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Abstract: The classic ship detection methods in synthetic aperture radar (SAR) images suffer
from an extreme variance of ship scale. Generating a set of ship proposals before detection
operation can effectively alleviate the multi-scale problem. In order to construct a scale-independent
proposal generator for SAR images, we suggest four characteristics of ships in SAR images and
the corresponding four procedures in this paper. Based on these characteristics and procedures,
we put forward a framework to explore multi-scale ship proposals. The designed framework
mainly contains two stages: hierarchical grouping and proposal scoring. Firstly, we extract edges,
superpixels and strong scattering components from SAR images. The ship proposals are obtained at
hierarchical grouping stage by combining the strong scattering components with superpixel grouping.
Considering the difference of edge density and the completeness and tightness of contour, we obtain
the scores to measure the confidence that a proposal contains a ship. Finally, the ranking proposals are
obtained. Extensive experiments demonstrate the effectiveness of the four procedures. Our method
achieves 0.70 the average best overlap (ABO) score, 0.59 the area under the curve (AUC) score and
0.85 best recall on a challenging dataset. In addition, the recall of our method on three scale subsets
are all above 0.80. Experimental results demonstrate that our algorithm outperforms the approaches
previously used for SAR images.

Keywords: SAR images; object proposal; object detection; proposal scoring

1. Introduction

Ships are valuable transportation and used in many areas of human activity. As synthetic aperture
radar (SAR) can provide images of the ocean in all weather operating conditions, automatic ship
detection based on these data has attracted considerable attention [1].

Ship detection in SAR images experienced significant improvement in recent years. Previous
studies on ship detection using SAR images can be categorized into four types: (1) the constant
false-alarm rate-based (CFAR) detectors, (2) the generalized-likelihood ratio test-based (GLRT)
detectors, (3) the saliency-based methods and (4) the deep learning-based methods. As we know,
different classes of ships are of different lengths and widths, and different SAR images may have
different resolution. Therefore, ships always have different scales in SAR images as shown in Figure 1.
However, the above-mentioned methods either lose information of small objects or require a priori
knowledge about the ship scale. They are inadequate to deal with multi-scale ship detection.

The detectors based on CFAR are widely used ship detection methods [2,3]. In order to improve
ship detection performance, many studies attempt to modify the classic CFAR detector [4–14]. Like
multilayer CFAR detectors, researchers integrate the idea of iterative censoring with traditional CFAR
at pixel level [15,16]. Superpixels can retain the ship outline and reduce the influence of speckle
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noise. Thus, the conventional CFAR detector is modified at the superpixel level [17–20]. For example,
the multi-scale superpixel and three superpixel-level dissimilarity are unified to design a detection
algorithm for polarimetric SAR images in [20]. In order to improve the performance of ship detection in
SAR images, many statistical models have also been researched to fit sea clutter [21–23]. The pixel-level
CFAR detectors generally adopt a sliding window scheme that cannot cover the various ship sizes.
The superpixel-level CFAR detectors have the probability of losing some components of large scale
ships in the detection results.

(a) (b)

(c)

Figure 1. Multi-scale ships in synthetic aperture radar (SAR) images. (a,b) can be downloaded at [24].
These two images were taken by Terra-SAR at Panama Canal: (a) resolution is 0.43 m. The acquisition
date is 13 December 2013. Mode is Staring SpotLight; (b) resolution is 35 m. The acquisition date is
12 July 2013. The mode is Wide ScanSAR; (c) ship proposals obtained by scale-dependent properties.

The second type approach is based on GLRT [25]. Considering the electromagnetic aspects behind
the interactions of SAR signals with the ship and the surrounding sea, Iervolino et al. present a closed
form expression for the Radar Cross Section (RCS) backscattering of a ship and a new detector based
on GLRT [26,27]. Similar to CFAR detectors, GLRT detectors require a priori knowledge about the ship
scale and cannot handle the detection of multi-scale ships.
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In recent years, several methods have employed the biologically inspired saliency model for
ship detection [28–32]. For example, Wang et al. design a random-forest-based hierarchical sparse
model for ship proposal selection. Then, the false alarms are filtered out by a dynamic CFAR-based
contour saliency model [29]. The saliency-based methods pay attention to the ships that are relatively
prominent. However, as shown in Figure 1, the prominent objects are those large scale ships and
complex background. Small ships would be ignored by the saliency-based methods. With the
development of deep learning, many detection approaches based on convolutional neural networks
(CNNs) have been proposed. Fully convolutional networks (FCN) are used to separate the sea from the
land [33,34]. The Faster-RCNN, cascade coupled CNN (3C2N) and the single shot multiBox detector
(SSD) for SAR ship detection are reported in [35–40]. Furthermore, there are two SAR image datasets
for marine surveillance and ship detection. OpenSARShip is a dataset dedicated to ship interpretation
using Sentinel-1 images [41]. Li et al. construct a dataset named SAR Ship Detection Dataset (SSDD)
to evaluate the performance of SAR ship detectors [42]. Besides the above-mentioned approaches,
there are also several ship detectors for SAR images [43–46]. Generally, deep learning-based models
adopt pooling and convolution operations. These operations lose information of small objects and
confuse the localizations of densely distributed ships.

