluated and a rate that is greater than 95% was reached. VIs using NIR
band on its computation allowed for obtaining slightly better results, however the overall RGB-based
VIs performance allows for the proposed method to be applied to aerial images that were acquired
from low-cost consumer-grade cameras, commonly used in UAS.

Experiments were conducted to evaluate the behaviour of the proposed method estimating the
global parameters of chestnut plantations, such as the total vegetation cover area, the total number
of trees, and the trees’ height and crown diameter. The values that were estimated for the proposed
method were compared with ground-truth data obtained in-field measurements. In the case of
vegetation coverage and trees counting, the accuracy was greater than 90%, respectively, 91% and
97%. Regarding parameters that can be adjusted by a linear regression, as the case of tree heights and
crown diameter, two sets of images, obtained at 550 m and 100 m height were used, and the proposed
method fits the model with an accuracy of 86%, with a RMSE of 0.33 m, for the tree heights, and
with an accuracy of 96% with RMSE of 0.44 m for the crown diameters. In the determination of these
parameters, a correlation with the accuracy and the flight height was found. Indeed, the accuracy
increases with image resolution. Thus, at the maximum legal flight height (120 m), the proposed
method performs very well.

In summary, this research has proven that UAV-based imagery is a fast and stable method in
chestnut tree parcel management. The overall results suggest that the proposed method can be used as
an effective alternative to the manual method for monitoring chestnut plantations.

The experiments that were made in the different study plantations allow for us to conclude that
the method is generally used for chestnut trees monitoring. Of course, it is more effective if applied
to parcels that were created for sustainable production. Usually, in this type of plantations, the trees
are distributed in a grid-shape. Moreover, the method would be performant in other plantation sites
(e.g., olives, orchards) so long as they are planted in a grid-shape and the shape of those specific
trees, in an aerial image, is very similar. Research towards chestnut plantations that were affected by
different phytosanitary problems (chestnut ink disease, chestnut gall wasp and nutritional deficiencies)
and how chestnut trees in-season growth is affected is being conducted.

Furthermore, the method allows a multi-temporal analysis, which constitutes a useful and
powerful tool in chestnut plantation management. Therefore, by enabling the substitution of
time-consuming and costly field campaigns, this automatic method represents a good contribution
for managing chestnut plantations, providing equivalent results when applied at the tree-level and
plantation-level studies, both for static and multi-temporal analysis. Thus, the proposed approach
exposed the future potential of UAV-based analysis for plantation monitoring. Future research should
focus on forest monitoring and management, but also in the estimation of individual tree attributes,
such as tree height, crown size, and diameter, and thereby develop predictive models for estimating
biomass and stem volume from UAV-imagery as to discriminate/detect chestnut trees that are affected
by biotic or abiotic problems.
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Appendix A

This appendix presents a comparison of different segmentation approaches for chestnut trees
segmentation. To identify the proper segmentation approach different techniques were considered,
namely: thresholding techniques, the Otsu’s method, and adaptive thresholding; unsupervised
clustering based in K-means; colour spacing thresholding using the Hue Saturation and Value
(HSV) colour space; and based in vegetation indices. This evaluation motivated the selection of
the segmentation approach from the method presented in Section 2.3.

To evaluate these approaches, the area presented in Figure A1 was selected as reference. This area
was selected based on the existence of other features than vegetation, as infrastructures, such as houses
with different roofs, roads, bare soil, and shadows casted by trees canopy.

Remote Sens. 2018, 10, x FOR PEER REVIEW  25 of 32 

 

Acknowledgments: This work supported by the North 2020 - North Regional Operational Program, as part of 

project “INNOVINEandWINE - Vineyard and Wine Innovation Platform” (NORTE–01–0145–FEDER–000038). 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

This appendix presents a comparison of different segmentation approaches for chestnut trees 

segmentation. To identify the proper segmentation approach different techniques were considered, 

namely: thresholding techniques, the Otsu’s method, and adaptive thresholding; unsupervised 

clustering based in K-means; colour spacing thresholding using the Hue Saturation and Value (HSV) 

colour space; and based in vegetation indices. This evaluation motivated the selection of the 

segmentation approach from the method presented in section 2.3. 

To evaluate these approaches, the area presented in Figure A1 was selected as reference. This area 

was selected based on the existence of other features than vegetation, as infrastructures, such as 

houses with different roofs, roads, bare soil, and shadows casted by trees canopy. 

 

Figure A1. Reference area used for the evaluation of the different segmentation approaches: (a) the 

RGB image; (b) colour infrared image; and (c) manually segmented image. 

