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Abstract

:

Object-based image analysis (OBIA) has been widely used for land use and land cover (LULC) mapping using optical and synthetic aperture radar (SAR) images because it can utilize spatial information, reduce the effect of salt and pepper, and delineate LULC boundaries. With recent advances in machine learning, convolutional neural networks (CNNs) have become state-of-the-art algorithms. However, CNNs cannot be easily integrated with OBIA because the processing unit of CNNs is a rectangular image, whereas that of OBIA is an irregular image object. To obtain object-based thematic maps, this study developed a new method that integrates object-based post-classification refinement (OBPR) and CNNs for LULC mapping using Sentinel optical and SAR data. After producing the classification map by CNN, each image object was labeled with the most frequent land cover category of its pixels. The proposed method was tested on the optical-SAR Sentinel Guangzhou dataset with 10 m spatial resolution, the optical-SAR Zhuhai-Macau local climate zones (LCZ) dataset with 100 m spatial resolution, and a hyperspectral benchmark the University of Pavia with 1.3 m spatial resolution. It outperformed OBIA support vector machine (SVM) and random forest (RF). SVM and RF could benefit more from the combined use of optical and SAR data compared with CNN, whereas spatial information learned by CNN was very effective for classification. With the ability to extract spatial features and maintain object boundaries, the proposed method considerably improved the classification accuracy of urban ground targets. It achieved overall accuracy (OA) of 95.33% for the Sentinel Guangzhou dataset, OA of 77.64% for the Zhuhai-Macau LCZ dataset, and OA of 95.70% for the University of Pavia dataset with only 10 labeled samples per class.
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1. Introduction


Land use and land cover (LULC) information is essential for forest monitoring, climate change studies, and environmental and urban management [1,2,3,4]. Remote sensing techniques are widely used for LULC investigation because of their capability to observe land surfaces routinely on a large scale. The most often used remotely sensed data are optical images, such as those from Landsat [5,6,7]. Synthetic aperture radar (SAR) images are also used for LULC classification because of their weather independence [8,9,10,11,12]. Unlike optical data, which contain spectral information, SAR data characterize the structural and dielectric properties of ground targets [13]. Combination of optical and SAR data results in a comprehensive observation of ground targets, and therefore, has a great potential to improve the accuracy of LULC classification [14].



The potential of the combination of optical and SAR data has been increasingly explored for LULC classification, especially after the Sentinel mission was initiated by the European Space Agency (ESA) for Earth observation, which provides free-of-charge optical and SAR data [15,16]. Thanks to the weather independence of radar remote sensing, Reiche et al. [17] improved forest mapping in a tropical region with heavy cloud coverage by fusion of optical and time series SAR imagery. Kussul et al. [18] applied the multi-layer perceptron (MLP) classifier for crop mapping in Ukraine and achieved accuracies of over 90% for major crop types using multitemporal optical and SAR data. Zhang et al. [19] reduced classification confusions among impervious surface, bare soil, shaded area, and water with fusion of optical and SAR images using RF classifier. Zhang and Xu [20] concluded that fusion of optical and SAR data for LULC mapping may be classifier-dependent. They found that SVM and RF had a better performance than maximum likelihood classifier and artificial neural network when using multisource data.



Object-based image analysis (OBIA), together with advanced machine learning algorithms, has been widely used for LULC classification, as it can delineate object boundaries and produce compact classification maps [21]. The spatial, textural, and contextual features extracted by OBIA have shown a great ability to boost the classification performance. For example, Wang et al. [22] produced a global map of build-up area with hierarchical object-based GLCM textures derived from Landsat images and showed a 2.8% improvement on OA compared with that from only spectral bands. Ruiz Hernandez and Shi [23] applied both GLCM texture metrics and spatial indices in a geographic OBIA framework with RF for urban land use mapping. Recently, Franklin and Ahmed [24] applied RF and object-based analysis for tree species classification on multispectral images captured by unmanned aerial vehicles (UAVs). Many studies have concluded that object-based spatial and textural features can significantly improve the classification [25,26,27,28,29,30].



Pixel-based spatial and textural features, rather than object-based textures, have been concluded very useful for LULC mapping as well. Huang et al. [31] found that pixel-based morphological profiles significantly outperformed object-based GLCM textures for forest mapping and species classification. Wang et al. [32] tested the Completed Local Binary Patterns (CLBP) textures originally designed for face recognition and found that the textures were suitable for classifying wetland vegetation using SVM. With recent advances in machine learning, deep learning models (e.g., CNNs) have achieved great success in computer vision and pattern recognition. Like OBIA, CNNs learn spatial, textural, and contextual information from images, which have been concluded very useful for LULC mapping [33,34,35,36,37,38,39]. Therefore, the integration of deep learning and OBIA is worth exploring.



Deep learning for remote sensing image classification can be classified into two categories [40]. One is the conventional LULC classification, in which we obtain a single satellite image and then randomly collect some labeled samples on it. The other is semantic segmentation, in which we collect a set of fully annotated images from the same sensor and then train a CNN to classify new images without any annotation. Semantic segmentation is based on a special kind of CNNs, the fully convolutional networks (FCNs) [41].



As FCNs do not require any annotation in the predicted image, they are extremely suitable for large-scale LULC classification [35,42,43,44,45,46]. Maggiori et al. [35] proposed a CNN with a fully convolutional architecture using a two step pre-training method to produce large-scale building maps. Kampffmeyer et al. [43] measured the uncertainty of FCNs and applied the median frequency balancing to adjust FCNs for imbalance classes and improved segmentation results of small objects. Yu et al. [45] proposed a FCN with the pyramid pooling module to capture features at multiple scales, and thus achieved accurate segmentation for multiple ground objects. As semantic segmentation often leads to blurry LULC boundaries, Marmanis et al. [46] designed a deep CNN that combined boundary detection and segmentation networks to delineate object boundaries.



