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Abstract: Land surface albedo is a key parameter in regulating surface radiation budgets. The gridded
remote sensing albedo product often represents information concerning an area larger than the
nominal spatial resolution because of the large viewing angles of the observations. It is essential
to quantify the spatial representativeness of remote sensing products to better guide the sampling
strategy in field experiments and match products from different sources. This study quantifies the
spatial representativeness of the MODerate Resolution Image Spectroradiometer (MODIS) (collection
V006) 500 m daily albedo product (MCD43A3) using the high-resolution product as intermediate data
for different land cover types. A total of 1820 paired high-resolution Landsat Thematic Mapper (TM)
and coarse-resolution (MODIS) albedo data from five land cover types were used. The TM albedo
data was used as the spatial-complete high resolution data to evaluate the spatial representativeness
of the MODIS albedo product. Semivarioagrams were estimated from 30 m Landsat data at different
spatial scales. Surface heterogeneity was evaluated with sill value and relative coefficient of variation.
The 30 m Landsat albedo data was aggregated to 450 m–1800 m using two different methods and
compared with MODIS albedo product. The spatial representativeness of MODIS albedo product
was determined according to the surface heterogeneity and the consistency of MODIS data and the
aggregated TM value. Results indicated that for evergreen broadleaf forests, deciduous broadleaf
forests, open shrub lands, woody savannas and grasslands, the MODIS 500 m daily albedo product
represents a spatial scale of approximately 630 m. For mixed forests and croplands, the representative
spatial scale was approximately 690 m. The difference obtained was primarily because of the
complexity of the landscape structure. For mixed forests and croplands, the structure of the landscape
was relatively complex due to the presence of different forest and plant types in the pixel area,
whereas the other landscape structures were considerably simpler.
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1. Introduction

Land surface albedo describes the fraction of incoming solar radiation reflected by the surface of
the land. It influences the surface energy budget [1], and it is essential for global and regional estimation
of energy and mass exchanges between the Earth’s surface and the atmosphere [2–6]. An accuracy of
0.02–0.05 is required by climate models for global surface albedo [7,8]. To monitor the spatio-temporal
changes in land surface albedo, albedo products are routinely generated from satellite data, such as the
Polarization and Directionality of the Earth’s Reflectance (POLDER) [9–12], the Medium Resolution
Imaging Spectrometer (MERIS) [13], the Clouds and the Earth’s Radiant Energy System (CERES) [11,12],
the Visible Infrared Imaging Radiometer Suite (VIIRS) [14,15], and the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) [16]. The Moderate Resolution Imaging Spectroradiometer (MODIS)
onboard the Earth Observation System (EOS) Terra and Aqua satellites routinely provided data to
derive the land surface shortwave and visible albedos [17–19] used to calibrate and improve albedo
parameterizations for land, weather, and climate models [20–26]. Assessment of the accuracy of
these products is important because it is critical to the scientific community for various applications.
Feedback from this activity will help improve the generation of these products [27].

Direct comparison with the ground-based observations of albedo values is the commonly used
method to assess the accuracy of remote sensing albedo products [28–30]. The tower observation is
compared directly with the satellite product [31–33] based on the assumption that the satellite and
tower observation have the same footprint or the landscape is homogeneous. Researchers subsequently
recognized that the land surface albedo varies strongly in space and across seasons, because of which
land surface homogeneity is now examined prior to the “point-to-pixel” comparison. Only sites
whose representativeness is adequate for satellite pixel scales are selected in the direct validation and
“heterogeneous” sites are excluded [34]. The method most suited to a comparison for all kinds of
landscapes is using higher spatial resolution data as intermediate data [27,35,36]. Burakowski, et al. [37]
used airborne hyperspectral imagery to validate MODIS albedo product in snow-covered areas;
Mira, et al. [10] used the convolved albedo onboard the Formosat-2 Taiwanese satellite as a reference
to evaluate the newly released MCD43D product. However, since no global high-resolution albedo
product (at a level of tens of meters) is available, validation using intermediate data has been conducted
at a limited number of locations.

Prior to evaluating the remote sensing product, identifying the spatial representativeness of the
products is essential. It can help ground sampling point settings and match remote sensing data from
multiple sources. MODIS albedo products are retrieved using observations covering a large area
that depends on the view zenith angles. Although observations are weighted by angular coverage
before albedo retrieval, the actual coverage of the pixel is always larger than the nominal spatial
resolution [38,39]. Efforts have been made to characterize the effective resolution of the MODIS
gridded product [40]. Mira, et al. [10] used Formost-2 data at a resolution of 8 m to characterize the
equivalent point spread function of MODIS albedo at a 1 km pixel. The Full Width at Half Maximum
(FWHM), recognized as the effective resolution, has been confirmed to represent the footprint of
MODIS data for accurate validation. Campagnolo et al. [41] used extensive time series data (2003–2014)
at a large size of the linear natural target in the Netherlands to analyze the effective spatial resolution
of the MODIS albedo product (the spatial scale the pixel represents). They verified that the spatial
representativeness of the MODIS daily albedo product approximately varied from 606 m to 843 m.
Campagnolo and Montano [40] estimated the point spread function (PSF) of nominal 250 m MODIS
gridded surface reflectance products, and discovered that the spatial representativeness varied from
344 m to 835 m along the rows, and between 292 m and 523 m along the columns. Their work helps
users understand the spatial properties of the satellite product, but their work was based only on
a single area, and a general adaptable result that is based on different kinds of land surfaces is needed.

