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Abstract: Aircraft recognition in remote sensing images has long been a meaningful topic.
Most related methods treat entire images as a whole and do not concentrate on the features of
parts. In fact, a variety of aircraft types have small interclass variance, and the main evidence for
classifying subcategories is related to some discriminative object parts. In this paper, we introduce
the idea of fine-grained visual classification (FGVC) and attempt to make full use of the features
from discriminative object parts. First, multiple class activation mapping (MultiCAM) is proposed
to extract the discriminative parts of aircrafts of different categories. Second, we present a mask
filter (MF) strategy to enhance the discriminative object parts and filter the interference of the
background from original images. Third, a selective connected feature fusion method is proposed to
fuse the features extracted from both networks, focusing on the original images and the results of
MF, respectively. Compared with the single prediction category in class activation mapping (CAM),
MultiCAM makes full use of the predictions of all categories to overcome the wrong discriminative
parts produced by a wrong single prediction category. Additionally, the designed MF preserves the
object scale information and helps the network to concentrate on the object itself rather than the
interfering background. Experiments on a challenging dataset prove that our method can achieve
state-of-the-art performance.

Keywords: aircraft recognition in remote sensing images; fine-grained visual classification; multiple
class activation mapping; mask filter; selective connected feature fusion

1. Introduction

As remote sensing technology develops, remote sensing images can capture detailed features
of an object due to improved resolution, which lays the foundation for remote sensing image
interpretation. Aircraft recognition, one subfield of remote sensing image interpretation, has received
considerable research attention because aircraft recognition in remote sensing images is of great
significance in aerospace applications, intelligence information and so on.

In the early stage, aircraft recognition methods for remote sensing images rely mainly on
handcrafted features, such as histograms of oriented gradients (HOG) [1] and scale invariant feature
transform (SIFT) [2,3]. Hsieh et al. [4] introduces several preprocessing methods and uses four feature
extraction methods to classify aircraft. Some methods are based on template matching methods [5,6],
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such as the combination of an artificial bee colony algorithm and edge potential function in [5] and
the coarse-to-fine thought proposed in [6] utilizing the parametric shape model. These approaches
play an important role in the performance improvement of aircraft recognition, and some are still
being used today. However, due to the strong dependence on handcrafted features, these methods lack
discriminative representation ability and perform poorly in terms of robustness and generalization.

In recent years, with the improvement of hardware performance, deep neural networks have
experienced tremendous development and have been widely applied in various fields, such as
classification [7,8], detection [9,10], and segmentation [11,12]. Specifically, deep neural network
have made breakthroughs in aircraft recognition in remote sensing images. Diao et al. [13] is the
earliest attempt to introduce deep belief networks (DBNs) to address this problem. By combining
aircraft detection and template matching, Ref. [14] proposes a vanilla network. Zuo et al. [15] use
a convolutional neural network (CNN) for semantic segmentation and then feed the segmented
aircraft mask into a classification algorithm based on template matching. Zhang et al. [16] realize
aircraft classification based on the features extracted from conditional generative adversarial networks.
Compared with handcrafted-feature-based methods, neural-network-based models achieve substantial
improvement in both generalization and robustness. Moreover, the feature representations of neural
networks are more discriminative. However, in these methods, object features are extracted from the
whole image, and it is difficult to distinguish the detailed differences between similar object classes.

Depending on the level of interclass variance, the classification problem can be divided into
general object classification and fine-grained visual classification (FGVC). General object classification
aims to classify different categories with large interclass variance, for example, distinguishing cats from
dogs. Methods for general object classification treat entire images as a whole and do not concentrate
on the part features of an object. Correspondingly, the categories to be distinguished by FGVC are
subcategories of the same parent category, such as species of birds [17,18] and different types of cars [19],
which is achieved according to the small interclass variance. Some popular classification methods
based on convolutional networks, such as ResNet [20] and GoogLeNet [21], achieve state-of-the-art
performance in general object recognition. However, if these models are directly applied to the FGVC,
their performance decreases because concentrating on only the whole object features is not sufficient
for subcategory classification. Inspired by this limitation, FGVC extracts features from discriminative
parts [22–29] for subcategory classification. From this perspective, aircraft recognition in remote
sensing images can be regarded as an FGVC problem. In this task, each aircraft belongs to the same
parent class and must be classified by aircraft type. To the best of our knowledge, the aforementioned
aircraft recognition methods in remote sensing images all treat this task as a general object classification
problem. In this paper, we introduce the ideas of FGVC into aircraft recognition in remote sensing
images and attempt to make use of the features from discriminative object parts.