FCNs have presented a great potential for large-scale LULC classification, but they highly depend on annotated images. For this reason, previous studies are often limited to some high-resolution benchmarks with only RGB channels, such as the ISPRS Vaihingen and Potsdam datasets. When the annotated maps are unavailable, for example, using Sentinel data for local climate zones (LCZs) classification [2,47,48], it is really difficult to use these semantic segmentation models. One exception is from the study of Liu et al. [49]. They successfully applied FCNs using training samples from a single image, where a training sample was the minimum bounding box of each object. However, pixels in the area outside the object and inside the bounding box must be manually labeled to boost the classification performance. Thus, patch-based CNNs are more suitable for LULC classification with single or few images than FCNs.



CNNs are originally designed for image recognition, and the input shall be a rectangular image [49,50,51]. Zhao et al. [52] applied a five-layer CNN to extract spatial features within an 18 × 18 window. Then, these features were combined with OBIA to produce the classification map based on the tanh classifier. Zhang et al. [50] carefully designed a novel object-based CNN to locate the convolutional center of an image object using the minimum bounding box. In their study, each image object was represented by a 128 × 128 image patch. However, objects delineated from satellite images vary widely in size. A large object results in a large minimum bounding box. A large-scale fixed representation may fail to capture small ground targets. For example, bridges on the water are very slender and a large part of the background is water, which might mislead a CNN to classify such image patch as water.



In this study, we present a novel yet simple method, namely object-based post-classification refinement (OBPR), to obtain object-based thematic maps produced by CNN using Sentinel multispectral and SAR data with very small input patches (e.g., 5 × 5). By using small input patches, small ground targets (e.g., high-rise buildings and roads) can be effectively captured. By post-classification processing, the classification maps are refined by object boundaries using majority voting. The proposed method was evaluated on two optical-SAR datasets and one hyperspectral dataset with diverse spatial resolutions. The three datasets are the Sentinel Guangzhou dataset with 10 m spatial resolution, the Zhuhai-Macau LCZ dataset with 100 m spatial resolution, and the University of Pavia dataset with 1.3 m spatial resolution. The remainder of this paper is organized as follows. Section 2 introduces the study area and the datasets. Section 3 explains the methodology, including details of CNNs and the proposed OBPR. Section 4 presents the results and discussion. Conclusions are drawn in Section 5.




2. Study Area and Data


2.1. The Optical-SAR Sentinel Guangzhou Dataset


The first dataset is the optical-SAR Sentinel Guangzhou dataset (available on Google Drive https://drive.google.com/open?id=1NoCHjqRmiYV1lijoHYFvWaqHxKCVrv8X). The study area is in the districts of Panyu and Haizhu in Guangzhou (Figure 1a), which is the center city of the Pearl River Delta in China. This study area features urban and country landscapes that include a variety of LULC categories. Therefore, it is an ideal site for testing the proposed method using optical and SAR data.



The optical Level-1C data were acquired on 1 November 2017 by Sentinel-2A (Figure 1b). The data consist of 13 spectral bands, including four bands with 10 m spatial resolution, six bands with 20 m spatial resolution, and three bands with 60 m spatial resolution. Those with 60 m spatial resolution were discarded in the study because they are not designed for land cover classification [16]. The Sentinel data were downloaded from the Open Access Hub of ESA (https://scihub.copernicus.eu/dhus/#/home). The detail spectral and spatial information of these spectral bands are shown in Table 1. As the input image of CNNs should have the same size, the 20 m resolution bands were resampled to 10 m resolution ones using the nearest neighbor interpolation method embedded in SNAP 5.0.



The C-Band SAR data were acquired by Sentinel-1A on 7 November 2017 (Figure 1c). The data are Level-1 interferometric wide-mode and Ground-Range-Detected High-resolution (GRDH) products in VV and VH polarizations. SNAP 5.0 was employed for SAR preprocessing. After radiometric calibration, the Lee sigma filter [53] with a 7 × 7 window and a 3 × 3 target window was implemented on the SAR data to suppress the speckle noise. The output data were geometrically corrected using Range-Doppler Terrain Correction embedded in SNAP 5.0 and then converted into decibel format (logarithmic scale) for classification. The optical and SAR data were clipped to a 3640 × 2890 size with a pixel size of 10 × 10 m.



The LULC types of the Sentinel Guangzhou dataset were categorized into 11 classes, namely, new town (NT), old town (OT), bare land (BL), port areas (P), green houses (GH), lawn (L), industry and commerce (IC), roads (R), villas (V), water (W), and trees (T). Old town included typically historic downtowns, urban villages, and villages in the suburbs. Industry and commerce were mostly large-area man-made buildings with high albedo, such as factories, conference centers, and high-speed railway stations. The samples were collected randomly through a visual interpretation of the high-resolution satellite images provided by Google Maps. The characteristics of these LULC classes in the high-resolution images are shown in Figure 2. To test the robustness of the proposed method, we constructed two subsets of training samples (50 and 10 object samples per class) randomly. The detailed numbers of the training and test samples are shown in Table 2.




2.2. The Optical-SAR Zhuhai-Macau LCZ Dataset


The second dataset is the optical-SAR Zhuhai-Macau LCZ dataset. The concept of LCZ is originally developed by Stewart and Oke [2] for urban heat island studies and now has attracted great interests in the remote sensing community, as it provides a standard classification system for urban land use mapping. For example, the 2017 IEEE GRSS Data Fusion Contest [48] was a task to perform classification of LCZs in nine cities worldwide with various urban environment. Under this context, LULC is categorized into 17 LCZs based on surface cover, structure, material, and human activity [2]. An ongoing project, the world urban database and access portal tools (WUDAPT) [54], is aimed to gather such climate relevant surface information using freely remotely sensed data (i.e., Landsat and Sentinel).



Based on the WUDAPT project, we collected a pair of Sentinel multispectral and SAR images to create the Zhuhai-Macau LCZ dataset. The multispectral imagery with zero cloud coverage (Figure 3) was collected on 21 March 2018, and the SAR imagery was collected on 19 March 2018. The study area fully covered the cities of Zhuhai and Macau and a small part of the neighboring cities (Zhongshan, Jiangmen, Shenzhen, and Hong Kong). After preprocessing of SAR image and registration, the images were resampled to 100 m spatial resolution using the nearest neighbor method. The study area with a true color composite is shown in Figure 3.