The MODIS BRDF/albedo product was derived with a semi-empirical, kernel-driven BRDF
model. Data for 16-day, multi-angular, cloud-free, atmosphere-corrected surface reflectance was
compiled to apply the retrieval procedure. To better characterize the rapid change of the land surface,
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the daily albedo product was retrieved using the same semi-empirical algorithm, but with the single
day of interest emphasized by being weighted more heavily [39,42] in the 16-day composite period.
The spatial representativeness and accuracy of the newly released daily albedo product (MCD43A3,
V006) have not been tested for different types of land cover for a long time series.

The high-resolution (30–80 m) satellite albedo product is essential in understanding the climatic
consequences of land cover change and medium-to-fine scale applications [43]. It is also a key bridge
to the assessment of coarse-resolution products. He et al. [44] developed a method to estimate both
snow-covered and snow-free albedo from the Chinese environment and disaster monitoring and
forecasting small satellite constellation (HJ) satellite data. Zhou, et al. [15] then derived 30 m albedo
from Landsat 7 and Landsat 8 using a similar algorithm. He et al. [45] evaluated 30 m albedo product
estimated from Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+), and Operational Land Imager (OLI) at Surface Radiation (SURFRAD), AmeriFlux,
Baseline Surface Radiation Network (BSRN), and Greenland Climate Network (GC-Net) sites, with
results indicating that the direct estimation approach can generate reliable albedo estimates with
accuracy of 0.022 to 0.034 in terms of the root mean square error (RMSE). The derivation of global land
surface albedo product using Landsat sensors makes it possible to better understand energy transfer
between the land surface and the atmosphere at global and regional scales. Furthermore, it makes
the assessment of the coarse-resolution albedo product possible, as well as scale transformations for
different land cover types and landscapes.

2. Datasets

Three types of datasets were used to quantitatively determine the spatial representativeness of
the MODIS daily albedo product: (1) Tower-measured surface albedo datasets from AmeriFlux sites
were used as field truth to calibrate 30 m albedo data. (2) The MODIS daily albedo product MOD43A3
(V006, 500 m, daily) was assessed, and annual land cover data were downloaded to identify different
land cover types. (3) Landsat TM level-one data were used to estimate the 30 m spatial resolution of
the albedo, which was then used as the spatial complete high resolution data to evaluate the spatial
representativeness of the MODIS 500 m spatial resolution albedo product.

2.1. AmeriFlux Site Data

The AmeriFlux network is a community of sites and scientists measuring the amounts of carbon,
water, energy fluxes, and related environmental variables in ecosystems across the Americas [46].
It supplies a long period of field observations and features wide coverage of forests, grasslands,
croplands, shrub lands, wetlands, savannas, and other geographies (e.g., urban). A total of 166 sites
are distributed in North and South America, of which 109 feature continuous radiation measurement.
Level-2 data of downward and upward radiation from these 109 sites were downloaded from the
Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL).
The instruments mounted on the tower including Kipp and Zonen (CNR1, CM-3, OR CM-6), and the
Eppley-PSP albedometer/pyranometer. The instruments were fitted with domes to collect radiation
fluxes in the broadband shortwave domain (0.3–2.8 µm). Data received from each site were reviewed
and incorporated into the network of the AmeriFlux database. The data review process includes
checking for consistent units, naming conventions, reporting intervals, and reforming to ensure
consistency with the larger network-wide database [47]. Radiation data were collected every half hour
during the years indicated in Table 1 for each site. The overall range of years recorded at one site
or more is 1995 to 2013. A region of 10 × 10 km around each site was selected as the research area.
Information pertaining to the sites used in this study—site name, latitude, longitude, land cover type,
and the years when data are available—is listed in Table 1.
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Table 1. Flux sites used in the analysis.

SITE_NAME LOCATION_LAT LOCATION_LONG IGBP TOWER_BEGAN TOWER_END SITE_NAME LOCATION_LAT LOCATION_LONG IGBP TOWER_BEGAN TOWER_END

ARM Southern Great Plains
site—Lamont 36.61 −97.49 CRO 2002 2013 Mary’s River (Fir) site 44.65 −123.55 ENF 2005 2013

Bondville 40.01 −88.29 CRO 1996 2013 Metolius Young Pine Burn 44.32 −121.61 ENF 2010 2013

Bondville (companion site) 40.01 −88.29 CRO 2004 2008 Flagstaff—Unmanaged Forest 35.09 −111.76 ENF 2006 2010

Brooks Field Site 10—Ames 41.69 −93.69 CRO 2001 2013 Duke Forest—loblolly pine 35.98 −79.09 ENF 2001 2008

Brooks Field Site 11—Ames 41.97 −93.69 CRO 2001 2013 Howland Forest (west tower) 45.21 −68.75 ENF 1999 2013

Curtice Walter—Berger cropland 41.63 −83.35 CRO 2011 2013 Metolius—second young aged pine 44.32 −121.61 ENF 2004 2009

Fermi National Accelerator
Laboratory—Batavia

(Agricultural site)
41.86 −88.22 CRO 2005 2013 Metolius—intermediate aged

ponderosa pine 44.45 −121.56 ENF 2002 2013

Mead—irrigated continuous
maize site 41.17 −96.48 CRO 2001 2013 Howland Forest (main tower) 45.20 −68.74 ENF 1996 2013