Otsu’s method is a simple global thresholding technique. It assumes that the image contains 

two-pixel classes following a bi-modal histogram: one class is composed by the background pixels – 

corresponding, in this case, to non-vegetated areas – and the other class is composed by foreground 

pixels, corresponding to vegetation. In this evaluation the method was directly applied to the 

greyscale images of the RGB and CIR images obtaining a binary image after the method application. 

The adaptive thresholding technique differs from the Otsu’s method in the number of used 

thresholds T. Whereas Otsu’s method is globally applied to the image, this approach applies 

different thresholds to sub-regions of the image. Similarly, to the Otsu’s method, this technique was 

applied to the RGB and CIR grayscale images, resulting in a binary image. K-means clustering is a 

non-supervised method that groups pixels in a K number of clusters in accordance with their 

likelihood. In this case the method was applied to the RGB and CIR images of the selected area and 

K was set to two, i.e. it was intended to divide the image into two distinct clusters, one representing 

vegetation and other non-vegetation, the vegetation cluster was then binarized for comparison 

against the manually segmented image. HSV is a colour space composed by Hue, Saturation and 

Value (or Bright), instead of the commonly used RGB colour space. This way, both RGB and CIR 

images were converted to HSV colour space, and the Hue band was used, it contains colour 

information, its thresholding was based in upper and lower limits, Hue values differ from zero to 

one, the values used for the RGB image were between 0.2 to 0.27, corresponding to the green colour, 

whereas, in the CIR case, as vegetation assumes a magenta colour the selected values where located 

between 0.85 to 1. The values within these ranges were then binarized (set to one) whereas other 

values where considered as background (set to zero). The last evaluated approach, which is 

commonly found in studies dealing with vegetation segmentation, is the usage of VI. This way, two 

different VI were applied, the RGBVI to the RGB image and the ExRE to the CIR imagery, these VIs 

Figure A1. Reference area used for the evaluation of the different segmentation approaches: (a) the
RGB image; (b) colour infrared image; and (c) manually segmented image.

Otsu’s method is a simple global thresholding technique. It assumes that the image contains
two-pixel classes following a bi-modal histogram: one class is composed by the background
pixels—corresponding, in this case, to non-vegetated areas—and the other class is composed by
foreground pixels, corresponding to vegetation. In this evaluation the method was directly applied to
the greyscale images of the RGB and CIR images obtaining a binary image after the method application.
The adaptive thresholding technique differs from the Otsu’s method in the number of used thresholds
T. Whereas Otsu’s method is globally applied to the image, this approach applies different thresholds
to sub-regions of the image. Similarly, to the Otsu’s method, this technique was applied to the RGB and
CIR grayscale images, resulting in a binary image. K-means clustering is a non-supervised method that
groups pixels in a K number of clusters in accordance with their likelihood. In this case the method
was applied to the RGB and CIR images of the selected area and K was set to two, i.e., it was intended
to divide the image into two distinct clusters, one representing vegetation and other non-vegetation,
the vegetation cluster was then binarized for comparison against the manually segmented image. HSV
is a colour space composed by Hue, Saturation and Value (or Bright), instead of the commonly used
RGB colour space. This way, both RGB and CIR images were converted to HSV colour space, and the
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Hue band was used, it contains colour information, its thresholding was based in upper and lower
limits, Hue values differ from zero to one, the values used for the RGB image were between 0.2 to
0.27, corresponding to the green colour, whereas, in the CIR case, as vegetation assumes a magenta
colour the selected values where located between 0.85 to 1. The values within these ranges were then
binarized (set to one) whereas other values where considered as background (set to zero). The last
evaluated approach, which is commonly found in studies dealing with vegetation segmentation, is the
usage of VI. This way, two different VI were applied, the RGBVI to the RGB image and the ExRE to the
CIR imagery, these VIs were selected based in the results from the VI selection, see Appendix B for
more information. To segment the vegetation the Otsu’s method was applied to resulting VI images.

The evaluation of the different approaches was based in a pixel-wise comparison against the
manually segmented image (Figure A1c), and three classes were considered, exact detection, over
detection and under detection. The obtained results applied to the RGB and CIR images from the
reference scene are shown in Figure A2.
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Figure A2. Results obtained from the different segmentation approaches of the same area for the RGB
and colour infrared (CIR) images. Exact detection of vegetation areas represented in green and exact
detection of non-vegetation areas represented in black; red represents over detection; and blue signals
under detection.