One way that can effectively alleviate the multi-scale problem is constructing a ship proposal
generator before detection operation. This generator can rapidly search a set of candidate bounding
boxes which are different sizes. These multi-scale candidate bounding boxes are called object proposals
that cover all ship bounding boxes from a SAR image. Thus, proposal generator is a class-agnostic
and scale-independent object detector that can solve the multi-scale ship detection effectively. It can
speed up the computation and improve the ship detection accuracy by allowing the usage of more
sophisticated learning schemes.

Recently, object proposal generation has become a superior technique in the computer vision
field [47–52]. Object proposal generation methods can be divided into grouping proposal and windows
scoring methods. For example, the selective search hierarchically merges superpixels to generate
proposals [47]. The contour box uses the selective search to explore proposals and then rejects proposals
without explicit contours [51]. We refer the reader to [53] for a survey of object proposal generation.
SAR images are totally different from natural images that were processed by the computer vision
field. There are few proposal generation methods for SAR images. Dai et al. train a linear SVM to
learn objectness measure of ships [54]. The performance of this generator is limited since the proposal
generator uses several fixed-size sliding windows.

Under the assumption that all ships share common visual properties that distinguish them from
the background, we can design a generator that outputs a set of ship proposals. We argue that a
desired SAR image-specific ship proposal generator should generate scale-independent proposals with
high recall, and score highest for those proposals that fit a ship tightly. Therefore, the common visual
properties of ships adopted by our proposal generator should be scale-independent. For example, in
Figure 1c, we use the sliding windows with different scale and aspect ratio to explore initial proposals.
This search strategy misses two small ships and cannot fit all ships tightly since it needs a prior
knowledge of ship size and is scale-dependent. At ranking stage, we use saliency cues to measure
the ship proposals. However, this scale-dependent cues result in ranking the non-ship but prominent
proposals higher.

According to the above paragraph, we should design visual properties of ships which are
scale-independent and common-shared before constructing a good ship proposal generator for SAR
images. Thus, we propose that ships in SAR images have the following characteristics in this paper:

• A ship generally has a different scattering characteristics from its surroundings;
• A ship generally has some components with strong scattering;
• There are edges between a ship and its surroundings;
• A ship generally has a closed contour.
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Our generator should be scale-independent at proposal extraction and scoring stage. Considering
that the bottom-up strategy can search ships from small to large scales, we can utilize hierarchical
grouping to extract multi-scale proposals. The scale-independent measures can be obtained using
edge and contour information which are irrelevant with ship sizes. Therefore, we further propose four
procedures that correspond to the four characteristics to explore multi-scale ship proposals:

• The generator obtains components of ships by superpixel algorithm, and explores ships by
hierarchical grouping;

• The generator obtains proposals from the superpixels that contain at least one strong
scattering component;

• The generator measures a proposal by the difference of the edge density between the inside and
near the borders of the proposal;

• The generator measures a proposal by the completeness and the tightness of the contour.

The framework of our proposed method includes hierarchical grouping and proposal scoring
stage. The information of strong scattering components is injected at hierarchical superpixel grouping
stage. The hierarchical grouping stage generates ship proposals without scores. These proposals are
further processed by the scoring stage, each of them is scored by edge and contour information. Finally,
the ranking ship proposals are obtained.

The remainder of this paper is organized as follows. The suggested ship proposal generation
method is discussed in detail in Section 2. In Section 3, we evaluate the effectiveness of the four
procedures and compare the generator with the state-of-the-art methods. The results are discussed in
Section 4. Section 5 presents the conclusions.

2. Ship Proposal Generator

The proposed methodology is described in detail in this section. The framework that combines
all four procedures into one proposal generator are presented in Section 2.1. In Section 2.2, we put
forward edge and superpixel extraction which are the foundation of our generator. The rest of this
section introduces the two stages of the proposed method.

2.1. Framework

In Section 1, we propose the four characteristics of ships in SAR images and the corresponding
four procedures. In this part, we further introduce the framework in detail. We need to extract edge
and superpixel of SAR images firstly since the four procedures are based on edges and superpixels.
Then, we need to combine all four procedures into one proposal generator. Scale-independent proposal
extraction and scoring compose our method. In order to extract multi-scale initial proposals, superpixel
hierarchical grouping is adopted. This bottom-up strategy can search proposals from small scale to
large scale. Combining the strong scattering components information, we further reject non-ship
proposals. This top-down strategy can reduce the number of initial proposals and the computation
burden of proposal scoring. We use the edge information to rank initial proposals at proposal scoring
stage. Specifically, edge score and contour score are used to measure ship proposals. This two
scores only focus on the edge density, the contour completeness and the contour tightness which are
independent of proposal scales. Therefore, the ranking results are scale-independent.