Mead—irrigated maize-soybean
rotation site 41.16 −96.47 CRO 2001 2013 Poker Flat Research Range Black

Spruce Forest 65.12 −147.49 ENF 2011 2013

Mead—rainfed maize-soybean
rotation site 41.18 −96.44 CRO 2001 2013 Saskatchewan—Western Boreal,

forest burned in 1977. 54.49 −105.82 ENF 2004 2006

Ponca City 36.77 −97.13 CRO 1997 2001 Flagstaff—Managed Forest 35.14 −111.73 ENF 2006 2010

Rosemount—G21 44.43 −93.05 CRO 2002 2013 Niwot Ridge Forest (LTER NWT1) 40.03 −105.55 ENF 1998 2013

Sioux Falls Portable 43.24 −96.90 CRO 2007 2013 Howland Forest (harvest site) 45.21 −68.73 ENF 2000 2013

Twitchell Corn 38.10 −121.64 CRO 2012 2013 UCI-1930 burn site 55.91 −98.52 ENF 2001 2005

Twitchell Alfalfa 38.12 −121.65 CRO 2013 2013 UCI-1964 burn site wet 55.91 −98.38 ENF 2002 2004

Bartlett Experimental Forest 44.06 −71.29 DBF 2004 2013 Quebec—Eastern Boreal 49.27 −74.04 ENF 2001 2013

Morgan Monroe State Forest 39.32 −86.41 DBF 1999 2013 NC_Clearcut 35.81 −76.71 ENF 2005 2013

Duke Forest-hardwoods 35.97 −79.10 DBF 2003 2013 GLEES 41.37 −106.24 ENF 2004 2013

Willow Creek 45.81 −90.08 DBF 1999 2013 Wind River Crane Site 45.82 −121.95 ENF 1998 2013

Chestnut Ridge 35.93 −84.33 DBF 2005 2013 UCI-1850 burn site 55.88 −98.48 ENF 2002 2005

Silas Little—New Jersey 39.91 −74.60 DBF 2004 2013 UCI-1964 burn site 55.91 −98.38 ENF 2001 2005

Univ. of Mich. Biological Station 45.56 −84.71 DBF 1999 2013 UCI-1981 burn site 55.86 −98.49 ENF 2001 2005

Walker Branch Watershed 35.96 −84.29 DBF 1995 1999 Black Hills 44.16 −103.65 ENF 2003 2008

Missouri Ozark Site 38.74 −92.20 DBF 2004 2013 Chimney Park 41.07 −106.12 ENF 2009 2013

Oak Openings 41.55 −83.84 DBF 2004 2013 NC_Loblolly Plantation 35.80 −76.67 ENF 2005 2013

UMBS Disturbance 45.56 −84.70 DBF 2007 2013 Quebec—Eastern Boreal, Mature
Black Spruce. 49.69 −74.34 ENF 2003 2013

Fermi National Accelerator
Laboratory—Batavia 41.84 −88.24 GRA 2004 2013 Valles Caldera National Preserve

(Mixed Conifer) 35.89 −106.53 ENF 2007 2013

ARM USDA UNL OSU
Woodward Switchgrass 1 36.43 −99.42 GRA 2009 2013 Valles Caldera National Preserve

(Ponderosa pine) 35.86 −106.60 ENF 2007 2013

ARM USDA UNL OSU
Woodward Switchgrass 2 36.64 −99.60 GRA 2009 2013 Ontario—Turkey Point 1939

Plantation White Pine 42.71 −80.36 ENF 2003 2013

Konza Prairie LTER (KNZ) 39.08 −96.56 GRA 2006 2013 Bonanza Creek 63.92 −145.74 OSH 2003 2013

Walnut Gulch Kendall Grasslands 31.74 −109.94 GRA 2004 2013 UCI-1989 burn site 55.92 −98.96 OSH 2001 2005

Audubon Research Ranch 31.59 −110.51 GRA 2002 2013 Saskatchewan—Western Boreal 54.09 −106.01 OSH 2001 2006
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Table 1. Cont.

SITE_NAME LOCATION_LAT LOCATION_LONG IGBP TOWER_BEGAN TOWER_END SITE_NAME LOCATION_LAT LOCATION_LONG IGBP TOWER_BEGAN TOWER_END

Duke Forest-open field 35.97 −79.09 GRA 2001 2013 Anaktuvuk River Severe Burn 68.99 −150.28 OSH 2008 2013

Diablo 37.68 −121.53 GRA 2010 2013 Anaktuvuk River Moderate Burn 68.95 −150.21 OSH 2008 2013

Santa Rita Grassland 31.79 −110.83 GRA 2008 2013 Anaktuvuk River Unburned 68.93 −150.27 OSH 2008 2013

Canaan Valley 39.06 −79.42 GRA 2004 2013 Walden 40.78 −106.26 OSH 2006 2008

Cottonwood 43.95 −101.85 GRA 2007 2009 UCI-1998 burn site 56.64 −99.95 OSH 2002 2005

Fort Peck 48.31 −105.10 GRA 2000 2013 Sevilleta (LTER desert shrubland) 34.33 −106.74 OSH 2007 2013

Brookings 44.35 −96.84 GRA 2004 2013 Santa Rita Creosote 31.91 −110.84 OSH 2008 2013