FGVC is a challenging classification problem because of the small interclass variance and
large intraclass variance. Small interclass variance means that all subcategories are quite similar
in appearance, behavior, and so on. On the other hand, large intraclass variance means that objects
from the same subcategory show relatively obvious differences in color, action and posture. In addition,
for aircraft recognition in remote sensing images, the complex background and characteristics of different
satellites cause additional difficulties. For example, the shadow, shape, and color of an object may be
influenced by the solar radiation angle, the radar radiation angle, and the surrounding environment.

Methods for FGVC can be divided into strong supervision and weak supervision methods, both of
which require image-level class annotation. For strongly supervised FGVC methods, discriminative
object parts must also be annotated manually. The initial studies use strongly supervised methods.
Huang et al. [22] directly detect the discriminative parts in a supervised manner and stacks part features
for further classification. Wei et al. [23] translate part annotations into segmentation annotations
and achieves state-of-art result for birds [17] with the segmentation method. Although the strongly
supervised methods achieve satisfactory performance, the annotation is very difficult because it is
hard to decide where the discriminative object parts are, and part annotation is time consuming.
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These disadvantages make it unrealistic to apply strongly supervised FGVC methods to new
fine-grained visual classification tasks.

Weakly supervised FGVC methods do not require manual discriminative part annotation.
These methods solve two main problems. One is discriminative part localization, which aims to locate
important parts automatically. Xiao et al. [24] use selective search to generate abundant image parts and
learn to acquire important parts with a discriminator. The other is discriminative feature representation,
which aims to extract the effective features in the discriminative parts. Zhang et al. [25] use a Fisher
vector to map features from the CNN output to a new space, which makes the classifier easier to train
and achieves high accuracy. Lin et al. [26] fuse the image features and position features for further
classification. Some recent studies report that discriminative part localization and discriminative
feature representation can influence each other [27]. Subsequently, Ref. [28], in which a class activation
mapping (CAM) method is proposed, proves that a CNN network is capable of addressing the
interaction between discriminative part localization and discriminative feature representation. CAM
utilizes a class activation map of a trained CNN to locate objects. Some methods [29–31] use CAM as
an intermediate step to locate discriminative parts for FGVC and segmentation; however, one drawback
of CAM is that it uses only the class activation map of the single predicted type. If the predication result
is wrong, the class activation map of CAM will be inaccurate. For some specific hard problems such as
FGVC, the prediction of CNN is not sufficiently reliable. Thus, CAM will add incorrect information to
the subsequent steps when the prediction is wrong.

In this paper, we propose a fine-grained aircraft recognition method for remote sensing
images based on multiple class activation mapping (MultiCAM). To the best of our knowledge,
the aforementioned aircraft recognition methods [13–16] for remote sensing images all treat this task
as a general object classification problem, but our method attempts to use FGVC to address the aircraft
recognition problem. The overall architecture consists of two subnetworks, i.e., the target net and the
object net. First, the target net extracts features from the original whole image. By fusing multiple
class activation maps based on the target net, MultiCAM is able to locate discriminative object parts
in the original image. Second, a mask filter strategy is proposed to eliminate the interference of
background areas. Then, the object net extracts features from the combinations of discriminative object
parts. Finally, we fuse the features from the target net and the object net via a selective connected
feature fusion approach and obtain the final classification result. Furthermore, our method uses
only image-level annotation and works in a weakly supervised manner. The main contributions are
as follows:

1. We propose the MultiCAM method for discriminative object parts localization. MultiCAM
overcomes the problem of the class activation map of a single predicted type in CAM.

2. To reduce the interference from the background in remote sensing images, a mask filter strategy
is proposed. This strategy retains the discriminative regions to the greatest extent and preserves
the object scale information.

3. To make use of features from both the original whole image and the discriminative parts,
we propose a selective connected feature fusion approach.

Experimental results are provided to verify that our method achieves good performance in
fine-grained aircraft recognition.

The rest of this paper is organized as follows. Section 2 introduces our method in detail. In Section 3,
our dataset is described, and the proposed algorithm is experimentally tested to demonstrate its
effectiveness. In Section 4, we discuss the issues of our network according to the experimental results.
Finally, conclusions are drawn in Section 5.