The framework of our proposed method is shown in Figure 2. Our framework including
hierarchical grouping and proposal scoring. Firstly, we obtain initial proposals at the hierarchical
grouping stage: the input SAR image is processed by superpixel and CFAR algorithm; then, the results
are inputted into Algorithm 1 to acquire initial proposals. Then, we obtain a score for each proposal at
the proposal scoring stage: the input SAR image is processed by our edge extraction scheme which will
be introduced in Section 2.2. For each proposal, we can compute its score using contour scoring and
edge scoring which will be introduced in Section 2.4. Finally, the ship proposals with scores are output.
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Figure 2. The framework of our suggested ship proposal generator.

Algorithm 1: Hierarchical Grouping using Superpixels and Strong Scattering Components.
Input: An input SAR image
Output: A list of ship proposals OutBox

1 Extract strong scattering components map Label using local CFAR;
2 Obtain initial ship proposals P = {p1, . . . , pn} using method proposed in [55];
3 Obtain neighbouring superpixels of each proposal in P;
4 Set histogram similarity set S = ∅;
5 foreach pi ∈ P do
6 foreach neighbouring superpixel pj of pi do
7 Calculate histogram similiarty s(pi, pj)

8 S = S ∪ s(pi, pj)

9 end
10 end
11 OutBox = OutBox ∪ P
12 while P 6= ∅ do
13 s(pi, pj) = max(S)
14 pt = pi ∪ pj

15 if pt ∩ Label 6= ∅ then
16 OutBox = OutBox ∪ pt

17 end
18 P = P \ pi; P = P \ pj

19 foreach neighbouring superpixel pm of pi, pn of pj, pq of pt do
20 S = S \ s(pm, pi)

21 S = S \ s(pn, pj)

22 S = S ∪ s(pq, pt)

23 end
24 end
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2.2. Edges and Superpixels

In the hope of exploring ship proposals using the four procedures mentioned above, we extract
edges and superpixels firstly. We adopt the superpixel method proposed in [55] since it is robust for
SAR images. The authors in [55] construct an energy function which includes two terms: data term
defined by the statistical characteristic of SAR images and regularization term defined by ratio of mean
intensity. The superpixel can be explored by graph cut based energy minimization method. There are
few edge extraction algorithms with good generalization performance for SAR images. We construct
an edge extraction scheme using an existing algorithm as shown in Figure 3. The ratio of exponentially
weighted averages (ROEWA) detector is a classical edge detector for SAR images [56]. ROEWA is
optimal under a stochastic multi-edge model. It computes a normalized ratio of exponentially weighted
averages (ROEWA) on opposite sides of the central pixel. The magnitude on the horizontal and vertical
direction construct the edge response of the central pixel. Finally, the authors in [56] apply a modified
watershed algorithm to eliminate false edges response. Non-maximal suppression (NMS) can find
edge peaks [52].

Figure 3. The scheme of edge extraction.

As shown in Figure 3, we filter the input SAR image by a non-local approach proposed in [57]
firstly. In order to detect multi-scale edges, the filtered SAR image is utilized to construct an image
pyramid: we resample the spatial resolution by a factor of 0.5 and 2. These two resampled images
and the input image construct a image pyramid which include three octaves; each octave contains
one interval. For each interval in each octave, we apply ROEWA to extract edges. Then, we can
acquire three edge maps. We resample these maps to the original resolution of the input image. These
resampled edge maps are added at pixel level. After normalization of these maps, the dense edge
responses are obtained. We preform NMS to the edge responses and obtain final edge map.

2.3. Hierarchical Grouping

Compared to the complexity of natural targets, single frequency and single linear polarization
SAR images contain limited information and cover a large area. Therefore, multi-scale ship proposal
generation using SAR images is a challenging problem. The traditional idea to handle this problem is
using sliding windows with different aspect ratios and scales. However, due to orientation and scale
variations of ships in SAR images, the performance of sliding windows strategy is not good. According
to the four characteristics mentioned in Section 1, we can obtain ships components by superpixels and
search ships using a hierarchical grouping strategy similar to the selective search proposed in [47]. A
strong scattering component does not always correspond to a semantic ship component. On the other
hand, if a proposal does not contain a strong scattering component, it stands a high probability that
this is a non-ship proposal. Therefore, different from the selective search, we take advantage of strong
scattering components to censor useless proposals.