Walnut River Watershed
(Smileyburg) 37.52 −96.86 GRA 2001 2004 Juniper savanna site (Willard) 34.43 −105.86 OSH 2007 2013

Sevilleta (LTER desert grassland) 34.36 −106.70 GRA 2007 2013 Walnut Gulch Lucky Hills Shrub 31.74 −110.05 OSH 2007 2013

Flagstaff—Wildfire 35.45 −111.77 GRA 2006 2010 Imnavait Creek Watershed Tussock
Tundra 68.61 −149.30 OSH 2007 2013

KUOM Turfgrass Field 45.00 −93.19 GRA 2005 2009 Imnavait Creek Watershed Heath
Tundra 68.61 −149.30 OSH 2007 2013

Kansas Field Station 39.06 −95.19 GRA 2007 2013 Pinon-juniper site (Mountainair) 34.44 −106.24 OSH 2007 2013

Corral Pocket 38.09 −109.39 GRA 2001 2007 Everglades (long hydroperiod
marsh) 25.55 −80.78 WET 2007 2013

Shidler—Oklahoma 36.93 −96.68 GRA 1997 2001 Everglades (short hydroperiod
marsh) 25.44 −80.59 WET 2007 2013

Vaira Ranch—Ione 38.41 −120.95 GRA 2000 2013 Twitchell East End Wetland 38.10 −121.64 WET 2013 2013

Goodwin Creek 34.25 −89.87 GRA 2002 2006 Winous Point North Marsh 41.46 −83.00 WET 2011 2013

Santarem-Km83-Logged Forest -3.02 −54.97 EBF 2000 2003 Twitchell Wetland West Pond 38.11 −121.65 WET 2012 2013

Shark River Slough (Tower SRS-6)
Everglades 25.36 −81.08 EBF 2004 2013 Imnavait Creek Watershed Wet

Sedge Tundra 68.61 −149.31 WET 2007 2013

Ontario—Groundhog River,
Boreal Mixedwood Forest. 48.22 −82.16 MF 2003 2013 Olentangy River Wetland Research

Park 40.02 −83.02 WET 2011 2013

Santa Rita Mesquite 31.82 −110.87 WSA 2004 2013 Ivotuk 68.49 −155.75 WET 2003 2013

Freeman Ranch—Mesquite
Juniper 29.95 −98.00 WSA 2004 2013 Lost Creek 46.08 −89.98 WET 2001 2013

Sylvania Wilderness Area 46.24 −89.35 MF 2001 2013 Freeman Ranch—Woodland 29.94 −97.99 CSH 2004 2013

Fort Dix 39.97 −74.43 MF 2005 2008

Note: * SITE_NAME is the full name of the selected AmeriFlux sites. IGBP is the International Geosphere Biosphere Program.CRO is cropland, DBF is deciduous broadleaf forest, ENF is
evergreen needleleaf forest, GRA is grassland, MF is mixed forest, OSH is open shrubs, WET is permanent wetlands, WSA is woody savannas.
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2.2. MODIS Data

2.2.1. MCD43 BRDF/Albedo Product

The MODIS Albedo product (MCD43A3 V06) provides daily albedo data on the Earth’s surface
for each pixel at a grid resolution of 500 m. A 16-day period of cloud-free surface reflectance from
both the Terra and the Aqua is used to derive the daily data, with weight as a function of quality, the
observation coverage, and the temporal distance from the day of interest. The newly broadcasted
albedo product has been utilized for regional applications (e.g., forest, agriculture, and disturbance
monitoring), and is now downloadable from the Land Processes Distributed Active Archive Center
(LP DAAC). The 16-day composed daily albedo product has been validated over typical agricultural
landscapes [10,41], grasslands, and agriculture and forest surfaces [39], but has not been extensively
validated for other land cover types using massive amounts of data.

2.2.2. MCD12Q1 Land Cover

Land cover plays a major role in the climate and biogeochemistry of the Earth’s ecosystem.
The MODIS land cover type product provides a suite of land cover types by using spectral and
temporal information derived from the MODIS. It characterizes five global land cover classification
systems—the International Geosphere Biosphere Program (IGBP), university of Maryland (UMD), Leaf
Area Index/Fraction of Photosynthetically Active Radiation absorbed by vegetation (LAI/fPAR), New
Patriotic Party (NPP), and Plant Functional Types (PFT)—at annual time steps and a 500 m spatial
resolution. Land cover type assessment and quality control information are also included. Given
that the land cover type may change over time, yearly MODIS land cover type data (MCD12Q1) are
downloaded, and the IGBP land cover type is used.

2.3. Landsat-Retrieved Albedo

The TM onboard the Landsat 4 and 5 satellites with seven spectral bands covered the shortwave
range at a resolution of 30 m from 1984 to 2011. It is an optimal data source for regional and global land
surface change research because of its long period of operation [48–52]. The high-spatial-resolution
(30 m), long-term albedo product based on Landsat data has been derived [43,45,53]. In this study,
we adopt the algorithm of He et al. [45] to derive the global long-term land surface albedo product
from Landsat TM data. L1T data that were temporally consistent with AmeriFlux site observations
were downloaded from the U.S. Geological Survey (USGS) website. To minimize the influence of
cloud coverage, only the highest data quality (quality flag is 9) and a maximum cloud cover of 10%
were used. In this paper, 2034 scenes of TM data were downloaded, covering all land cover types and
seasons, where 1820 scenes corresponded to high-quality MODIS data. TM data were first rectified to
sinusoidal projections and resampled to 30 m resolution using the nearest neighbor algorithm.