Table A1 presents the percentage of exact, over and under detection, for each evaluated approach
in the two tested images. According to the obtained results it is possible to conclude that K-means had
a good performance in the CIR image with an exact detection rate of 96%. However, when applied to
the RGB image this rate decreases to 74% with an over detection of 25%. The over detection mainly
corresponds to infrastructures and shadows, being this approach not ideal to apply for vegetation
detection in RGB images. As for the results obtained for the segmentation approach based in the Otsu’s
method, obtained a high over detection rate in the CIR image (18%), the same was verified for the
under detection (17%). When analysing the results obtained from the RGB image the over detection
rate decreases to 2%, however the under detection remains with a considerable percentage (16%).
The adaptive thresholding approach did not provide satisfactory results for both images, the method
obtained error rates higher than 40%. This is due to the method not being capable to discriminate
between shadows and infrastructures from the vegetation since it is based in local threshold values. In
what concerns the results obtained from the HSV-based technique, the results were acceptable in both
tested images. The HSV conversion of the CIR image, showed an exact detection of 96%, although,
in the case of the RGB image it decreased to 84%, being this a considerably acceptable value. However,
the former, suffers from the same problem as other approaches, some outliers were wrongly classified
(shadows and roads). The good detection accuracy in K-means and HSV-based techniques in CIR
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imagery can be explained due to the high reflection of the RedEdge in the vegetation, contributing for
a clearer vegetation discrimination. The VI-based approach obtained the best overall results, with exact
detection rates greater than 93%, being this value higher in the CIR image (96%), still the accuracy
obtained in the RGB image was satisfactory (93%).

Table A1. Results of the performance of the different methods classified in exact, over and under
detection when compared to the manually segmented image of the same area for the RGB and colour
infrared (CIR) images.

Method Image Type Exact Detection (%) Over Detection (%) Under Detection (%)

Otsu
RGB 82 16 2
CIR 65 18 17

Adaptive threshold RGB 59 38 3
CIR 45 46 9

K-means
RGB 74 25 1
CIR 96 3 1

HSV
RGB 84 13 3
CIR 96 2 2

Vegetation index RGB 93 1 6
CIR 96 3 1

This way, when comparing the results of all approaches tested for vegetation segmentation the one
based in VI was the one with the best overall performance for both types of images (94.5% mean value).
The two evaluated thresholding methods (Otsu’s and adaptive) were the approaches with lower exact
detection accuracy with, respectively, 73.5% and 52% mean accuracy in vegetation detection. However,
with image processing these methods provide more accuracy, as de case of the VI-based approach
were the Otsu’s method is applied to the images driven from the VI computation. The K-means
and HSV-based segmentation approaches reached a reliable performance in the CIR image, which
can be explained by the difference caused by the RE band where vegetation has higher pixel values,
although when to the RGB image their performance decreases, their overall accuracy is 85% and 90%,
respectively. Thus, the VI-based approach, more specifically using ExRE for CIR imagery and RGBVI
in the case of RGB images (see Appendix B), corresponded to the selected approach for vegetation
segmentation, since it had better behaviour, in both CIR and RGB images, thus providing a flexible
and robust approach with respect to the type of image being used, with low error rates. These results
motivated the selection of the VI-based approach for vegetation segmentation procedure of the method
proposed in this study.

Appendix B

To select the most suitable VI, a study was accomplished using the 17 VIs listed in Table A2): six
based exclusively on RGB bands and 11 VIs based on RGB and NIR/RE band combinations. These VIs
were chosen due to their potential relevance in vegetation segmentation (highlighting vegetation
areas). The validation was performed in the different areas, in the three epochs, presented in Figure 9
(see location in Figure 1), selected to be representative: recent chestnut plantations, adult chestnut
trees and both types, were included. The proximity between chestnut trees was also considered in the
areas’ selection: plantations with regular space between trees and trees with overlapping canopy areas.
These areas were used as input of the proposed method and the first two phases of method’s step one
were performed (VI application and image thresholding). Results provided by the application of the
VI-based segmentation (binary images) were compared with manual segmentation. To evaluate the
segmentation accuracy, false negative and false positive rates of image pixels were calculated. False
negatives are defined as vegetation pixels that were classified as background pixels (under detection).
False positives are defined as background pixels that were classified as vegetation (over detection).

Over detection values correspond to false positives, i.e., values detected as vegetation but that are
not classified as vegetation in the manual segmentation; and under detection values that correspond to
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false negatives, i.e., values that were classified as vegetation in the manual segmentation but were not
detected as such by the applied VI.