Our algorithm is shown in Algorithm 1. The algorithm can explore a list of ship proposals
OutBox using an input SAR image. We adopt local CFAR to extract strong scattering components
which are labeled in map Label. The superpixels obtained by the method proposed in [55] are set as
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initial proposals P = {p1, p2, · · · , pn}. Then, for each initial proposal in P, we find its neighbouring
superpixels and compute the histogram similarity between each initial proposal and the neighbouring
superpixels. Next, we find the pair of superpixels with maximal similarity in P and merge these
two superpixels into one new proposal. If the new proposal does not contain any strong scattering
components, then delete the new proposal. On the contrary, we retain this new proposal and delete the
pair of superpixels from P. This procedure is repeated until there is no superpixel in P. The histogram
similarity of two superpixels pi and pj is defined as follows:

s(pi, pj) =
N

∑
m=1

min(hm
i , hm

j ), (1)

where the hi and hj are histograms of superpixels pi and pj, respectively. In our method, we set the
number of bins N = 32.

2.4. Proposal Scoring

There are hundreds of ship proposals after hierarchical grouping. Only a few proposals contain
real ships. In this section, we utilize the edge and contour scores to measure the confidence that a
proposal contains a ship.

2.4.1. Edge Scoring

A ship has different scattering characteristics from its surroundings while its components have
similar scattering characteristics. Therefore, there are dense edges near the border of ship proposals,
and only a few weak edges inside the ship proposals. In this paper, we take advantage of edge density
and edge density ratio to measure proposals.

As shown in Figure 4, the red boxes are ship proposals, and the yellow boxes are inner boxes of
proposals. Edge density measures the density of edges near the ship proposals’ borders [50]. Given a
ship proposal P and its inner box Pin, the edge density is calculated as the density of edges in the
inner ring:

Ed =
∑p∈P\Pin

E(p)
area(P)− area(Pin)

, (2)

where E is the edge map obtained in Section 2.2.

(a) (b)

Figure 4. Edge scoring of ships. (a) original synthetic aperture radar (SAR) images; (b) edge map with
ship proposals. The red boxes are ship proposals (P), and the yellow boxes are inner boxes of the
proposals (Pin).
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According to the ship characteristics in SAR images stated in Section 1, we suggest a ship proposal
measure using edge density difference of the inner ring and the inner box. The edge density ratio is
calculated as follows:

Er = 1−
∑p∈Pin

E(p)

∑p∈P E(p)
. (3)

Finally, we obtain the edge score of the ship proposal P:

Escore = Ed + Er. (4)

For fast computation, we use the integral image of E to calculate the sum of edges in a proposals.

2.4.2. Contour Scoring

Ships in SAR images generally have closed contours. A closed contour is defined in [51] using the
completeness and tightness. The completeness of a contour is defined as follows:

Ccompleteness = max
c

∮
c φ(E(x)) dx∮

c 1 dx
, (5)

where c is a closed curve, and the numerator is the length of c. We can explore a most closed contour
using Equation (5). Here, the φ(·) is defined as:

φ(x) =

{
x, x > τ,

−γ, x ≤ τ.
(6)

This function is adopted to adjust the edge map. According to [51], we set τ = 0.001 and γ = 1.
A ship proposal should enclose a ship tightly. Therefore, the contour of a ship is near the proposal

border. We explore a closed contour whose pixels are far from the center of the proposal. The tightness
of a contour is defined as follows:

Ctightness = max
c

∮
c ϕ(u(x)) dx∮

c 1 dx
, (7)

where the distance to the center x0 of the proposal is defined as:

u(x) = ‖[2/h, 2/w] · (x− x0)‖, (8)

where w and h are respectively the width and height of the ship proposal. ϕ(·) is adopted to adjust
the distance:

ϕ(x) = min(x2, 0.7). (9)

Finally, the contour score of a proposal is as follows:

Cscore = Ccompleteness + Ctightness. (10)

We rank the ship proposals using both the edge and contour score:

Pscore = Escore + Cscore. (11)

3. Results

In this section, we evaluate the effectiveness of the procedures proposed in Section 2, and compare
our method with the state-of-the-art methods. We use the SSDD dataset to test our method. The
SSDD dataset includes 1160 SAR images with different resolution, scales, sea conditions, sensors and
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polarization. It is a challenging dataset. In order to evaluate the performance of our ship proposal
generator, the dataset is divided into two parts (validation set and test set) with the proportion 7:3.
Three measures are adopted here: the average best overlap (ABO), the area under the curve (AUC)
and the recall measures. The AUC is the area under the curve measuring the recall versus numbers of
ship proposals. The ABO between a ground truth set G and a proposal set P is calculated as follows:

ABO =
1
|S| ∑

G′∈G
max
P′∈P

IoU(G′, P′), (12)

where the intersection over union (IoU) can be obtained from the following equation:

IoU(G′, P′) =
|G′ ∩ P′|
|G′ ∪ P′| . (13)

In the experiments here, we use the threshold IoU = 0.5 for evaluation.

3.1. Evaluation of Four Procedures

In order to generate multi-scale ship proposals, we suggest four procedures in Section 1. In this
part, we evaluate the four procedures on validation set by comparing with the variation of our method.