The accuracy of meso-scale data needs to be verified and calibrated before they are used to bridge
field measurements and coarse-resolution products. Landsat TM albedo data was first calibrated with
the field data. The Landsat TM overpassed at local time 10:00–11:00 AM. To guarantee the temporal
consistency between TM data and field observation, field observations 15 min before and after the TM
passing over were averaged. The field observation covers an area larger than 30 m, so we assume that
the land surface at 30 m scale is homogeneous and field observation can compare directly with TM
data. However, for each AmeriFlux site, the tower-located TM pixel was picked out according to the
tower location. Sometimes, the tower was not located at the center of the pixel and possible geometric
correction error may also exist, so albedo of 3 × 3 TM pixels around the tower were averaged and
compared with the field observations.

Figure 1 shows a scatter plot of the field measurements and the TM albedo. The correction
coefficient was derived from least squares regression between TM data and ground measurement. The
determination coefficient was 0.877, RMSE and bias were 0.033 and 0.00035, respectively. The calibrated
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TM data with the determined correlation were then used as a bridge for comparison with the MODIS
albedo product as well as for further analysis to determine the spatial representativeness of the later.
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Figure 1. Field data comparison with Landsat Thematic Mapper (TM) data, which is the average of
3 × 3 pixels. The fitting function is then used for TM albedo data calibration.

3. Methods

To quantitatively evaluate the spatial representativeness of the MODIS daily albedo product,
30 m albedo data were derived from Landsat TM data and then calibrated using field observation
data. Semivariagrams are calculated with calibrated 30 m albedo data for different scales, in which
sill value is considered as the key index to measure the magnitude of field homogeneity, i.e., sill
values of adjacent scales differ from each other significantly, indicating that the field homogeneity
changed significantly between these two scales. Relative coefficient of variation (RCV) is also employed
to determine the land surface homogeneity: RCV tends to be 0, which indicates that the adjacent
scales have similar homogeneity, the MODIS pixel represents the larger scale. The last index used is
the determination coefficient, 30 m albedo data is aggregated to different scales and compared with
MODIS data. The scale in which it has the highest determination coefficient indicates the MODIS pixel
represents the spatial scale best.

3.1. Variogram Model Parameters from TM Data

When using tower observation to validate the remote sensing albedo product, the spatial
representativeness of the observation footprint was investigated on semivariogram models [37,39,47,54].
In this study, the method of deriving variogram functions to analyze surface albedo with TM data
was used [36]. The variogram estimator γ(h) was used to obtain the half-average squared difference
between albedo values within a certain distance. According to Román et al. [47], the isotropic spherical
variogram model [55] was used to fit the variogram model parameters—the range (a), the sill (c), and
the nugget effect (c0), as below:

γsph(h) =

 c0 + c
(

1.5 h
a − 0.5

(
h
a

)3
)

f or 0 ≤ h ≤ a

c0 + c f or h > a
(1)

The range is the distance from a point beyond which there is no further correlation of the albedo
associated with that point. It is the average patch size of the landscape in landscape ecology, which
represents a region that differs from its surroundings, but is not necessarily inter-homogeneous.
The sill is the maximum semivariance, and is the ordinate value of the range at which the variogram
levels off to an asymptote. The non-zero value of the variogram when h = 0 is called the nugget
effect. It depends on the variance associated with small-scale variation, measurement errors, or their
combination [56]. The range, the sill, and the nugget effect all reveal the spatial variation of the land
surface and the scale effect associated with remote sensing data [47,57]. It has been suggested that
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the land surface is homogeneous (representative) when the sill value is less than 0.001 [37]. In this
paper, the semivariogram model was used as well. The 30 m Landsat albedo was first re-projected
to a sinusoidal projection and the Landsat pixel located at the center of the MODIS 500 m pixel was
determined. The semivariogram was calculated from Landsat data. The model parameters were fitted
according to the spherical model.

3.2. Relative Coefficient of Variation

The indices deduced from the parameters of the semivariogram model and the statistical values
were also used in this study. The relative coefficient of variation (RCV), the scale requirement index, the
relative proportion of structural variation, and the relative strength of spatial correlation, derived from
the semivariogram model, were first used by Román et al. [47] to depict spatial variation. When the
measurement site was spatially representative, the overall variation between the internal components
of the measurement site (scale 1) and the adjacent landscape (scale 2) should have been similar in
magnitude, and the RCV should have approached zero. The RCV was also calculated to check the
spatial variation in the landscape. To calculate it, the coefficient of variation (cv) was first calculated as
the ratio of the standard deviation to the mean. The RCV is given below:

RCV =
CVscale2 − CVscale1

CVscale1
(2)

3.3. Evaluation Strategies

To determine the spatial representativeness of the 500 m product used in this study, variogram
estimation was performed at nine scales for each site. When estimating the variogram, the common
spatial step was one MODIS pixel, and according to the result of [41], three scales were added between
1 × 1 and 2 × 2 MODIS pixels; that is, 21 × 21, 23 × 23, and 29 × 29 TM pixels. The 2.5 × 2.5 MODIS
pixels were also added to keep an intensive estimation. The estimating scales used in this study are
shown in Table 2.

Table 2. Variogram estimating scales selected in this study.