2. Materials and Methods

A convolutional neural network is generally utilized to extract object features from whole images,
and a subsequent classifier is built based on fully connected layers, support vector machine, or another
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machine learning method. As an evaluation criterion, the loss function computes the loss between the
ground truth and the predicted category. The trained network cannot be obtained until the loss function
converges. For each image, we can extract the feature map in each layer via forward propagation of
the trained network. The feature map in the lower layer represents marginal information, while the
feature map in the higher layer contains more semantic information. From the semantic information,
we can obtain the activated region in the feature map corresponding to the region in the original image,
which inspires us to extract discriminative object parts from the semantic information.

The overall network, which consists of two subnetworks, i.e., the target net and the object net,
is illustrated in Figure 1. First, the target net is used to extract features from the original image. Second,
with the help of MultiCAM, the discriminative object parts are located, and the object saliency map is
obtained. Third, based on the object saliency map, the object image is generated by applying a mask
filter to the original image, which restores the object and filters the background. Then, the object
image is fed into the object net to realize feature extraction and concentrate on the object. Finally,
selective connected feature fusion is applied to classify the images by fusing the features from the two
subnetworks. The key parts of the proposed network are addressed in detail in the following sections.

Mask Filter

W11

W12

W1n

W21

W22

W23

W11

W12

W1n

W21

W22

W23

Multiple Class Activation Mapping

Selective
Connected 

Feature
Fusion

Target
Net

Object
Net

Softmax

Softmax

Object Image

Original image

Softmax
Threshold 
Processing

Figure 1. Overview of our network architecture, including the target net and the object net.

2.1. Multiple Class Activation Mapping

Similar to the popular CNN, the proposed network uses global average pooling in the final pooling
layer and contains a subsequent fully connected softmax layer in the two subnetworks. For each
image I, the last convolutional feature map f of each image can be acquired by the CNN:

f = F(I), (1)

where F denotes a series of operations in the CNN, including convolution, pooling and activation.
In addition, the kth channel of the feature map is denoted by fk, and fk(x, y) represents the value in
spatial location (x, y).

According to [28], the proposed CAM acquires the class activation map and determines the
object region by a recognitive task, as shown in Figure 2. Theoretically, based on the ground truth,
CAM extracts the class activation map, which is the sum of each channel of the weighted feature map.
The true class activation map can activate class-specific discriminative regions, as shown in Figure 2.
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In consideration of practical application, CAM replaces the ground truth with the prediction category
result to obtain the class activation map. The function representation of CAM is:

Mc (x, y) =∑
k

wc
k fk(x, y), (2)

where Mc is the class activation map of class c and wc
k represents the kth weight of the softmax layer

of class c. Furthermore, we define fk as the part saliency map, as illustrated in Figure 2, because
different part saliency maps activate different object regions, which also represent different object
parts. Mc consists of a series of part saliency maps with different weights indicating the significance
degree. The larger the weight the part saliency map obtains, the more discriminative the object part is.
CAM utilizes the composed features of discriminative object parts to achieve further localization and
classification tasks.
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Figure 2. Comparsion between class activation mapping (CAM) and MultiCAM.

Zhou et al. [28] and Peng et al. [29] use the prediction category result to obtain the class activation
map. The prediction category result contains only one category and ignores other categories, which has
a disadvantage. An incorrect prediction category will lead to an inaccurate class activation map.
Specially, for some difficult problems, such as FGVC, the network accuracy is generally not very
high, and the prediction result is not sufficiently reliable. When we use CAM for object localization,
the incorrect information may be included and lead to property reduction in the object net, thereby
deteriorating the performance of the whole network.
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To overcome the disadvantages caused by CAM using single type prediction, we propose the
MultiCAM method, as shown in Figure 2, which utilizes the predictions results of all categories
to acquire the multiclass activation map. The multiclass activation map is obtained by adding the
elements in the same position (x, y) in each class activation map, which can be expressed as:

multi_M (x, y) = ∑
c

∑
k

wc
k fk(x, y)=∑

c
Mc (x, y) , (3)

where multi_M is the multiclass activation map and multi_M indicates the importance of each pixel in
the original image. Mc (x, y) is introduced in Equation (2). Note that bilinear upsampling is applied
to ensure that the multiclass activation map is the same size as the input image. The complete
procedure of MultiCAM is shown in Algorithm 1. As shown in Figure 2, each class activation map
consists of a series of part saliency maps, but the same part saliency map in different categories has
different weights, which represent the discrimination of the part saliency map in different categories.
After combining these discriminative object parts of each category to obtain each class activation map,
we accumulate each class activation map to obtain the multiclass activation map. MultiCAM fuses
all class activation maps to acquire their combined features. Because there is no distinction between
categories, MultiCAM eliminates the influence of a single prediction class. Whether the prediction
category result is correct or not, the multiclass activation map will always cover the true class activation
map to the greatest extent, which objectively enlarges the saliency region in the multiclass activation
map. However, this influence is limited as all categories have small interclass variance in FGVC.

