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Abstract: Surface energy balance models have been one of the most widely used approaches to
estimate spatially distributed evapotranspiration (ET) at varying landscape scales. However, more
research is required to develop and test an operational framework that can address all challenges
related to processing and gap filling of non-continuous satellite data to generate time series of ET
at regional scale. In this study, an automated modeling framework was developed to construct
daily time series of ET maps using MODIS imagery and the Surface Energy Balance System model.
The ET estimates generated from this modeling framework were validated against observations
of three eddy-covariance towers in Oklahoma, United States during a two-year period at each
site. The modeling framework overestimated ET but captured its spatial and temporal variability.
The overall performance was good with mean bias errors less than 30 W m−2 and root mean square
errors less than 50 W m−2. The model was then applied for a 14-year period (2001–2014) to study
ET variations across Oklahoma. The statewide annual ET varied from 841 to 1100 mm yr−1, with
an average of 994 mm yr−1. The results were also analyzed to estimate the ratio of estimated ET
to reference ET, which is an indicator of water scarcity. The potential applications and challenges
of the ET modeling framework are discussed and the future direction for the improvement and
development of similar automated approaches are highlighted.

Keywords: MODIS; Surface Energy Balance System; Oklahoma Mesonet; Eddy-covariance

1. Introduction

Time series of remotely sensed evapotranspiration (ET) maps have extensive applications in
agricultural, hydrological and environmental studies as they capture the spatiotemporal variability
of vegetation consumptive use from field to continental scales. For example, spatial ET data have
been used in agriculture sector for water right regulation, planning and monitoring [1], assessing
irrigation and drainage performance [2–4], closing water balance at irrigation scheme levels [5] and
managing agricultural water resources [6–8]. Recent studies have shown that remotely sensed ET can
be used effectively for monitoring agricultural droughts [9–11] with the future potential of improving
the performance of ET-integrated agricultural drought indices [12]. ET maps have been also used in
assessing crop water productivity [13–15] and crop yield analysis [16,17].

Numerous studies have demonstrated the use of time series ET maps for ecological applications,
such as capturing the progress of vegetation and wetland restoration [18], assessing the vulnerability of
forest to fire and drought [19] and accounting water use from riparian vegetation and invasive
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species [20–23]. Remote sensing-based ET products have also been applied in improving the
performances of hydrological models [24–26] and for climate studies to capture water feedbacks
associated with seasonal cycles and soil moisture deficit at regional scales [27].

Among different approaches developed for mapping ET, the surface energy balance (SEB)
approach has been widely used to acquire distributed ET at varying geographical scales [28–31].
Numerous SEB models have been proposed, including but not limited to Surface Energy Balance
Index (SEBI) [32], Two-Source Energy Balance (TSEB) [33,34], Surface Energy Balance Algorithm for
Land (SEBAL) [35], Simplified Surface Energy Balance Index (S-SEBI) [36], Surface Energy Balance
System (SEBS) [37], Mapping Evapotranspiration at high Resolution with Internalized Calibration
(METRIC) [38], Atmosphere-Land Exchange Inverse (ALEXI) [39], Regional ET Estimation Model
(REEM) [40], Remote Sensing Evapotranspiration model (ReSET) [41], Operational Simplified Surface
Energy Balance (SSEBop) [42] and Hybrid Dual-Source Scheme and Surface Energy Framework-Based
Evapotranspiration Model (HTEM) [43]. Some of these models such as SEBAL and METRIC use
manual selection of extreme pixels to compute sensible heat flux, which could result in variations
in estimated ET [44] and may add uncertainty and errors based on the user’s experience [45]. Other
models such as TSEB, SEBS and SSEBop do not require human intervention so that the associated
uncertainties are minimized. The selection of the SEB model and the quality of input data are likely
key factors to determine the accuracy of modeled ET [46].

Developing time series of ET maps requires complex, multi-step analyses to deal with issues
associated with pre-processing of remote sensing data and post-processing of resulting ET products.
The choice of the SEB model and satellite data could vary depending on intended applications of
ET maps, availability and requirements of input data and availability of resources (time, money and
expertise) to run the model. In general, the SEB-based ET estimation process can be divided into six
steps: (i) collation of remotely sensed and ground-based input data, (ii) quality assessment of collected
datasets and preparation of all necessary inputs for the selected SEB model, (iii) running the SEB model
(including all modules and algorithms) to obtain the instantaneous ET at the time of satellite overpass,
(iv) extrapolation of instantaneous ET to daily estimates, (v) filling the gaps due to cloud coverage
over a portion of the map and (vi) interpolation of daily ET between image acquisition dates to obtain
ET for longer time scales.