Scale 1 2 3 4 5 6 7 8 9

TM pixels 15 × 15 21 × 21 23 × 23 29 × 29 31 × 31 39 × 39 47 × 47 61 × 61 75 × 75
Scale in meters 450 630 690 870 930 1170 1410 1830 2250
MODIS pixels 1 × 1 - - - 2 × 2 2.5 × 2.5 3 × 3 4 × 4 5 × 5

To make the analysis representative, for each site, not only was the tower-located MODIS pixel
analyzed, the research area was enlarged to 9 × 9 pixels with the tower-located MODIS pixel as the
central pixel. In this research area, for every MODIS pixel, the semivariogram parameters (nugget, sill,
range) and the statistical value, including mean and standard deviation, were calculated at the nine
scales illustrated in Table 2.

The spatial representativeness was evaluated according to the calculated parameters and values.
The sill value represents the magnitude of spatial variability. In this study, the sill values of 9 × 9
MODIS pixel in every research area were compiled (for every scale, sill values were compiled as a
group; thus, we obtained nine groups of data), and the paired t-test was implemented every adjacent
scale data pair (e.g., 15 × 15 and 21 × 21) to find whether the land surface at adjacent scales was
significantly different. Statistical significance was determined by the p-value. If the p-value was zero, it
indicated that the difference of the land surface heterogeneity at adjacent scales was not significant;
the central MODIS pixel was able to represent an area determined by the larger scale.

RCV depicts spatial variation in the landscape. In this study, RCV was calculated between each
pair of scales in Table 2, then all the data from 109 sites and 81 pixels were compiled and the histogram
was plotted. The scale in which the RCV value is smallest indicates that the central pixel has the similar
spatial representativeness in these adjacent scales.
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Taking the calibrated TM data as the albedo reference, we aggregated the TM value at different
scales and compared the aggregated 30 m albedo data directly with the 500 m albedo product, and two
aggregation methods were used. One was simple average, and the other considered the point spread
function. Campagnolo and Montano [40] and Mira et al. [10] used the convolution of a Gaussian
function to characterize the optical PSF of the MODIS instrument, assuming that the central area of the
pixel made a greater contribution to the signal. In this paper, we adopt the Gaussian function, as was
done by Campagnolo and Montano [40] and Mira et al. [10], but set an asymmetric Gaussian point
spread function. The PSF was defined below.

PSF(x, y) =
1

2πa2 exp−0.5(x2/a2+y2/a2) (3)

where
a =

FWHM
2.355

(4)

The FWHM is the full width at half maximum of the PSF. In this study, we set it as the sensor spatial
resolution as Campagnolo and Montano [40], which also represents the spatial representativeness of
the pixel.

The determination coefficient was used to judge the satisfactoriness of the consistency between
the two datasets. The scale where the highest determination coefficient appeared was considered that
the MODIS data has the best spatial representativeness.

4. Results

4.1. Spatial Representativeness Determined by Sill Value

A paired t-test was performed on the sill value for each set of paired TM and MODIS data.
The spatial variation was determined according to the criterion that if the p-value was zero, it confirmed
the null hypothesis—land surface variation at adjacent scales was not different, and the pixel can
represent the larger scale scape. For all data pairs, the histogram of spatial variation is shown in Figure 2.
The median value was also used as the indicator of effective spatial resolution, as in Campagnolo
et al. [41]. In this situation, the median value was 2, which suggests that the variation in the land
surface was subtle within the 21 × 21 TM scale, and the proper aggregation scale for TM albedo data
was 21 × 21 pixels. The 21 × 21 aggregation scale represented a 630 m spatial scale, which is consistent
with the result of [41].
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Figure 2. The proper aggregation scale histogram according to the sill value of each scene. The scale is
defined with TM pixels. The scene number is the total number of the scenes at each scale where the
MODerate Resolution Image Spectroradiometer (MODIS) pixel represents the spatial scale well.
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Table 3 shows the proper aggregation scale for every land cover type of AmeriFlux sites. For
most land cover types, the land surface was stable within 21 × 21 TM pixels, and for mixed forest and
croplands, the proposed effective spatial resolution was 690 m (approximately 23 × 23 TM pixels).

Table 3. Spatial representativeness of MODIS 500 m albedo product for different land cover types.

Land Cover Type Suggested Spatial Scale Suggested Spatial Representativeness in Meters

Evergreen Broadleaf forest 2 630
Deciduous Broadleaf forest 2 630

Mixed forest 3 690
Open shrublands 2 630
Woody savannas 2 630

Grasslands 2 630
Croplands 3 690

4.2. Spatial Representativeness Determined by Relative Coefficient of Variation

Figure 3 shows the histogram of the RCV at each scale. To depict the spatial variation at adjacent
scales, the RCV was computed from the CV values at each adjacent scale. The median value was
calculated as in Figure 3 to describe the integral spatial variation at each scale. From Figure 3, we can
see that RCV1, which represents the RCV of the first scale, was the largest for all scales. This means
that the spatial variation between scale 1 (15 × 15 TM pixels) and scale 2 (21 × 21 TM pixels) was
significant. The median values of RCV2 and RCV4 were small, which means that the effective spatial
resolution should have been 630 m or 870 m. The conclusion was partly consistent with that of the
t-test on the sill values. However, the step sizes of the scales were different: for scales 1 and 2, the step
was 6 TM pixels, but for scales 2 and 3, it was only 2. Hence, the low level of the variation in the sill
value and the small value of the RCV could have been deduced from the small step size. To verify this
conclusion, we then reduced the analysis step size and aggregated the TM data at different scales to
explore the proper representative scale.
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Figure 3. Histogram of RCV at (a)–(h): scale 1–scale 8. The median is the median value of RCV at
each scale.