Table A2. List of broadband vegetation indices implemented and tested in the proposed method.

Vegetation Indices Requiring NIR and RGB Bands

Name Equation Reference

Blue Normalized Difference Vegetation Index BNDVI =
N− B
N + B

Hancock and Dougherty [48]

Difference Vegetation Index DVI = N− R Tucker [49]

Enhanced Vegetation Index
EVI = 2.5×(

N− R
N + 6× R− 7.5× B + 1

)
Justice et al. [50]

Excess RedEdge ExRE = 2× ren − gn − bn
Proposed in this study, derived

from ExG
Green Difference Vegetation Index GDVI = N−G Sripada et al. [51]

Green Normalized Difference Vegetation Index GNDVI =
N−G
N + G

Gitelson et al. [52]

Green Soil-Adjusted Vegetation Index GSAVI =
N−G

N + G + 0.5
× 1.5 Sripada et al. [51]

Modified Soil-Adjusted Vegetation Index MSAVI =
(N− R)× 1.5
N + R + 0.5

Qi et al. [53]

Normalized Difference Vegetation Index NDVI =
N− R
N + R

Rouse et al. [54]

Optimized Soil-Adjusted Vegetation Index OSAVI =
1.5× (N− R)
N + R + 0.6

Rondeaux et al. [55]

Soil-Adjusted Vegetation Index SAVI =
N− R

N + R + 0.5
× 1.5 Huete [56]

Vegetation Indices Requiring only RGB Bands

Name Equation Reference

Excess Green ExG = 2× gn − rn − bn Woebbecke et al. [57]

Green-Blue Vegetation Index GBVI =
G− B
G + B

Kawashima and Nakatani [58]

Green-Red Vegetation Index GRVI =
G− R
G + R

Tucker [49]

Modified Green Red Vegetation Index MGRVI =
G2 − R2

G2 + R2
Bendig et al. [59]

Red Green Blue Vegetation Index RGBVI =
G2 − (B× R)
G2 + (B× R)

Bendig et al. [59]

Vegetation Index Green VARIg =
G− R

G + R− B
Gitelson et al. [60]

where, the reflectance values of each band is represented by R: Red; G; Green; B: Blue; N: NIR; and
ren = R

(R+G+B) ; rn = R
(R+G+B) ; gn = G

(R+G+B) ; bn = B
(R+G+B) .

Figure A3 presents the mean results of the performed validation, using the VIs listed in Table A2.
For a complete overview, the results are presented, per tested area, in Table A3 which shows the exact
detection percentage.

The results allow to conclude that, in general, NIR-based VIs presented a better overall performance,
mean exact detection of 93% with a standard deviation of 0.7% considering the three flight campaigns.
However, the performance achieved by RGB-based VIs presented an accuracy rate close to 90% (standard
deviation of 1.6% in the three flight campaigns), if excluding VARIg. If discarding the less performant VIs
(exact detection lower than 90%), the overall accuracy rate is around 94%.

The obtained results from the different VI motivated the selection of the ExRE as it was the VI
with the best overall performance (mean accuracy of 96%). Despite the selection of ExRE, which is
proposed in this study (being an adaptation of ExG to CIR imagery), as the VI of better performance,
there were other NIR-based VIs with similar performance (~95%), therefore with equivalent results,
namely: GDVI, GNDVI and GSAVI. However, if only RGB images are available, the method maintains
its performance. Indeed, ExG and RGBVI reached an overall accuracy around 95%.
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EVI 92.1% 6.1% 1.7% 89.9% 7.8% 2.3% 91.6% 6.9% 1.4% 