Algorithm 1: The procedure of MultiCAM.

Input: The original image I(x, y).
Output: The multiclass activation map multi_M(x, y).

1 Choose the trained target net with the original images;
2 Get the fully connected layer parameters wc

k of the trained target net;
3 for each original image in the dataset do
4 Get the last convolutional feature maps fk(x, y) of the original image by the trained

target net;
5 Get the result of MultiCAM by Equation (3): the multiclass activation map multi_M(x, y);

2.2. Mask Filter

In [28,29], the input image of the object net is generated by cropping the original image according
to the bounding box and resizing the cropped image to a uniform size. Nevertheless, as the bounding
box of each object is different, the resizing operation inevitably changes the object scale and increases
the difficulty of classification. To solve this problem, we utilize the mask filter (MF) to eliminate the
background interference according to the multiclass activation map and generate the object image
containing the original scale information.

The multiclass activation map indicates the significance of each pixel in the original image instead
of the explicit object saliency region. Therefore, in the first step of the mask filter, the object saliency
region is determined according to the following threshold processing:

b(x, y) =

{
1, multi_M(x, y) ≥ threshold,
0, multi_M(x, y) < threshold,

(4)

where b(x, y) denotes the pixel value of the mask at position (x, y). Then, the object saliency region,
a set of pixels b(x, y) = 1, is obtained. Although MultiCAM eliminates the effect of wrong information
generated by incorrect single prediction category results, it inevitably enlarges the object saliency
region compared with CAM. To address this trade-off problem, the threshold should be adaptive
instead of a fixed value applied to all images because different images have different pixel value
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distributions. Considering that the pixel importance in the multiclass activation map increases as the
corresponding pixel value increases, the threshold of the mask filter is determined according to the
maximum pixel value of the multiclass activation map:

threshold = α×max(multi_M), α ∈ [0, 1], (5)

where max(·) is the maximizing operation. The changeable threshold used in [28,29] effectively filters
noise and retains the main part of the object. In addition, we attempt to apply the following methods
to generate the mask:

threshold = α×mean(multi_M), α ∈ [0, 1], (6)

b(x, y) = Relu(multi_M(x, y)), (7)

where mean(·) is the averaging operation and Relu(·) is the ReLU operation. An analysis and object
classification performance comparison among Equations (5)–(7) will be presented in the following
experimental section.

Subsequently, on the basis of the original image I(x, y), the object image p(x, y) is obtained with
mask b(x, y) indicating the object saliency region:

p(x, y) = I(x, y) · b(x, y). (8)

In this way, background interference can be suppressed to some extent, and the object’s original
scale information can be preserved. The complete MF procedure is shown in Algorithm 2.

Algorithm 2: The MF procedure.

Input: The original image I(x, y) and the corresponding multiple class activation map
multi_M(x, y).

Output: The object images p(x, y).
1 Set the corresponding parameter α in Equation (5);
2 for each original image in the dataset do
3 Compute the threshold by Equation (5);
4 Get the result of threshold processing by Equation (4): the mask b(x, y);
5 Get the result of the mask filter by Equation (8): the object image p(x, y);

2.3. Selective Connected Feature Fusion

The proposed network contains two subnets with different functions. The target net focuses on
the original images, while the object net concentrates on object images. Considering that the two
subnets extract different image features, two fusion methods are implemented to improve the image
feature extraction, as illustrated in Figure 3. One method, called full connected feature fusion (FCFF),
combines the features from two networks from the final global average pooling layer and subsequently
implements a fully connected softmax layer, which is also used in other approaches [22,27]. Before the
softmax layer in FCFF, the forward function is expressed as:

yFCFF
c = ∑

k1

wc
k1

mean( f T
k1
) + ∑

k2

wc
k2

mean( f O
k2
), (9)

where yFCFF
c is the value of class c before the softmax layer. f T

k1
and f O

k2
are the feature maps of class c in

the last convolutional layer of the target net and the object net, respectively. mean( f T
k1
) and mean( f O

k2
),

depicted in blue circles, as shown in Figure 3, are the results of global average pooling. wc
k1

and wc
k2

are
the weights obtained by training the fully connected softmax layer.
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Figure 3. Comparison of full connected feature fusion (FCFF) and selective connected feature fusion
(SCFF). Blue circles represent the value after global average pooling, and gray circles represent the
value before the softmax layer.