4.3. Spatial Representativeness Determined by Direct Comparison

We refined the step size to find the highest correlation coefficient between TM and MODIS to
determine the proper aggregation scale and use it as the representative spatial scale of MODIS data.
The step size was set to 2 TM pixels. Figure 4 shows that the coefficient varied with aggregation scale.
TM data were aggregated from 15 × 15 to 61 × 61 TM pixels. From Figure 4 we can see that when
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23 × 23 TM pixels were aggregated, the correlation coefficient was the highest and the root mean
squared error was the lowest compared with MODIS data. This corresponds to the results in Table 3 in
some degree.
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Figure 4. R2 variation with aggregation scale.

We then checked the comparative accuracy of different land cover types. Table 4 shows the
accuracy of comparison in different land cover types at the suggested aggregation scale according to
Table 3. For all the land cover types, the RMSE was less than 0.03 and bias less than 0.018. The R2 of
evergreen broadleaf forests was the lowest, mainly because the land surface of this type was snow free,
and all albedo values clustered together. For all other land cover types, the R2 value was higher than
0.86, and for croplands, it reaches 0.965.

Table 4. Comparison in terms of accuracy between TM and MODIS for different land types.

LC Land Cover Type R2 RMSE BIAS

2 Evergreen Broadleaf forest 0.688 0.016 0.014
4 Deciduous Broadleaf forest 0.863 0.018 0.013
5 Mixed forest 0.926 0.026 0.014
7 Open shrublands 0.947 0.018 0.014
8 Woody savannas 0.944 0.030 0.017

10 Grasslands 0.941 0.021 0.009
12 Croplands 0.965 0.023 0.003

5. Discussion

5.1. Errors Induced by Landsat Albedo Estimation and Spatial Discrepancy

The Landsat albedo estimation algorithm has been validated on a variety of sensors and land
cover types [15,16,44,58]. In this study, it was first calibrated using field observations. The errors
induced by the estimation algorithm were hence eliminated.

In most cases, the sites were not located at the center of a MODIS pixel. Comparing the MODIS
product with field observations or high-resolution data at the site tends to induce errors due to spatial
discrepancy. In this study, high-resolution data were first calibrated with the field observations. When
evaluating the spatial representativeness of the MODIS product, Landsat pixels located at the center
of the MODIS pixels were selected, so the analysis focused on this area could guarantee the spatial
agreement to the greatest extent.
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5.2. Difference Deduced by Upscaling Methods

When upscaling finer-resolution data to a coarser resolution, the simple average method is
generally used. Mira et al. [10] assessed an equivalent PSF based on image correlation analysis using
an aggregated albedo convolved with PSF over an agricultural landscape. The results indicated that
convolving the PSF can reduce uncertainty by up to 0.02 (10%). We checked the difference deduced by
the upscaling method.

5.2.1. Simple Average Method

The TM value was first averaged then compared directly with the MODIS data. Figure 5 shows
a comparison between the MODIS daily albedo data and the TM data. The results indicate that these
datasets agreed well with RMSE less than 0.03 and R2 greater than 0.92. Although the recommended
aggregation scales were scale 2 and 3 (21 × 21 and 23 × 23 TM pixels), the difference in accuracy
between the scales was not significant (R2 ranged from 0.9341 to 0.9442; RMSE ranged from 0.0239 to
0.0249; the biases were nearly identical).
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5.2.2. Aggregation with PSF

MODIS gridded products are the outputs of a sampled image system that combines an imaging
system with a sampling procedure. The imaging system used was characterized by the sensor
PSF, which is considered as the convolution of line spread functions in the along-scan and the
along-track directions [10,40]. The FWHM is an important parameter in characterizing pixel resolution.
We implemented the PSF function to TM data upscaling. The FWHM was set as the first eight scale
values in Table 2, and a weight smaller than 20% was neglected [10].

Table 5 shows a comparison between MODIS data and the TM albedo aggregated with the PSF.
The first aggregation scale (15 × 15 TM pixels) has a high R2 value (0.944), while the second and third
aggregation scales (21 × 21 and 23 × 23 TM pixels) has the lowest RMSE (0.0239).

Comparing the results of aggregation with the simple average and those obtained by convolving
them with the PSF, the highest R2 value appeared when the aggregation scale was 23 × 23 TM pixels.
The RMSE of the simple average and those obtained through the convolution of the PSF were nearly
identical (0.0239 and 0.0238, respectively), indicating that for all datasets, the difference deduced by
the aggregation method was not significant.
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Table 5. Comparative accuracy of MODIS albedo and TM data aggregated with PSF.