The reference data were collected on Google Earth and some of the reference data that were difficult to distinguish were checked in fields. The numbers of samples are shown in Table 3, and the samples captured on high spatial resolution satellite images are shown in Figure 4. The LCZ-7 class in this dataset was mainly green houses; the LCZ-C class is not taken into account as the study area is in the subtropics, resulting in a total of 16 classes. The dataset contains very limited labeled samples with a highly complex classification system, resulting a extremely difficult classification task. The size of the image is 1098 × 1098 with 12 channels.




2.3. The University of Pavia Dataset


The University of Pavia (The data were downloaded from http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes), a popular benchmark hyperspectral dataset, is used to test the proposed method as well. This dataset was collected using the Reflective Optics System Imaging Spectrometer (ROSIS) sensor over the urban area of the University of Pavia, Italy, on 8 July 2002. The size of the data is 610 × 340 with a spatial resolution of 1.3 m and 103 spectral bands. There are nine classes in this dataset. The details of sample numbers are shown in Table 3 and the false color map with reference data is shown in Figure 5. In the experiment, we conducted the principal component analysis (PCA) and used the top three components for classification to remove redundant features and simulate common high spatial resolution imagery with only RGB channels.





3. Methods


3.1. Object-Based Classification Strategy


3.1.1. OBIA


For the Sentinel Guangzhou dataset, image objects were delineated from the optical and SAR images using the multiresolution segmentation algorithm embedded in eCognition [55]. Inspired by Qi et al. [9], who conducted image segmentation on the Pauli RGB composition image of polarimetric SAR data, we performed image segmentation on four spectral bands, which provide the highest spatial resolution (10 m). We also slightly over-segmented the images to ensure the segmentation accuracy. The suitable parameters were determined through a heuristic process. A scale parameter of 30 was found suitable based on visual interpretation. The shape and compactness parameters were set as 0.10 and 0.80, respectively. The entire area was segmented into 329,725 image objects.



For OBIA, the mean values; standard deviation; and four categories of textural information, namely, gray-level co-occurrence matrix (GLCM) homogeneity, GLCM contrast, GLCM dissimilarity, and GLCM entropy, were extracted from each image channel. Eighteen indicators related to shape and extent, namely, border length, width, asymmetry, relative boarder to image border, elliptic fit, density, number of pixels, radius of smallest enclosing ellipse, rectangular fit, length, length/width, volume, radius of largest enclosed ellipse, shape index, compactness, roundness, area, and boarder index, were also extracted. These features were used in OBIA-RF.



For the Zhuhai-Macau LCZ dataset with 100 m spatial resolution, the segmentation algorithm was performed on all the channels. A scale of 20 was found suitable and the image was delineated into 71,583 image objects. For the University of Pavia dataset, the segmentation algorithm was performed on the top three principal components from PCA. The image was delineated into 5275 image objects under a scale of 8.




3.1.2. OBPR


To better clarify the proposed method, a systematic illustration of four approaches to obtain object-based thematic maps is presented in Figure 6. The conventional OBIA (Figure 6a) extracts spatial and textural features from image objects, and then uses one of the one-dimensional classifiers to classify image objects. However, we need to manually design these features to utilize the spatial information with OBIA.



The invention of CNNs simplifies the process of feature extraction, because CNNs can automatically learn spatial features for classification with back-propagation during training. To integrate deep learning with OBIA, we can treat a fixed-size image as the representation of an image object (Figure 6b) and then convert the problem of assigning irregular image objects with LULC types to a problem of classifying rectangular images to LULC types. Consequently, we can apply deep learning models from computer vision directly for LULC mapping. But the image needs to be large enough to cover the entire object, resulting inaccurate classification in small objects. The third solution is based on FCNs (Figure 6c), where an image is fed in an FCN and produce a segmentation map.



As shown in Figure 7, OBPR was performed after pixel-based classification. After classification, each pixel x has a predicted label c, where c∈{1,2,…,C}, and C is the number of LULC types. Based on the segmentation, each pixel with the predicted label (x,c) belongs to an image object Rk. Pixels in the same object should be classified as the same LULC type. Thus, for Rk={(x1,c1),(x2,c2)…,(xnk,cnk)}, where nk is the number of pixels inside Rk, there should be only one corresponding label ck^. Assuming f(ck) is the frequency of the predicted labels inside Rk, the assigned label ck^ of the object is determined as:


ck^=argmax(f(ck)).



(1)







Figure 6d shows an example of the OBPR strategy. If more than one major label exist in an image object, a reasonable solution will be to assign the label with the highest occurrence in the entire image. As there are many pixels inside an object, we can randomly assign the smallest or largest integer as the object label without affecting the classification results. The analysis is presented in Section 4.7.2.





3.2. Machine Learning Algorithms


3.2.1. SVM


SVM is a competitive machine learning algorithm for its excellent generalization even with limited training samples. This is because SVM distinguishes training samples by finding the separate hyperplane related to the maximal margin and describes and specifies the hyperplane not by all the samples but only by the support vectors, which are the subset of samples. However, it may take considerable training time for huge datasets, especially when the most popular kernel Radial Basis Function is adopted. When applying pixel-based SVM, we randomly downsampled the number of samples to 400 per class to obtain the result within an acceptable time. The experiments with SVM were conducted on Python 3.6 using scikit-learn [56], which uses LibSVM [57] as its core algorithm. The parameters of C and γ were first coarse-grid-searched within {2−5,2−3,…,215} and {2−15,2−13,…,23}. Then, the parameters were fine-grid-searched using the temporary best parameters C^,γ^ within C^,γ^ × {2−1.75,2−1.5,…,21.75}. Fivefold cross-validation was performed to optimize the parameters.




3.2.2. RF


RF is one of the powerful ensemble learning algorithms. There are mainly three advantages of this algorithm. First, it can handle thousands of input features without feature selection. Second, it can estimate the importance of input features. Third, it is insensitive to noise and outliers. Given the aforementioned advantages, it has a great potential for LULC mapping with multi-source data. We implemented the experiments using scikit-learn [56] with Python 3.6. The number of trees was searched within {20,40,…,200} because previous studies showed that the optimal number of trees was within [20, 200] [58,59]. The number of max features was searched within {1,2,…,n+1}, where n is the number of input features.