The other method, called selective connected feature fusion (SCFF), conducts feature fusion of
the two networks before the softmax layer and implements a local connected softmax layer at the end.
Before the softmax layer in SCFF, the forward function is as follows:

ySCFF
c = ac × yT

c + bc × yO
c , (10)

where ySCFF
c is the value of class c before the softmax layer. yT

c and yO
c , depicted by gray circles

in Figure 3, are the values of class c before the softmax layer in the target net and the object net,
respectively. ac and bc are the trained weights of the local connected softmax layer.

The two methods concentrate on different perspective. FCFF views the features from the two
networks identically and learns the significance of different features for classification. By contrast,
SCFF regards each network as a whole and learns the weights of different categories in the two
networks. However, the two feature fusion approaches are theoretically equivalent. Taking the target
net as an example, for each class c, we can obtain:

a× yT = a×∑
k

wkmean( f T
k ) = ∑

k
a× wkmean( f T

k )⇔∑
k1

wk1
mean( f T

k1
), (11)

where yT = ∑k wkmean( f T
k ) is obtained from the fully connected layer in the target net. Although

the expressions on both sides of Equation (11) are equivalent, the corresponding numbers of
parameters are different. After global average pooling, the number of parameters in FCFF is
2 × channel × class_number, while SCFF requires 2 × channel × class_number + 2 × class_number
parameters. However, in the fitting process, we train only the weights in Equations (9) and (10)
and leave the parameters in the other layers unchanged. According to Equation (9), the number
of parameters needed to be trained in FCFF is 2 × channel × class_number, while the number is
2× class_number in the SCFF method based on Equation (10). Therefore, the computational complexity
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of the feature fusion of SCFF is far less than that of FCFF. In addition, SCFF utilizes features from two
networks before the softmax layer. If the target net and the object net achieve optimal performance
together, which means that the extracted features from the two networks have sufficient representation
ability, SCFF can achieve greater performance improvement. A comparison of the two feature fusion
methods will be presented in the experiment section.

3. Experiments and Results

3.1. Dataset

Currently, the majority of public remote sensing image classification datasets [32,33] have large
interclass variance, such as forest and beach, ship and vehicle, which tends to be a problem of general
image classification. Additionally, some public remote sensing image detection datasets [34,35] include
various types of building, but the number of subcategories with low interclass variance is very small,
e.g., tennis court and badminton court, and most of the subcategories have large interclass variance,
e.g., storage tank and tennis court.

To promote FGVC research in remote sensing images, we construct a dataset from Google Earth,
whose data come from Quickbird, WorldView, Landsat and so on. The original data are RGB images
with different resolutions, ranging from 15 cm to 15 m, containing 500 scenes of remote sensing images
covering 28 airports. After discarding low-resolution and problematic images, the number of suitable
image scenes remaining is 383. Initially, we annotate the aircraft location with the rectangle bounding
box together with its type. To accelerate the annotation, we use labeled images to train an aircraft
detection network based on faster region with CNN feature (Faster RCNN) [36] and feature pyramid
networks (FPN) [37] without the capability of recognizing the aircraft type. After detecting the aircraft
in the residual unlabeled images, we fine-tune the bounding boxes of the correct detections, delete false
alarms, and add missed aircraft. Based on the processed detection result, we manually annotate the
aircraft type. Furthermore, some aircrafts are discarded because of cloud interference or overexposure
by high solar intensity. After annotation, we screen out aircrafts larger than 28 m in size, and each
aircraft is cropped by a 156 × 156 window centered on the center of its bounding box, which can cover
the range of size of the selected aircrafts. Finally, an optical dataset, including aircraft slices of different
types, is obtained.