3.1.1. Evaluation of Hierarchical Superpixels Grouping

The first procedure is hierarchical superpixels grouping. The generation of superpixels is the
foundation of our method. Therefore, we firstly evaluate its performance under different initial
superpixel size. We also evaluate the performance by replacing hierarchical superpixels grouping with
other procedures.

Variation of Initial Superpixels Size

For our method, the initial size of superpixels mainly influences the recall of multi-scale ship
proposals. In [55], the initial size of superpixels is defined as k; it is a main parameter used to generate
superpixels. We explore variants of our approach by changing k. Specifically, we vary the initial
size from k = 5 to k = 100 in steps of 5. The results are shown in Figure 5a–c. Figure 5a is the
curves measuring the recall versus number of ship proposals under different initial superpixels size k.
Figure 5b is the curves measuring the recall versus IoU under different initial superpixels size k.
Figure 5c is the ABO scores and AUC versus different initial superpixels size k. In our paper, we adopt
the results when k = 15 and k = 20. Figure 5d shows the results. The orange curve is the recall versus
number of ship proposals when k = 15 and k = 20. The purple curve is the recall versus IoU when
k = 15 and k = 20.
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(a) (b)

(c) (d)

Figure 5. The recall under different initial superpixel size. (a) the curves measuring the recall versus
numbers of ship proposals under different k; (b) the curves measuring the recall versus the intersection
over union (IoU) under different k; (c) the average best overlap (ABO) scores and the area under the
curve (AUC) versus different k; (d) The recall using k = 15 and k = 20.

Hierarchical Superpixels Grouping versus Multi-scale Superpixels Segmentation

We utilize hierarchical grouping for multi-scale ship proposals generation. In order to prove that
the use of this strategy leads to better ship proposals, we evaluate the performance of hierarchical
superpixels grouping here by comparing to multi-scale superpixels segmentation. In this experiment,
we set four variants of multi-scale superpixels segmentation: (1) the k is varied from k = 5 to k = 50
in steps of 5; (2) the k is varied from k = 10 to k = 100 in steps of 10; (3) the k is varied from k = 10
to k = 50 in steps of 10; and (4) the k is varied from k = 5 to k = 45 in steps of 10. The four settings
of k capture both small and large scale ships. For our method, we use the results when k = 15 and
20. The results are shown in Figure 6a,b. Figure 6a,b show the curves of the proposed method and
multi-scale superpixels segmentation. Figure 6c,d show the curves of the proposed method and
multi-scale sliding windows. Figure 6a,c are the curves measure the recall versus number of ship
proposals. Figure 6b,d are the curves measuring the recall versus IoU.
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(a) (b)

(c) (d)

Figure 6. The recall using the proposed method, multi-scale superpixels segmentation and multi-scale
sliding windows. Comparison of the proposed method to multi-scale superpixels segmentation: (a) the
curves measuring the recall versus numbers of ship proposals; (b) the curves measuring the recall
versus IoU. Comparison of hierarchical superpixels grouping to multi-scale sliding windows: (c) the
curves measuring the recall versus numbers of ship proposals; (d) the curves measuring the recall
versus IoU.

The comparison of ABO scores, AUC and average number of ship proposals are shown in Table 1.
Table 1 shows the ABO scores, AUC and average number of ship proposals for the proposed approach
and various variants of our approach with different parameters.

Hierarchical Superpixels Grouping versus Sliding Windows

As a classic scheme to extract multi-scale target proposals, multi-scale sliding windows with
different aspect ratios are compared with our method in this paper. For multi-scale sliding windows,
the width w of the window are set as follows: (1) the w is varied from w = 5 to w = 50 in steps of 5;
(2) the w is varied from w = 10 to w = 100 in steps of 10; (3) the w is varied from w = 10 to w = 50
in steps of 10; (4) the w is varied from w = 5 to w = 45 in steps of 10. The aspect ratios are set to 0.5,
1 and 2. Figure 6c,d show the recall rates when varying the number of ship proposals and the IoU,
respectively. The ABO scores, AUC and average number of ship proposals are shown in Table 1.
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Table 1. The average best overlap (ABO) scores, the area under the curve (AUC) and average number
of ship proposals for the proposed approach and various variants of our approach.