3.2.3. CNN


Deep learning has achieved considerable successes in computer vision and natural language processing. CNN, as a successful deep learning architecture, has been applied to remote sensing image classification and achieved state-of-the-art results. A comparison of CNN and other machine learning algorithms is shown in Figure 8. CNN presents two advantages in remote sensing image classification [60]. First, the convolutional layers automatically learn useful textural and spatial features from the input patch-based samples. Second, the nonlinear layers, such as rectified linear unit and batch normalization, construct powerful functions for use in fusing and transforming the extracted features for the classification.



In this study, CNN was implemented using the Keras [61] library with TensorFlow [62] back-end in Python 3.6. Wide contextual residual network (WCRN) modified from the contextual CNN by replacing AlexNet with ResNet was adopted because it can run on CPU and perform competitively [34,63]. Twenty percent of the training samples were separated as the validation set, and then the model that achieved the smallest loss in validation was used for classification. A total of 128 fused and transformed spatial-spectral-backscattering features were extracted. The output scores z of each class for one pixel were normalized as probabilities p by the softmax classifier:


pj(z)=ezj∑kezk



(2)




where pj is the probability of the pixel to belong to the j-th land cover category and k is the number of land cover classes.






4. Results and Discussion


The proposed method was evaluated on three datasets, two optical-SAR datasets with diverse spatial resolutions and one hyperspectral dataset. OBIA-SVM and OBIA-RF were selected as the benchmark methods. The experiments were conducted on a machine equipped with a 3.5 GHz Intel Xeon E3-1241 v3 CPU and 8G RAM.



4.1. Results on the Optical-SAR Sentinel Guangzhou Dataset


The classification results on the Sentinel Guangzhou dataset are shown in Table 4. The proposed method achieved the highest classification accuracy, with OA of 95.33% and κ of 0.94, considerably larger than those achieved by OBIA-SVM (OA of 90.22% and κ of 0.89) and OBIA-RF (OA of 88.20% and κ of 0.86). The classification accuracy (OA of 91.10% and κ of 0.90) obtained by the standard CNN was already larger than those by OBIA-SVM/RF. This result indicates that the spatial information extracted by CNN was helpful in LULC classification. Among the LULC classes, urban LULC categories, especially new town and roads, were better classified using the proposed method. New town is well planned mid-rise to high-rise buildings. Both new town and roads are very small in the image, surrounding by complicated urban structure. The spatial information for these LULC classes thus is very important for their accurate classification. Therefore, the ability of CNN to extract spatial features considerably helped the classification task.



The proposed OBPR strategy remarkably improved the OA of CNN by 4.23%, indicating that the spatial constraint by object boundaries was very useful for LULC classification. When OBPR was combined with SVM/RF, the performance was as competitive as OBIA-SVM/RF (OA of 90.22% and OA of 88.20%), obtaining an OA of 89.73% and 89.64%, respectively. Most of the previous studies argued that the effectiveness of OBIA came from two aspects. One was that through OBIA we could obtain object-based classification maps. The other was that we could generate textural features from OBIA. Although the classification results in this study confirmed that OBIA-SVM/RF outperformed pixel-based SVM/RF, the superiority actually came from the spatial constraint that pixels inside one object should share the same label.



To evaluate the robustness of the proposed method, we constructed two subsets of training samples; the results are presented in Table 5. The classification results with the subsets of training samples were consistent with those using 150 object samples per class. The proposed method obtained OA of 93.76% with 50 object samples per class, 4.65% and 7.26% higher than those by OBIA-SVM and by OBIA-RF, respectively. When only 10 labeled objects per class available, the proposed method significantly outperformed other classification algorithms, achieving OA of 89.81%, 6.22% greater than that of OBIA-SVM and 7.38% greater than that of OBIA-RF. The margin between OBPR-CNN and OBIA-SVM/RF enlarged when the training samples became limited.



Previous studies demonstrated that sufficient samples (at least 50 samples per class) are need to construct the classification system for remote sensing image classification. Otherwise the performance of classifiers will be significantly degraded. As only 10 labeled objects per class were available, the classification was not satisfactory with OBIA. However, 10 objects contained at least 163 pixels in our study (Table 2). When the pixel samples were used, the number of pixel samples (163 per class) would be enough for classifiers to construct powerful classification systems. Therefore, we observed increases in OA of 3.03% and 3.62% from OBIA-SVM/RF to OBPR-SVM/RF.




4.2. Results on the Zhuhai-Macau LCZ Dataset


The second experiment was conducted on the Zhuhai-Macau LCZ dataset, and the results are shown in Table 6. The proposed method outperformed other competitors in all cases. With full optical-SAR features, OBPR-CNN obtained OA of 77.64%, whereas the best non-CNN method OBPR-MLP only obtained OA of 70.94%, and the best OBIA method OBIA-RF achieved OA of 68.09%.



The best OA on this dataset was lower than 80%, indicating the complication of LCZ classification [47]. One of the crucial problems is that different LCZs might have the same material and result in the same spectral information in the satellite imagery. Thus, spatial information is essential to distinguish them. The comparison between OBPR-CNN and non-CNN method (77.64% versus 70.94%) indicated the advance of CNN, and the comparison between the proposed method and OBIA (77.64% versus 68.09%) illustrated the effectiveness of OBPR.




4.3. Results on the University of Pavia Dataset


A popular hyperspectral dataset, the University of Pavia, was used to test the proposed method on high spatial resolution imagery. For this dataset, we randomly selected 5, 10, and 100 pixel samples per class, while the remaining samples served for validation. The image objects where these pixels lied in served as training samples in OBIA. All the pixels inside the training objects were used for training. In this manner, the OBPR strategy is in fact applying semi-supervised learning based on superpixels [64]. The OAs are presented in Table 7.