In a short period of time, an aircraft generally remains at the same position, and the differences
among remote sensing images are not obvious. Random selection would result in similar samples
being placed into the training set and the testing set, leading to high correlation between the training
set and testing set. Therefore, we divide the aircraft dataset into two parts: samples from odd years and
even years. On the basis of the sample division method of two existing FGVC datasets, i.e., the Bird
dataset [17] and the Standford Cars dataset [19], for each aircraft type, we randomly select 30 to
60 samples from the odd year images as the training set and select 21 to 60 samples from the even
year images as the testing set. The sample statistics of the two existing FGVC datasets and our aircraft
dataset are listed in Table 1. The number of samples for each category in our dataset is comparable
with that of the widely used FGVC datasets. Finally, our dataset includes 982 samples in the training
set and 963 samples in the testing set. There are 17 types of aircraft in our dataset, as shown in Figure 4.

Table 1. The statistics of the fine-grained visual classification (FGVC) datasets.

Datasets Training Types Testing Types

Bird [17] 29–30 11–30
Standford Cars [19] 24–68 24–68

Ours 30–60 21–60
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Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Type 13 Type 14 Type 15 Type 16 Type 17

Type 7 Type 8 Type 9 Type 10 Type 11 Type 12

Figure 4. Examples of 17 types of aircraft.

As the resolution of different remote sensing images may vary, we utilize bilinear interpolation to
adjust the image resolution to 0.5 m and maintain a slice size of 156 × 156 by padding or cropping.
Additionally, to further enrich our dataset, a series of data augmentation operations are applied,
including image mirroring, image rotation by 0◦, 90◦, 180◦, and 270◦, brightness changes, contrast
changes, and color changes. Finally, both the training set and the test set are enlarged by 56 times to
54,992 samples and 53,928 samples, respectively.

3.2. Results

3.2.1. Setup

Because many FGVC methods are based on popular CNNs, two CNNs are used as the main
network in the proposed method, i.e., ResNet [20] and GoogLeNet [21]. In each CNN, global average
pooling is applied in the final pooling layer, and multiple fully connected layers are discarded.
Moreover, a fully connected softmax layer is placed at the end of the network to output the category
prediction result. Note that the structures of the target net and the object net are identical. To satisfy
the requirement of the input image size for the network, the training samples and testing samples are
resized to 224 × 224 by interpolation. We use cross entropy loss as the evaluation function and choose
the top-1 accuracy as a metric.

In the training process of the target net and the object net, the batch size is set to 42, and the batch
size is 36 during feature fusion. The optimizer is stochastic gradient descent (SGD) with momentum of
0.9 [38]. During training, the learning rate is set to 0.001 initially and periodically decrease until the
loss function converges. The training and testing experiments are implemented on a NVIDIA Tesla
P100 GPU which is manufactured through United States NVIDIA.

The training set is used to train the target net until the loss converges. Then, we obtain the
corresponding images in the training set with MultiCAM and MF and use the object images to
train the object net. During feature fusion, the target net and the object net, respectively, extract the
features from the original images and the corresponding object images to train the feature fusion layer.
After the entire net has been well trained on the training set, we test its performance on the testing set.
The comparison methods are also trained on the training set and tested on the testing set.
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The following section will verify the algorithms proposed in Section 2. To validate the superiority
of MultiCAM, the performance of our methods and other algorithms is compared in Section 3.2.2.
Section 3.2.3 demonstrates the universality of MultiCAM by using ResNet [20] and GoogLeNet [21] as
the main networks. For MF, three types of threshold processing and image generation methods are
utilized on the basis of ResNet in Section 3.2.4. In addition, the performance of two feature fusion
methods, i.e., FC and SCFF, is also presented in the following Section 3.2.5.

3.2.2. The Results of the Proposed Method

The accuracy results of the different methods are listed in Table 2. RBM-DBN is the method based on
a deep belief network and restricted Boltzmann machine proposed in [13]. Res-MultiCAM-MF(MV)-SCFF
is the best combination in the proposed algorithm, where Res is the abbreviation of ResNet and MF(MV)
denotes the mask filter based on the maximum value threshold processing according to Equation (5).
The classification accuracy of each type in the confusion matrix is illustrated in Figure 5, which shows
that the proposed method can effectively distinguish aircraft types. Furthermore, some aircraft types
with similar appearance are more likely to be misclassified. For example, in Figure 4, type 9 and type
14 are similar in shape and size. The effect of each method on the classification performance will be
analyzed in the following section.

Table 2. Comparison results of the proposed method. Restricted Boltzmann Machine and Deep Belief
Network (RBM-DBN) [13]. Network proposed by GoogLe research team (GoogLeNet) [21]. Class
Activation Mapping (CAM) [28]. Deep Residual Network (ResNet) [20]. Res-MultiCAM-MF(MV)-SCFF
is the combination of ResNet (Res), MultiCAM, mask filter (MF) based on the maximum value (MV)
threshold processing and selective connected feature fusion (SCFF).