Methods AUC ABO Score Average Proposals

Multi-scale Superpixels
Segmentation

k = 5, 10, · · · , 50 0.53 0.68632 2031

k = 10, 20, · · · , 100 0.54 0.69810 12,603

k = 10, 20, · · · , 50 0.51 0.64609 862

k = 5, 15, · · · , 45 0.49 0.62862 1208

Multi-scale Sliding Windows

w = 5, 10, · · · , 50 0.21 0.50069 5891

w = 10, 20, · · · , 100 0.22 0.51710 2295

w = 10, 20, · · · , 50 0.18 0.45826 3882

w = 5, 15, · · · , 45 0.14 0.44292 1208

Without Strong Scattering
Components Information

k = 15 0.53 0.64150 1146

k = 15, 20 0.55 0.69891 2288

Without Edges Scoring
k = 15 0.54 0.63142 260

k = 15, 20 0.57 0.69363 869

Without Contours Scoring
k = 15 0.46 0.63121 261

k = 15, 20 0.46 0.70291 869

Proposed method
k = 15 0.55 0.62785 261

k = 15, 20 0.58 0.70334 868

3.1.2. Evaluation of Strong Scattering Components Information

Strong scattering components information is valid since ships in SAR images generally contain
strong scattering. Therefore, we utilize this information for hierarchical superpixels grouping. In
this section, we evaluate the value of utilization of this information. Specifically, we set k = 15 and
k = 15, 20, respectively. The results of our method and the variants without utilization of strong
scattering components information are shown in Figure 7 and Table 1. Figure 7 shows the recall of our
method and the variants without utilization of strong scattering components information. Figure 7a
shows the curves measuring the recall versus numbers of ship proposals. Figure 7b shows the curves
measuring the recall versus IoU.

(a) (b)

Figure 7. The recall using our method and the variants without utilization of strong scattering
components information. (a) the curves measuring the recall versus numbers of ship proposals;
(b) the curves measuring the recall versus IoU.
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3.1.3. Evaluation of Edges Scoring and Contours Scoring

Edge scoring is adopted to rank the ship proposals in our method. We set k = 15 and k = 15, 20,
and evaluate the performance of variants without edge scoring. The results are shown in Figure 8 and
Table 1. We also evaluate the performance of two variants without contour scoring. The results are
shown in Figure 9 and Table 1.

(a) (b)

Figure 8. The recall using our method and the variants without utilization of edge scoring. (a) the
curves measuring the recall versus numbers of ship proposals; (b) the curves measuring the recall
versus IoU.

(a) (b)

Figure 9. The recall using our method and the variants without utilization of contour scoring. (a) the
curves measuring the recall versus numbers of ship proposals; (b) the curves measuring the recall
versus IoU.

Figure 8 shows the recall of our method and the variants without utilization of edge scoring.
Figure 8a is the curves measuring the recall versus numbers of ship proposals. Figure 8b is the curves
measuring the recall versus IoU. Figure 9 shows the recall of our method and the variants without
utilization of contour scoring. Figure 9a is the curves measuring the recall versus numbers of ship
proposals. Figure 9b is the curves measuring the recall versus IoU.

3.1.4. Evaluation of Multi-Scale Ship Proposal Generation

In order to evaluate the performance of multi-scale ship proposal generation, the ground truth is
clustered into three subsets. These subsets contain small, middle and large scale ships, respectively. The
small, middle, and large scale ship subsets contain 1181, 407 and 226 ground truth ships, respectively.
We evaluate the multi-scale proposal generation of our method and the variants on these subsets. The
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results are shown in Table 2 and Figure 10. Table 2 shows the results of the proposed method and
various variants of our approach on multi-scale validation datasets using ABO scores, AUC and best
recall. Figure 10 shows the recall of our method and the variants on multi-scale validation datasets.
Figure 10a–c is the curves measuring the recall versus number of ship proposals on large, middle and
small scale ships. Figure 10d–f is the curves measuring the recall versus IoU on large, middle and
small scale ships.

Table 2. Comparison of ABO scores, AUC and best recall for the proposed method and various variants
of our approach on validation datasets that contain multi-scale ships.

Methods k
Large Ships Middle Ships Small Ships

ABO AUC Best Recall ABO AUC Best Recall ABO AUC Best Recall

Multi Scale Sliding
Windows

5, 10, · · · , 50 0.32 0.01 0.07 0.53 0.22 0.61 0.55 0.24 0.61

10, 20, · · · , 100 0.53 0.28 0.62 0.53 0.28 0.62 0.49 0.20 0.40

Multi-scale Superpixels
Segmentation

5, 10, · · · , 50 0.54 0.20 0.50 0.73 0.51 0.92 0.71 0.60 0.92

10, 20, · · · , 100 0.69 0.33 0.82 0.72 0.54 0.91 0.67 0.58 0.86

Proposed Method
15 0.57 0.32 0.60 0.65 0.59 0.81 0.63 0.58 0.75

15, 20 0.69 0.37 0.84 0.73 0.61 0.93 0.68 0.61 0.84

(a) (b) (c)

(d) (e) (f)

Figure 10. The recall using our method and the variants on validation datasets that contain multi-scale
ships. (a–c) the curves measuring the recall versus numbers of ship proposals on validation datasets
that contain large, middle and small scale ships; (d–f) the curves measuring the recall versus IoU on
validation datasets that contain large, middle and small scale ships.