The proposed OBPR-CNN outperformed other methods among all sample sets. When training samples were sufficient (i.e., 100 per class), OBPR-CNN obtained OA of 96.32%, whereas the best non-CNN method OBPR-RF achieved OA of 94.90%. With the number of training samples decreasing, OBPR achieved OA of 95.70% using 10 sample per class and OA of 85.88% using five samples per class, whereas OBPR-RF obtained OAs of 78.82% and 67.28%, respectively. We can observe that OBPR-CNN was more superior when the samples were limited. This finding is contradictory to the common sense that deep learning models like CNNs need a large amount of training samples.



Not only OBPR-CNN obtained higher OAs than conventional OBIA methods, but also non-CNN OBPR methods outperformed OBIA methods. Take RF for example as it is less sensitive to noisy features. OBPR-RF consistently obtained higher OAs compared with OBIA-RF, e.g., 94.90% versus 89.92% using 100 samples per class. Such results illustrate that we should rethink of the OBIA strategy, as we can obtain classification maps with higher OAs with OBPR. As mentioned before, the strategy of OBPR is indeed one kind of semi-supervised learning, which is based on superpixels and can increase the number of training samples. This explains why OBPR outperformed OBIA.




4.4. Contribution of SAR Data to LULC Classification


Results of two optical-SAR datasets indicated the effectiveness of SAR data when it comes to LULC classification. To analyze such effects, the difference of producer’s accuracy (PA) and the user’s accuracy (UA) between optical-only and optical-SAR data on the Sentinel Guangzhou dataset is presented in Figure 9. We found that the effects of SAR data depended on classifiers. When the RF classifier was used, the PAs and UAs of all the LULC classes were increased, especially for urban LULC types such as villas, roads, port areas, and new town. The improvement was less apparent when SAR data were combined with 10 m and 20 m optical data, but the differences of PAs and UAs of roads, port areas, and new town were still near 10%. Similar improvements were found in the classification results of SVM. The improvements made by CNN were not as significant as those using RF. The reason is that CNN can extract spatial information from the patch-based samples, whereas SVM and RF are pixel-based classifiers and lack the ability to make use of spatial features.



The contribution of SAR data to LULC classification was partly because of the side-looking imaging mode of radar remote sensing and the long wavelength of the C-band. The side-looking imaging mode and the C-band radar signals resulted in the low intensity of some ground targets, such as roads, which belong to the impervious surface and usually show high albedo in optical remote sensing images. In Figure 10, the SAR backscatter from roads was low and provided different physical information beyond optical remote sensing. The classification maps in Figure 10 show that with the addition of SAR data, the roads were identified accurately. Moreover, the classification maps produced by the combination of SAR and optical data presented minimal salt-and-pepper effects probably because the data from different sensors exhibited varied noises and the signals from radar remote sensing might have denoised the optical image.



In Figure 11, the optical data suffered from shadow effects, which were severe in urban centers with city skylines. Most of the shadows were mistakenly classified as water, when the optical images were used alone, because the shadow effects were inevitable when a single data set from optical remote sensing was used. The radar backscatter from water was markedly lower than that from urban areas, due to the side-looking image mode of radar remote sensing and the complicated structure of the urban center. The differences in radar backscatter and textural features between water and urban areas could be extracted by CNN and resulted in accurate LULC classification, thus showing the advancement of the proposed OBPR-CNN.




4.5. Feature Importance of the Sentinel Optical and SAR Data


The importance of features estimated by RF is presented in Figure 12 to illustrate the aforementioned conclusion that OBIA outperformed pixel-based algorithms mainly because it can obtain object-based thematic maps instead of utilizing textural features. The most important feature is the mean value of Band 12, which belongs to the middle infrared with a spatial resolution of 20 m. Other mean values of infrared spectral bands also played a significant role for LULC classification. This may be because the signals from infrared bands were less affected by atmosphere and were informative for LULC mapping. The mean values of 10 m spectral bands and the SAR backscatters (VH and VV polarizations) were crucial for classification as well. However, the GLCM textures were not important (less than 2%) for classification as estimated by RF. The importance of features illustrated that GLCM textures were not as important as object boundaries for LULC classification using Sentinel optical and SAR data. Instead of using hand-crafted features, CNNs can learn spatial features automatically, which were optimized by back-propagation and had a better performance than hand-crafted GLCM textures.




4.6. CNN as Feature Extractor


The power of CNN lies in its capability to extract spatial features and fuses the spatial-spectral features into a high-dimensional feature space where the classifier can well distinguish the different classes. If the extracted features serve as input of SVM and RF, then the results of SVM and RF should be as competitive as those using CNN with the softmax classifier. As shown in Table 8, CNN-RF and CNN-SVM represent classification results by RF and SVM based on spatial-spectral features extracted by CNN. Notably, CNN indicates classification results based on the softmax classifier. The OAs using CNN as feature extractor for SVM, RF and softmax are competitive. Interestingly, the best OA of each dataset, including optical-only data and optical-SAR data, was obtained by RF. This may reflect the excellent generalization of RF that it can handle noisy and thousands of input features without feature selection.




4.7. Sensitivity Analysis


4.7.1. Sensitivity Analysis of the Segmentation Scale


We have conducted experiments to analyze the sensitivity of the segmentation scale of OBPR. The results are presented in Figure 13. For the Sentinel Guangzhou dataset (Figure 13a), the performance of OBPR is effective. The optimal scale lies in the range of 40 to 80, whereas the average number of pixels per object varies approximately from 80 to 200 (8000–20,000 m3). When the scale is very small and each object contains very little pixels, the improvement made by OBPR is limited yet observable. When the scale is very large (e.g., greater than 150), the performance of OBPR is degraded. Nevertheless, the improvement by OBPR is stable and effective as the scale of 30 to 120 is quite wide and safe. From the segmentation images (Figure 14). We can observe that a scale of 30 produces a very fragmented segmentation, whereas a scale of 120 leads to under-segmentation. With a heuristic process, one can easily find a proper segmentation scale in this range.



For the Zhuhai-Macau LCZ dataset (Figure 13b), the improvement by OBPR is not as effective as that of the Sentinel Guangzhou dataset. The effective scale varies from 15 to 30 (0.1–0.4 km3 per object). Since this dataset is with a very low spatial resolution (100 m), it might not be suitable for object-based classification.