Scale 1 2 3 4 5 6 7 8

TM pixels 15 × 15 21 × 21 23 × 23 29 × 29 31 × 31 39 × 39 47 × 47 61 × 61
R2 0.944 0.9437 0.943 0.9404 0.9395 0.9354 0.9309 0.9207

RMSE 0.0239 0.0238 0.0238 0.024 0.0241 0.0243 0.0245 0.0248
BIAS 0.0117 0.0117 0.0116 0.0115 0.0114 0.011 0.0103 0.0081

5.3. Effect of Land Surface Heterogeneity

We then focused the analysis on tower located pixel for each site. For each scene, the semivariogram
was calculated, from 15 × 15 to 77 × 77 TM pixels at a step of 2 TM pixels. Figure 6 shows the
heterogeneous number of scenes at each step (sill value larger than 0.001). On average, 257 scenes were
heterogeneous on 42 sites.
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Figure 6. Number of heterogeneous scenes at each scale from 15 × 15 to 77 × 77 TM pixels at a step of
2 TM pixels.

We divided the heterogeneous landscape into three types. Figure 7 shows the general land
surfaces and their spatial variations. Figure 7A shows a cropland from US-Ne3 site, located at the
center of a rain-fed maize–soybean rotation field. The crop had been harvested, and only bare soil was
explored in the scene. The trend in the variation in sill value was not significant with increasing scale.
This meant that although the landscape was heterogeneous, the magnitude of heterogeneity at the
scales was stable. The difference between the MODIS and the TM values decreased with increasing
scale. In this case, with the scale enlarged, the influence of land surface heterogeneity diminished.
The MODIS pixel represents an area much larger than its nominal resolution.

Figure 7B shows a US-Fmf site. This was an evergreen needleleaf forest site. The land surface
heterogeneity was mainly due to the snow in the upper-right corner. With increasing scale, the land
surface became more heterogeneous and the sill value increased from 0.0034 to 0.0059. The discrepancy
between MODIS and aggregated TM pixels increased accordingly. For this situation, we may conclude
that the more heterogeneous the land surface is, the greater the discrepancy is.

Figure 7C is CA-Fuf site. It is an evergreen needleleaf forest site not far from the US-Fmf site. The
land surface heterogeneity was much higher than in the former two scenes, mainly due to the irregular
surface and snow. The discrepancy between MODIS and TM albedo was correspondingly significant.
In this case, we can hardly determine the effective spatial representativeness of the pixel.

Land surface heterogeneity is a key factor affecting effective spatial representativeness. In general,
the more heterogeneous the land surface is, the larger the effective spatial representativeness is. When
the magnitudes of land surface heterogeneity at different scales are similar, with the scale increased,
land surface homogeneity increases.
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Figure 7. Three heterogeneous land surface types at (A) US-Ne3 cropland site, (B) US-Fmf evergreen
needleleaf forest site and (C) CA-Fuf evergreen needleleaf forest site. For each site, the left figure is
a false color composition of TM data, the middle figure is albedo from TM data, the right figure shows
the aggregated TM albedo values at each scale, MODIS albedo, and sill value from scales 1 (15 × 15 TM
pixels) to 32 (77 × 77 TM pixels) at a step of 2 TM pixels.

6. Conclusions

Land surface albedo is an important component of surface energy budgets. The validation of
the satellite product is a precondition for its scientific use. Prior to evaluating the remote sensing
products, identifying the spatial representativeness of the products is essential. It can help ground
sampling point settings and match remote sensing data from multiple sources but it is difficult
to determine the effective spatial representativeness of satellite albedo product from a physical
perspective, as multi-temporal data are composed to derive the product.

In this study, we evaluated the spatial representativeness of MODIS daily albedo product
(MCD43A3) at AmeriFlux sites. Among 1820 paired high-resolution (TM) and coarse-resolution
(MODIS) albedo over different land cover types used in this study, around 74.5% pixels were found
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to be heterogeneous pixels. In order to derive the most reliable spatial representativeness of MODIS
albedo product, the land surface heterogeneity was first assessed by the field-calibrated TM albedo;
semivarioagrams were then calculated from 30 m Landsat data at different spatial scales. Sill value
and relative coefficient of variation were employed as key indices to determine the land surface
heterogeneity. The 30 m Landsat albedo data was aggregated to 450 m–1800 m using direct average
method and convolved with PSF method. The aggregated data was then compared with MODIS
albedo product. The spatial representativeness of MODIS albedo product was determined according
to the surface heterogeneity and the consistency of MODIS data and the aggregated TM value.

The results indicate that for most MODIS pixels their spatial representativeness tend to be larger
than the 500 m nominal resolution. More specifically, for evergreen broadleaf forests, deciduous broadleaf
forests, open shrublands, woody savannas, and grasslands, the effective spatial representativeness of the
MODIS albedo was about 630 m; for mixed forest and croplands, the effective spatial resolution was
about 690 m. The accuracy of the MODIS 500 m albedo product was high, with a correlation coefficient
of 0.94 and RMSE 0.024 when compared with the calibrated TM albedo estimates. The choice of spatial
aggregation method between simple spatial averaging and PSF-weighted averaging did not result in any
significant difference in determining the spatial representativeness of MODIS albedo. It is also found
that the spatial representativeness was difficult to determine at the sites where surface heterogeneity
was very high (e.g., covered with evergreen needleleaf forest or partial snow).

In this study, long time period and large space data sets are used for spatial representativeness
evaluation at 109 AmeriFlux sites with five land cover types when former works mainly focused on
a specific research area. The availability of the 30 m Landsat albedo data set makes it possible for the
analysis to be carried out at sites with different land cover types. There are many high-level remote
sensing products, in this work, we only focus on evaluating the spatial representativeness of MODIS
daily albedo product. Similar work is also worth for other products.
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