3.2. Comparison with the State-of-the-Art Methods

In this section, we extensively compare our method with more state-of-the-art methods on
the test set, including saliency filtering [29], local contrast variance weighted information entropy
(LCVIWE) [1], information theory-based target detection (ITBTD) [3] and objectness learning [54]. For
our method, we set k = 15, 20. For other methods, we adopt the outputs of ship candidate extraction
as final ship proposals. The results are shown in Figure 11 and Table 3. Figure 11 shows the recall
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of our method and the state-of-the-art methods. Figure 11a is the curves measuring the recall versus
numbers of ship proposals. Figure 11b is the curves measuring the recall versus IoU. Table 3 shows the
ABO scores, AUC and best recall for the proposed method and the state-of-the-art methods on test
datasets that contain multi-scale ships.

(a) (b)

Figure 11. The recall using our method and the state-of-the-art methods. (a) the curves measuring the
recall versus numbers of ship proposals; (b) the curves measuring the recall versus IoU.

Table 3. Comparison of ABO scores, AUC and best recall for the proposed method and the
state-of-the-art methods on test datasets that contain multi-scale ships.

Methods
Large Ships Middle Ships Small Ships All Ships

ABO AUC Best
Recall

ABO AUC Best
Recall

ABO AUC Best
Recall

ABO AUC Best
Recall

Saliency Filtering [29] 0.44 0.39 0.40 0.56 0.62 0.64 0.46 0.40 0.44 0.51 0.46 0.49

LCVIWE [1] 0.44 0.44 0.44 0.43 0.44 0.44 0.14 0.05 0.05 0.33 0.18 0.18

ITBTD [3] 0.41 0.29 0.32 0.36 0.13 0.16 0.25 0.06 0.08 0.32 0.09 0.12

Objectness Learning [54] 0.53 0.07 0.37 0.53 0.14 0.45 0.54 0.21 0.52 0.52 0.18 0.49

Proposed Method 0.75 0.41 0.94 0.74 0.64 0.94 0.67 0.59 0.81 0.70 0.59 0.85

We further evaluate the performance of multi-scale ship proposal generation. Specifically, the
ground truth of test data is clustered into small ships, middle ships and large ships’ subsets. These
subsets contain 485, 179 and 62 ships, respectively. The results of all methods on three subsets are
shown in Figure 12 and Table 3. Figure 12 shows the recall of our method and the state-of-the-art
methods on multi-scale datasets. Figure 12a–c shows the curves measuring the recall versus numbers
of ship proposals on test datasets that contain large, middle and small scale ships. Figure 12d–f
shows the curves measuring the recall versus IoU on test datasets that contain large, middle and small
scale ships.
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(a) (b) (c)

(d) (e) (f)

Figure 12. The recall using our method and the state-of-the-art methods on multi-scale datasets. (a–c)
the curves measuring the recall versus numbers of ship proposals on test datasets that contain large,
middle and small scale ships; (d–f) the curves measuring the recall versus IoU on test datasets that
contain large, middle and small scale ships.

The computational time of different methods is shown in Table 4. All experiments were
implemented on Intel(R) Core(TM) i5-6500 CPU at 3.19 GHz and 8 GB RAM.

Table 4. Comparison of average computational time for the proposed method and the
state-of-the-art methods.

Methods Saliency Filtering LCVIWE ITBTD Objectness Learning Proposed Method

Time 0.43492s 0.01195s 1.62894s 15.99199s 1.34954s

Finally, some results of the proposed method are shown in Figure 13. Blue bounding boxes are
the closest produced object proposals to each ground truth. Green and red bounding boxes are ground
truth bounding boxes. Green represents that a ship was found and red indicates that the ship was not
found. The yellow numbers are the scores of bounding boxes.
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Figure 13. Some results of the proposed method. Blue bounding boxes are the closest produced object
proposals to each ground truth. Green and red bounding boxes are ground truth bounding boxes.
Green represents a ship was found and red indicates that the ship was not found. The yellow numbers
are the scores of bounding boxes.

4. Discussion

In this section, we discuss the effect of parameter and the four procedures. In addition, comparing
with the state-of-the-art are also commented.

(1) The effect of parameter k. In the proposed method, the parameter k is very important. As
show in Figure 5a–c, the performance is limited when k is set too small or too large since this setting
cannot capture small or large scale ships. When k is set to 15 or 20, our method achieves a relatively
good performance. The ABO scores are both higher than 0.6, and the AUC are both higher than 0.5.
The best recall is 0.74642 when k = 15. In order to obtain ship proposals with good quality, we vary the
initial size of superpixels and combine the results using k = 15 and k = 20. The performance of this
combination is shown in Figure 5d. The ABO scores and the AUC are 0.70334 and 0.58, respectively.