The result of the University of Pavia dataset (Figure 13c) confirms that OBPR can obtain very satisfactory performance for high spatial resolution imagery. For classification maps by CNN and RF, OBPR can consistently improve the OA. For the classification map produced by SVM, OBPR degrades the result after the scale reaches to 60. A segmentation scale of 60 is extremely large, as each object contains almost 2000 pixels and the whole image is segmented to no more than 200 objects. An OA of 63.04% is quite low. When applying the majority voting strategy, incorrect classification could lead to a larger error. Nevertheless, with reasonable heuristic processing, it is easy to find a proper segmentation scale. The sensitivity analysis indicates that OBPR is less sensitive to the scale. OBPR can be very effective in a wide range of the segmentation scale with high to medium spatial resolution imagery.




4.7.2. The Choice of Three Majority Voting Strategies


The results of three choices of majority voting strategies are presented in Figure 15. From the left side of Figure 15 we can observe that that the choice of the majority strategy has very limited effects (less than 0.5%) on OA. The result is expected because many pixels were present inside an object. Only a few objects encountered the situation in which at least two major labels were detected (right side of Figure 15). In addition, the randomness of the dominant LULC type can ease the problem.




4.7.3. The Effect of Patch Size


Classification maps of diverse patch sizes are shown in Figure 16. A large patch size (35× 35) results in inaccurate classification of small roads between mulberry fish ponds, whereas a small patch size (5× 5) better captures small objects in the image. In addition, using a small patch size is computationally efficient, providing users an opportunity to apply deep learning models on their personal laptops without expensive GPUs.




4.7.4. Number of Trees in RF


Previous studies have a wide discussion on the optimal number of trees when using RF classifier [65]. We tested the RF classifier on the optical-SAR Sentinel Guangzhou dataset with the number of trees in the range of [20, 500] (Figure 17). The classification accuracy is insensitive to the number of trees as pointed out by Du et al. [59], especially after it is up to 60. In addition, OBPR significantly outperforms OBIA regardless of the number of trees.






5. Conclusions


In this study, we developed a new method that equips CNNs with the ability to produce object-based thematic maps for LULC classification. Compared with other three methods, the proposed method OBPR-CNN can present promising results with limited labeled samples. Our method was tested on three datasets with diverse spatial resolutions and different classification systems. It obtained a remarkable result with OA of 95.33% and κ of 0.94 on the Sentinel Guangzhou dataset and a satisfactory result with OA of 77.64% with limited and imbalanced labeled samples on the Zhuhai-Macau LCZ dataset using Sentinel multispectral and SAR data. Our method also achieved a very competitive result (OA of 95.70%) on the popular hyperspectral dataset the University of Pavia with only 10 labeled samples per class. Such results outperformed traditional OBIA methods.



Through further studies, we found that object-based GLCM textures were less important for LULC mapping in this study. The performance of OBIA mainly lies in its capability to produce object-based classification maps rather than generating textural features. The hand-crafted GLCM textures were less superior than those learned by CNNs. Therefore, OBPR-CNN is better than OBIA to obtain object-based thematic maps. The combined use of optical and SAR data depended on classifiers. When CNNs were used, the addition of SAR data had limited improvement for LULC mapping, whereas the addition of SAR data played a significant role in distinguishing urban ground targets using one-dimensional classifier, i.e., SVM, RF and MLP. This study is the first to evaluate the performance of optical and SAR data using CNNs. From the results, we may conclude that in the era of deep learning, spatial information extracted by CNN is more crucial for LULC mapping than the combined use of optical and SAR data. Nevertheless, the addition of SAR data and the spatial information extracted by CNN helped distinguish urban LULC classes such as roads, new town, and port areas.



Future studies may explore high spatial resolution SAR imagery (e.g., TerraSAR-X) using the proposed method. The fusion of multimodal, multisource, and multitemporal data for complicated classification tasks such as LCZ classification is worth investigation as well.
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Abbreviations


The following abbreviations are used in this manuscript:



	SAR
	synthetic aperture radar



	OBIA
	object-based image analysis



	OBPR
	object-based post-classification refinement



	LULC
	land use and land cover



	FCN
	fully convolutional network



	CNN
	convolutional neural network



	SVM
	support vector machine



	RF
	random forest



	MLP
	multi-layer perceptron



	LCZ
	local climate zone



	OA
	overall accuracy



	PA
	producer’s accuracy



	UA
	user’s accuracy



	GLCM
	gray-level co-occurrence matrix



	VV
	vertical transmit and vertical receive



	VH
	vertical transmit and horizontal receive



	NoS
	number of samples
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Figure 1. Study area and data. (a) Study area; (b) Sentinel-2A optical image (true color composition); and (c) Sentinel-1A SAR image (red: VV, green: VH, blue: VV/VH). 
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Figure 2. Typical LULC categories in the Guangzhou dataset. 
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Figure 3. The Zhuhai-Macau LCZ dataset. 
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Figure 4. Local climate zones (except for water) in this study. 
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Figure 5. The University of Pavia dataset. (a) False color map; (b) Reference data. 
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Figure 6. A systematic illustration of four different approaches to obtain object-based thematic maps. 
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Figure 7. Flowchart of the proposed OBPR-CNN. The image is first segmented into image objects. Based on reference data, we select object-based samples, and pixels inside image objects serve as training samples in the CNN. After obtaining the pixel-based classification map, object boundaries are applied to refine the classification result and obtain an object-based thematic map. 
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Figure 8. Classification systems. 
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Figure 9. The contribution of SAR data for LULC classification on the Sentinel Guangzhou dataset. For RF and SVM, adding SAR data results in significant improvements on PAs and UAs of all the classes, showing the usefulness of SAR data. For CNN, the improvement is marginal, indicating that spatial information is more important for LULC classification than backscattering signals. 
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Figure 10. Classification maps obtained by RF. The addition of SAR data helped distinguish between roads and port area; the classification maps obtained with SAR data exhibited small salt-and-pepper effects; the classification maps processed with OBPR were compact. 
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Figure 11. Classification maps obtained using OBPR-SVM, OBPR-RF, and OBPR-CNN. The addition of SAR data and the use of OBPR-CNN resulted in accurate LULC classification in urban areas with building shadows. 
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Figure 12. Feature importance estimated by RF classifier. The GLCM textural features have a very limited effect for LULC classification on the Sentinel Guangzhou dataset, whereas the mean value of each channel plays a significant role. The features generated by OBIA are not important enough and thus it might explain why OBIA is less competitive than OBPR-CNN. 
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Figure 13. Sensitivity analysis of the segmentation scale. (Left) OA as function of the segmentation scale. (Right) Average number of pixels per object as function of the segmentation scale. 
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Figure 14. Segmentation maps with various segmentation scales. A scale of 30 leads to observable oversegmentaton, whereas a scale of 120 leads to undersegmentation. Still, the performance of OBPR is satisfactory in this range (Figure 13a). 