Method Accuracy

RBM-DBN [13] 85.67%
GoogLeNet [21] 87.75%

CAM [28] 87.85%
ResNet [20] 89.80%

Res-MultiCAM-MF(MV)-SCFF 93.15%

Figure 5. The confusion matrix of our method. Darker color corresponds to a higher recognition rate.
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3.2.3. The Performance of MultiCAM

To verify the effectiveness and the universality of our method, we change CAM to MultiCAM
based on different networks and do not change the other operations in CAM [28], including the
maximum value threshold processing according to Equation (5), cropping the bounding box and
resizing to a uniform size. The accuracy results are shown in Table 3. Compared with the fundamental
ResNet and GoogLeNet, both CAM and MultiCAM achieve improved performance. Notably,
MultiCAM has better accuracy than CAM. According to the visualization results of some examples in
Figure 6, the corresponding multiclass activation map approximately covers the main region of the
object and shows stability in different surroundings.

Table 3. The performance of MultiCAM.

Method Accuracy

GoogLeNet 87.75%
GoogLeNet + CAM 87.85%

GoogLeNet + MultiCAM 88.37%
ResNet 89.80%

ResNet + CAM 91.17%
ResNet + MultiCAM 91.79%

(a) (b) (c) (d) (e) (f)

Figure 6. Examples are arranged in six columns from (a–f). The original images in the first row and the
corresponding multiclass activation maps in the second row.

3.2.4. The Performance of MF

Three different types of thresholding methods are introduced to generate the mask in MF. The first
choice of threshold is based on the maximum value of the multiclass activation map according to
Equation (5). The second choice depends on the average value of the activation map according to
Equation (6). The third applies the ReLU function to the activation map according to Equation (7).
The masks generated by the first two thresholds are binary. By contrast, the significance of each pixel
with a value greater than zero in the multiclass activation map is presented on the mask in the third
threshold process. To analyze the effect of the threshold on the classification accuracy, we implement
four experiments, i.e., the maximum value with α = 0.2, average value with α = 1.0 and α = 0.5,
and the ReLU function. According to the results in Table 4, the threshold based on Equation (5) with
α = 0.2 achieves the best performance.
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Table 4. Comparison of the threshold processing. Average value (AV). Maximum value (MV). The Relu
function (WV).

Method Accuracy

AV(α = 0.5) 91.07%
AV(α = 1.0) 91.28%

WV 90.86%
MV(α = 0.2) 92.32%

As shown by the visualized masks in Figure 7, the object saliency regions generated by the
average value threshold processing are larger than those obtained based on the maximum value
threshold processing. In this case, more of the interfering background is included in the object saliency
region, as shown in Figure 7b,c. Although the ReLU function maintains the weight difference of the
multiclass activation map, the gradual change of the mask boundary blurs the marginal part of the
object. Consequently, the mask filter based on maximum value threshold processing preserves the
aircraft region and suppresses the background interference to the greatest extent.

(a) (b) (c) (d) (e)

(1)

(2)

(3)

Figure 7. The masks generated by different threshold processing. Examples are arranged in three rows
from (1–3). Each column denotes the original image or different threshold processing: (a) original
image; (b) average value (AV) (α = 0.5); (c) AV(α = 1.0); (d) Relu (WV); (e) maximum value (MV)
(α = 0.2).

Next, the performance of MF is analyzed. We also test the accuracy of two methods: cropping
the bounding box and resizing to a uniform size, as mentioned in [28,29], and suppressing the region
outside the bounding box by a mask. The test results in Table 5 indicate that the proposed MF based
on the maximum value threshold processing achieves the highest accuracy.
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Table 5. Comparison of object image generation methods. Crop the bounding box and resize (Bbox with
resizing). Crop the bounding box and fill in the blanks with a mask (Bbox with mask). Mask filter (MF).