ExRE 95.8% 2.1% 2.1% 95.9% 1.3% 2.9% 95.3% 2.5% 2.2% 

GDVI 94.7% 4.4% 0.8% 95.8% 2.9% 1.3% 94.3% 4.9% 0.8% 

GNDVI 93.8% 5.8% 0.4% 95.1% 4.0% 0.9% 92.5% 7.2% 0.3% 

GSAVI 94.2% 5.3% 0.5% 95.5% 3.5% 0.9% 93.2% 6.4% 0.3% 

MSAVI 93.5% 4.5% 2.0% 91.8% 5.8% 2.4% 93.1% 5.1% 1.7% 

NDVI 92.6% 5.2% 2.2% 90.7% 6.6% 2.7% 91.8% 6.4% 1.8% 

OSAVI 93.5% 4.4% 2.0% 91.9% 5.7% 2.4% 93.3% 5.0% 1.7% 

SAVI 93.5% 4.5% 2.0% 91.8% 5.8% 2.4% 93.1% 5.1% 1.7% 

Vegetation indices requiring only RGB bands 

ExG 95.8% 0.9% 3.3% 95.2% 1.2% 3.5% 94.9% 0.9% 4.3% 

GBVI 88.8% 8.1% 3.2% 80.4% 16.3% 3.4% 89.7% 5.7% 4.6% 

GRVI 89.5% 5.1% 5.4% 85.5% 8.6% 5.9% 87.7% 6.2% 6.0% 

MGRVI 89.4% 5.1% 5.5% 85.4% 8.3% 6.3% 87.6% 6.2% 6.2% 

RGBVI 95.9% 1.1% 3.0% 95.2% 1.4% 3.3% 95.1% 1.1% 3.9% 

VARIg 87.2% 5.1% 7.8% 81.6% 7.7% 10.7% 84.7% 6.5% 8.8% 

 

The results allow to conclude that, in general, NIR-based VIs presented a better overall 

performance, mean exact detection of 93% with a standard deviation of 0.7% considering the three 

flight campaigns. However, the performance achieved by RGB-based VIs presented an accuracy rate 

close to 90% (standard deviation of 1.6% in the three flight campaigns), if excluding VARIg. If 

discarding the less performant VIs (exact detection lower than 90%), the overall accuracy rate is 

around 94%. 

The obtained results from the different VI motivated the selection of the ExRE as it was the VI 

with the best overall performance (mean accuracy of 96%). Despite the selection of ExRE, which is 

proposed in this study (being an adaptation of ExG to CIR imagery), as the VI of better performance, 

Figure A3. Mean accuracy of exact, over and under detection in the evaluated vegetation indices from
the comparison with manual segmentation masks from the seven evaluated areas.

Table A3. Mean near-infrared (NIR) and RGB vegetation indices (VI) exact, over and under detection
percentages for the evaluated chestnut plantations in epoch (year).

VI
2014 2015 2017

Exact
(%)

Over
(%)

Under
(%)

Exact
(%)

Over
(%)

Under
(%)

Exact
(%)

Over
(%)

Under
(%)

Vegetation Indices Requiring NIR and RGB Bands

BNDVI 94.9% 0.8% 4.3% 94.4% 0.2% 5.4% 93.7% 0.7% 5.6%
DVI 94.2% 3.7% 2.1% 92.8% 4.8% 2.4% 94.4% 3.6% 2.0%
EVI 92.1% 6.1% 1.7% 89.9% 7.8% 2.3% 91.6% 6.9% 1.4%

ExRE 95.8% 2.1% 2.1% 95.9% 1.3% 2.9% 95.3% 2.5% 2.2%
GDVI 94.7% 4.4% 0.8% 95.8% 2.9% 1.3% 94.3% 4.9% 0.8%
GNDVI 93.8% 5.8% 0.4% 95.1% 4.0% 0.9% 92.5% 7.2% 0.3%
GSAVI 94.2% 5.3% 0.5% 95.5% 3.5% 0.9% 93.2% 6.4% 0.3%
MSAVI 93.5% 4.5% 2.0% 91.8% 5.8% 2.4% 93.1% 5.1% 1.7%
NDVI 92.6% 5.2% 2.2% 90.7% 6.6% 2.7% 91.8% 6.4% 1.8%
OSAVI 93.5% 4.4% 2.0% 91.9% 5.7% 2.4% 93.3% 5.0% 1.7%
SAVI 93.5% 4.5% 2.0% 91.8% 5.8% 2.4% 93.1% 5.1% 1.7%

Vegetation Indices Requiring only RGB Bands

ExG 95.8% 0.9% 3.3% 95.2% 1.2% 3.5% 94.9% 0.9% 4.3%
GBVI 88.8% 8.1% 3.2% 80.4% 16.3% 3.4% 89.7% 5.7% 4.6%
GRVI 89.5% 5.1% 5.4% 85.5% 8.6% 5.9% 87.7% 6.2% 6.0%

MGRVI 89.4% 5.1% 5.5% 85.4% 8.3% 6.3% 87.6% 6.2% 6.2%
RGBVI 95.9% 1.1% 3.0% 95.2% 1.4% 3.3% 95.1% 1.1% 3.9%
VARIg 87.2% 5.1% 7.8% 81.6% 7.7% 10.7% 84.7% 6.5% 8.8%
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