Figure 14. Segmentation maps with various segmentation scales. A scale of 30 leads to observable oversegmentaton, whereas a scale of 120 leads to undersegmentation. Still, the performance of OBPR is satisfactory in this range (Figure 13a).



[image: Remotesensing 11 00690 g014]







[image: Remotesensing 11 00690 g015a 550][image: Remotesensing 11 00690 g015b 550]





Figure 15. (Left) OA as function of the segmentation scale with different majority voting strategies. Three choices of majority voting strategies. Largest: assign the largest integer as the object label. Smallest: assign the smallest integer as the object label. Most: assign the most frequent class in the candidates as the object label. (Right) percentage of at least two major labels as function of the segmentation scale. 
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Figure 16. Classification maps produced by CNNs with different patch size. A large patch size leads to inaccurate classification of small roads between fish ponds. 
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Figure 17. OA as function of number of trees in RF. We can observe that number of trees has very little effect on OA after it grows to 60. (Left) 10 samples per class. (Middle) 50 samples per class. (Right) 150 samples per class. 
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Table 1. Sentinel-1A SAR data and Sentinel-2A optical data used in this study.
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Data Type

	
Image Channel

	
Wavelength

	
Spatial Resolution






	
Optical

	
Band 2

	
490 nm

	
10 m




	
Band 3

	
560 nm




	
Band 4

	
665 nm




	
Band 8

	
842 nm




	
Band 5

	
705 nm

	
20 m




	
Band 6

	
740 nm




	
Band 7

	
783 nm




	
Band 8a

	
865 nm




	
Band 11

	
1610 nm




	
Band 12

	
2190 nm




	
SAR

	
VV

	
5.6 cm (C-Band)

	
20 m × 22 m




	
VH

	
5.6 cm (C-Band)
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Table 2. Numbers of training and test samples selected for each LULC class.
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Class

	
Training Samples

	
Test Samples




	
150 Objects

	
50 Objects

	
10 Objects

	
150 Objects






	
New town

	
4203

	
1512

	
288

	
4357




	
Old town

	
8869

	
2993

	
880

	
9394




	
Bare land

	
5312

	
1959

	
389

	
5250




	
Port area

	
8078

	
3102

	
582

	
6880




	
Green houses

	
12,321

	
3946

	
1162

	
11,098




	
Lawn

	
8184

	
2835

	
566

	
10,119




	
Industry and commerce

	
3362

	
1044

	
163

	
2911




	
Roads

	
8482

	
3265

	
436

	
8795




	
Villas

	
7513

	
2545

	
466

	
6189




	
Water

	
24,760

	
7844

	
2395

	
30,742




	
Trees

	
13,008

	
4753

	
1112

	
12,990
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Table 3. Number of samples for the Zhuhai-Macau LCZ dataset and the University of Pavia dataset.
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The Zhuhai-Macau LCZ Dataset

	
The University of Pavia






	
Class

	
Trainning Samples

	
Training Objects

	
Test Samples

	
Class

	
Samples




	
LCZ-1

	
Compact high-rise

	
52

	
13

	
72

	
Asphalt

	
6631




	
LCZ-2

	
Compact mid-rise

	
26

	
10

	
36

	
Meadows

	
18,649




	
LCZ-3

	
Compact low-rise

	
168

	
118

	
251

	
Gravel

	
2099




	
LCZ-4

	
Open high-rise

	
141

	
81

	
98

	
Trees

	
3064




	
LCZ-5

	
Open mid-rise

	
50

	
31

	
32

	
Metal sheets

	
1345




	
LCZ-6

	
Open low-rise

	
73

	
41

	
55

	
Bare soil

	
5029




	
LCZ-7

	
Lightweight low-rise

	
127

	
46

	
157

	
Bitumen

	
1330




	
LCZ-8

	
Large low-rise

	
143

	
32

	
132

	
Bricks

	
3682




	
LCZ-9

	
Sparsely built

	
23

	
3

	
16

	
Shadows

	
947




	
LCZ-10

	
Heavy industry

	
19

	
1

	
40

	

	




	
LCZ-A

	
Dense trees

	
88

	
43

	
76

	

	




	
LCZ-B

	
Scattered trees

	
8

	
6

	
20

	

	




	
LCZ-D

	
Low plants

	
36

	
4

	
103

	

	




	
LCZ-E

	
Bare rock or paved

	
45

	
5

	
32

	

	




	
LCZ-F

	
Bare soil or sand

	
59

	
39

	
23

	

	




	
LCZ-G

	
Water

	
190

	
42

	
261

	

	




	
Total

	

	
1248

	
515

	
1404

	

	
42,776
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Table 4. Classification accuracy (%) comparison among the proposed method and other competitors using 10 m and 20 m optical-SAR data. Experimental results with the same background color were produced by the same kind of classifier.
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	Classification Accuracy
	SVM
	OBIA-SVM
	OBPR-SVM
	RF
	OBIA-RF
	OBPR-RF
	CNN
	OBPR-CNN