Method Accuracy

Bbox with resizing 91.79%
Bbox with mask 92.00%

MF 92.32%

The test results also confirm the analysis in Section 2.2. Cropping the bounding box and resizing
to a uniform size inevitably changes the aircraft shape. Concretely, if the bounding box is square,
the resizing operation enlarges the object, as shown in Figure 8a. For a rectangle bounding box,
the length-width ratio is altered, as shown in Figure 8b. Cropping and resizing in these two situations
distort the object’s original scale information, which increases the difficulty of aircraft type classification.
Moreover, if the bounding box is inaccurate, the category prediction accuracy may be affected
by other factors, such as the target shadow (Figure 8c), part of an adjacent aircraft of the same
type (Figure 8d), part of an adjacent aircraft of a different type (Figure 8d), and other types of
background (Figure 8f). Therefore, cropping and resizing operations are not suitable in the case of
aircraft recognition. By contrast, two types of mask operations can protect the object’s scale information.
Additionally, comparison of the visualization results in Figure 8(3,4) indicates that MF has a better
background suppression capability.

(1)

(a) (b) (c) (e) (f)(d)

(2)

(3)

(4)

Figure 8. Examples are arranged in six columns from (a–f). Each row represents a different object
image generation method: (1) original image with bounding box; (2) Bbox with resizing; (3) Bbox with
mask; (4) mask filter (MF).

3.2.5. The Performance of SCFF

On the basis of the above analysis, we compare the performance of SCFF and FCFF in terms
of Res-MultiCAM-MF(MV). The object images are treated as training samples to train the object net.
Then, two feature fusion methods are utilized to combine different features from the target net and the
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object net to realize better classification. During the fitting process, we train only the weights needed
in the feature fusion. As shown in Table 6, the accuracy of SCFF is higher than that of FCFF.

Table 6. Comparison of feature fusion methods. Full connected feature fusion (FCFF). Selective
connected feature fusion (SCFF).

Method Accuracy

FCFF 91.38%
SCFF 93.15%

This result confirms our analysis in Section 2.3. Although the two methods are equal in theory,
the feature utilization of SCFF is more efficient than that of FCFF, which indicates that the representation
of features before the softmax layer is more discriminative than that after global average pooling.
Hence, SCFF achieves higher classification performance.

4. Discussion

According to the experimental results and analysis in Section 3.2, the proposed algorithm performs
better than the other methods. However, there remains some unsatisfactory examples in the results,
as illustrated in Figure 9. For a large aircraft in the slice, the object saliency region is rather small,
which leads to the omission of the aircraft head, aircraft tail and wingtips in the object image. For a small
aircraft, the object saliency region is much larger, resulting in more background interference.

(a) (b) (c)

Figure 9. Some unsatisfactory examples. (a) original image; (b) multiclass activation map; (c) object image.

Two explanations are provided for the above phenomenon. One is that the object saliency region is
influenced by the respective field. Generally, the size of the effective receptive field in a CNN is smaller
than that of the theoretical receptive field [39], which may be suitable for certain object sizes. However,
for a large aircraft, the object saliency region may be too small to cover the intact aircraft, and the object
saliency region will have substantial redundant space for a small aircraft. The other reason is that
the mapping from the original image to the feature map is rather complex after multiple convolution,
pooling and the ReLU function in CNN. It is not suitable to upsample the multiclass activation map to
the original size via simple bilinear interpolation. The roughly built saliency region represents a coarse
saliency region rather than a fine saliency region [40]. The causes of the unsatisfactory examples will
be investigated in our future work.

Although sufficient remote sensing images are acquired every day, the interpretation of large
numbers of airplanes remains difficult due to the lack of aircraft information. Furthermore, the number
of aircraft of different types has an unbalanced distribution. Only a minority of aircraft types have
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sufficient samples that meet the dataset requirement, while the majority of aircraft types have limited
samples. In the future, when accumulating the aircraft samples, we will investigate the aircraft type
classification in remote sensing images based on limited samples. Additionally, we will explore the
utilization of the part saliency map to improve the aircraft recognition performance.

5. Conclusions

In this paper, the idea of discriminative object part extraction in FGVC is introduced to aircraft
recognition in remote sensing images. In the proposed algorithm, the network consists of two subnets,
i.e., the target net and the object net. First, by MultiCAM, the multiclass activation map is acquired
based on the target net. Second, a mask filter is generated utilizing the maximum value threshold
processing. Then, by combining the original image and the mask filter, the object image is obtained
as the input of the object net. Finally, the features from the two subnets are fused by SCFF, and the
category prediction result is output. The experimental results verify the effectiveness of the proposed
method on a challenging dataset and show the performance superiority compared to other methods.
In the future, we will continue to focus on aircraft recognition and attempt to further improve the
proposed network based on MultiCAM.
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