(2) The effect of hierarchical superpixels grouping. The results of comparison with multi-scale
superpixels segmentation and sliding windows are shown in Table 1 and Figure 6. The first and
second variants of multi-scale superpixels segmentation both provide comparable results with our
approach from Figure 6b. However, it can be observed that our method outperforms the four variants
from the perspective of AUC and ABO scores. Note that our method generates a smaller number
of proposals than other variants from Figure 6a and Table 1. This indicates that the ships can be
efficiently detected within a smaller searching space using our method. We conclude that using all
ship proposals generated by superpixel hierarchical grouping is much better than using multi-scale
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superpixel segmentation. As for sliding windows, it can be observed that the performance of four
variants of sliding windows degrades quickly when the recall threshold is increased. Our method
outperforms all four variants, and is much better at high IoU area. Moreover, our method obtains ship
proposals with much better quality since the ABO score is the highest. We can conclude that sliding
windows cannot handle the multi-scale ships proposal generation in SAR images. We attribute this to
the high variation of ships size and orientation in SAR images.

(3) The effect of strong scattering components information. When comparing results over a variety
of IoU thresholds (Figure 7b), we can see the recall of the variants are slightly higher than ours at
low IoU area. As shown in Figure 7a, ours achieves competitive or higher recall when the number of
proposals increases. It also can be observed that our method generates a high quality of proposals with
higher ABO, AUC and less number of ship proposals. The results imply the effectiveness of strong
scattering components information injection.

(4) The effect of edges scoring. As shown in Figure 8b, two variants have similar curves with
our method over a variety of IoU thresholds. It is reasonable since edge scoring only influences the
proposal scoring stage. Figure 8a shows that our method achieves competitive or higher recall with
same number of proposals. A small drop in AUC can be observed in Table 1 when the edge scoring
stage is removed. Therefore, edge scoring can perform better for true ship proposals.

(5) The effect of contour scoring. Similar to edge scoring, contour scoring is only used at a proposal
scoring stage. Thus, our methods have similar curves with the two variants over a variety of IoU
thresholds. Comparing to our methods, the two variants have a significant drop in AUC in Table 1.
Figure 9a shows the recall when changing the number of ship proposals. Comparing to two variants,
our methods show higher recall, especially when the number of ship proposals is less than 100. In
conclusion, the performance of our method is significantly boosted with contour scoring.

(6) Multi-scale ship proposal generation. The performance of multi-scale sliding windows is
the worst, especially on a large scale ship subset. We found the multi-scale superpixel segmentation
to be unstable when k = 5, 10, · · · , 50. Although the multi-scale superpixel segmentation achieves
higher best recall than ours on a large scale ship subset when k = 5, 10, · · · , 50, the performance
of this variant degrades dramatically on a small scale ship subset, even worse than the multi-scale
sliding windows. When k = 10, 20, · · · , 100, the performance of multi-scale superpixels segmentation
is relatively stable. Our method can achieve comparable or better performance than these variants in
terms of ABO, AUC and best recall. In contrast, our proposed method showed more stable and better
behavior on both three subsets than other variants. Furthermore, as shown in Table 1, our method
requires 868 ship proposals to achieve good results on three subsets, and multi-scale superpixels
generates 12,603 ship proposals.

(7) Comparison with the state-of-the-art methods. The results in Figure 11a clearly illustrate that
our approach achieves the highest best recall and AUC. The recall of LCVIWE and ITBTD increases
slowly or remains unchangeable as the number of proposals increases. This is because these methods
generally generate only a few proposals per image. The recall of objectness learning is significantly
boosted with a large number of proposals. This is probably because the objectness measure cannot
always score the highest for true ship proposals. It is found that saliency filtering performs slightly
better than ours with a small number of proposals, but suffers from poor localization accuracy as can
be seen from Figure 11b. From Table 3, it can be seen that our method explores proposals with the
highest quality. In addition, our approach outperforms other methods and shows more stable behavior
than others on all three subsets.

5. Conclusions

Currently, ship detection methods for SAR images suffer from an extreme variance of ship sizes.
In this paper, we propose a ship proposal generator to explore multi-scale ship proposals. The
proposed method utilizes four scale-independent characteristics and puts forward four corresponding
procedures. Initial proposals are obtained by hierarchical superpixels grouping. Non-ship proposals
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are rejected using strong scattering components. At the scoring stage, we use contour and edge
information to rank proposals. The four procedures in our method are scale-independent. Therefore,
the final ship proposals are scale-irrelevant. In the experiments, we evaluate the effectiveness of the
four procedures on a validation dataset. The results show that hierarchical superpixels grouping
outperforms the classic multi-scale proposal extraction scheme. With strong scattering components,
the AUC increases to 0.58 and the average number of proposals decreases to 868 per image. The
experiments’ results also show the effectiveness of contour and edge scoring. We compare our approach
with the state-of-the-art methods on the test dataset. The proposed method obtains the highest best
recall and the highest quality of proposals. We can draw a conclusion that the proposed method
outperforms other methods. The results also show that our method has more stable behavior and
better performance on multi-scale datasets.
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