	New town
	53.50
	62.15
	69.41
	52.77
	61.92
	64.68
	86.23
	93.71



	Old town
	77.63
	88.39
	89.75
	80.87
	83.28
	94.40
	86.80
	94.72



	Bare land
	90.29
	92.19
	92.69
	90.04
	91.20
	91.68
	94.15
	96.70



	Port area
	77.38
	86.57
	82.46
	77.67
	83.97
	80.80
	88.92
	91.89



	Green houses
	94.13
	98.99
	99.39
	93.85
	99.60
	99.84
	98.59
	100.00



	Lawn
	81.22
	84.88
	85.56
	81.55
	82.13
	85.56
	80.96
	87.89



	Industry and commerce
	89.04
	93.10
	91.93
	90.86
	89.63
	92.17
	93.61
	94.61



	Roads
	55.52
	67.98
	61.99
	53.38
	58.76
	54.78
	76.12
	87.54



	Villas
	66.76
	81.40
	79.95
	71.89
	78.87
	84.07
	84.12
	92.18



	Water
	98.73
	100.00
	99.84
	98.88
	100.00
	100.00
	98.59
	100.00



	Trees
	87.77
	94.21
	93.20
	88.11
	92.74
	93.19
	92.44
	95.25



	Overall accuracy (OA,%)
	84.35
	90.22
	89.73
	84.86
	88.20
	89.54
	91.10
	95.33



	Kappa coefficient (κ)
	0.82
	0.89
	0.88
	0.82
	0.86
	0.88
	0.90
	0.94



	Average accuracy (AA,%)
	79.27
	86.35
	86.01
	79.99
	83.83
	85.56
	89.13
	94.05
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Table 5. Overall accuracies (%) of the proposed method and the competitors. The best result of each dataset (row) is highlighted in bold, and the best result of each method (column) is underlined. NoS denotes number of training samples per class.






Table 5. Overall accuracies (%) of the proposed method and the competitors. The best result of each dataset (row) is highlighted in bold, and the best result of each method (column) is underlined. NoS denotes number of training samples per class.




















	NoS
	Optical
	SAR
	SVM
	OBIA-SVM
	OBPR-SVM
	RF
	OBIA-RF
	OBPR-RF
	MLP
	OBPR-MLP
	CNN
	OBPR-CNN





	150
	10 m
	No
	77.86
	84.59
	86.70
	76.96
	82.33
	87.71
	75.58
	81.53
	88.50
	93.61



	
	10 m
	Yes
	81.31
	86.58
	87.84
	81.94
	86.39
	89.04
	80.89
	87.02
	89.70
	94.57



	
	10 m + 20 m
	No
	83.27
	89.88
	90.20
	82.34
	86.69
	88.89
	79.08
	85.52
	90.11
	94.43



	
	10 m + 20 m
	Yes
	84.35
	90.22
	89.73
	84.86
	88.20
	89.54
	82.69
	88.14
	91.10
	95.33



	50
	10 m
	No
	76.74
	83.23
	86.25
	73.06
	81.11
	82.48
	72.71
	78.19
	85.25
	91.10



	
	10 m
	Yes
	78.40
	84.96
	86.74
	79.84
	85.50
	86.55
	79.23
	85.58
	87.57
	92.40



	
	10 m + 20 m
	No
	79.68
	88.94
	88.23
	79.77
	85.74
	86.36
	73.68
	80.26
	87.20
	91.21



	
	10 m + 20 m
	Yes
	82.65
	89.11
	89.40
	83.18
	86.50
	88.80
	79.46
	85.01
	88.91
	93.76



	10
	10 m
	No
	71.19
	77.48
	77.85
	69.22
	71.40
	76.89
	68.98
	72.87
	84.12
	89.01



	
	10 m
	Yes
	75.53
	77.68
	82.62
	73.40
	78.19
	80.91
	61.16
	65.45
	82.13
	86.46



	
	10 m + 20 m
	No
	78.81
	81.28
	87.83
	75.48
	78.45
	82.58
	70.20
	76.07
	84.47
	89.70



	
	10 m + 20 m
	Yes
	79.20
	83.59
	86.62
	78.69
	82.43
	86.05
	74.03
	79.18
	84.41
	89.81
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Table 6. Overall accuracies (%) of the Zhuhai-Macau LCZ dataset amongst the proposed method and the competitors. The best result of each dataset (row) is highlighted in bold, and the best result of each method (column) is underlined.
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	Optical
	SAR
	SVM
	OBIA-SVM
	OBPR-SVM
	RF
	OBIA-RF
	OBPR-RF
	MLP
	OBPR-MLP
	CNN
	OBPR-CNN





	10 m
	No
	58.40
	61.61
	63.32
	63.75
	57.05
	67.09
	60.40
	62.68
	70.30
	72.15



	10 m
	Yes
	64.32
	68.02
	67.17
	65.03
	59.90
	67.88
	62.89
	66.45
	67.88
	70.37



	10 m + 20 m
	No
	67.95
	70.94
	72.08
	65.88
	67.38
	67.09
	65.81
	69.52
	75.43
	76.92



	10 m + 20 m
	Yes
	68.09
	66.74
	70.80
	67.38
	68.09
	68.02
	66.17
	70.94
	75.21
	77.64
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Table 7. Overall accuracies (%) of the University of Pavia dataset amongst the proposed method and the competitors. The best result of each sample set (row) is highlighted in bold. NoS denotes the number of training samples per class.
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	NoS
	SVM
	OBIA-SVM
	OBPR-SVM
	RF
	OBIA-RF
	OBPR-RF
	MLP
	OBPR-MLP
	CNN
	OBPR-CNN





	100
	72.26
	85.66
	78.57
	90.28
	89.92
	94.90
	79.80
	86.27
	93.32
	96.32



	10
	63.04
	67.75
	69.13
	73.26
	75.66
	78.82
	68.40
	76.18
	90.04
	95.70



	5
	62.39
	58.51
	67.23
	63.96
	61.91
	67.28
	69.30
	75.55
	83.26
	85.88
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Table 8. Overall accuracy (%) of CNN (softmax), SVM and RF using CNN as feature extractor.
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Optical

	
SAR

	
OBPR






	
10 m

	
20 m

	
10 m

	
CNN

	
CNN-SVM

	
CNN-RF




	
√

	

	

	
93.61

	
94.65

	
95.31




	
√

	

	
√

	
94.57

	
94.44

	
94.57




	
√

	
√

	

	
94.43

	
94.7

	
95.47




	
√

	
√

	
√

	
95.33

	
95.47

	
95.97
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