The first two steps are performed to ensure the quality of input data, a critical requirement for any
remote sensing data analysis. A thorough QA/QC procedure for weather data as presented in [47,48]
is necessary as the accuracy of final product depends on the quality of these datasets. The quality
assurance of weather dataset is even more critical in case of SEB models as they are sensitive to weather
parameters. For example, Webster et al. [49] found air temperature and wind speed as influential
inputs for HTEM and SEBS models, whereas, S-SEBI was less sensitive to meteorological inputs.

For small-scale applications with similar climatic conditions, weather data from a single ground
station are usually used as input in most SEB models. However, for regional applications with varying
climatic conditions, distributed datasets are required. Several recent studies [50,51] have applied
gridded weather datasets for mapping daily ET due to the ease of their application for regional
studies. However, users need to confirm the integrity of the datasets before processing the SEB model.
A study [52] found overestimation of reference ET due to biases in air temperature and wind speed in
the widely used reanalysis data—North American Land Data Assimilation System when compared
to reference ET estimates from the Texas High Plains ET Network [53]. The study recommended
using weather station datasets within agricultural settings, whenever possible, for precise applications
of time series ET information such as in irrigation scheduling. A few studies have explored the
applicability of developing distributed weather data from the point measurements of a network of
ground stations to account for the spatial variability of weather parameters [54].
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The third step is to run the selected SEB model, which involves several sub-models to solve the
SEB equation as shown in Equation (1).

LE = Rn −G−H (1)

where LE is latent heat flux, Rn is net radiation, G is soil heat flux and H is sensible heat flux.
All parameters are in units of W m−2. Based on the sensible heat flux computation approach, SEB
models can be categorized into single-source and two-source models. The sensible heat fluxes for soil
and vegetation are computed separately in two-source models, while a single value for each pixel is
computed in single-source models. Each approach has its own advantages and caveats. In theory,
two-source models could provide more accurate ET over sparse vegetation as they close the energy
balance separately for soil and vegetation. Timmermans et al. [44] found better accuracy from a TSEB
model compared to SEBS across sparsely vegetated grasslands in the Southern Great Plains. Kustas
et al. [55] reported that two-source performed better in sub-humid tallgrass prairie, whereas greater
accuracy was found for a single-source model in semiarid rangeland.

As mentioned before, some single-source models require an additional step in running the model,
which involves the manual selection of extreme hot and cold pixels by user. To remove the subjectivity
in the selection of extreme pixels in SEBAL, Long et al. [56] introduced a trapezoidal approach to define
boundary conditions for the selection of these pixels based on the relationship between vegetation
fraction and surface temperature. Automated approaches have been proposed in [57–59] to replace
human intervention. Alternative approaches are also applied by [60,61] to estimate ET from a cold
pixel as a function of normalized difference vegetation index when an ideal cold pixel is difficult to
find within a satellite image.

The fourth step is to extrapolate the instantaneous ET to daily values. Evaporative fraction
(Λ) [35,37,62,63] and ETrF (fraction of reference ET) [38,64] are the common methods to obtain daily
ET. Both of these methods assume the instantaneous Λ or ETrF is the same as the daily Λ or ETrF.
However, a study [65] reported that this assumption was not satisfied when the fractional vegetation
cover was close to a maximum. In the Texas Panhandle, Colaizzi et al. [66] found a better agreement of
ETrF method for cropland and Λ method for bare soil when compared with lysimeter measurements.
Chavez et al. [67] evaluated six extrapolation approaches on corn and soybean fields and found smaller
error from Λ method when compared with eddy covariance measurements. Another study [68] found
Λ method advantageous during several water stress events, whereas ETrF approach performed better
under advective conditions [38,64], which could be significant in arid environments.

The fifth step is to fill the gaps caused by cloud coverage over a portion of the daily ET
maps. One approach is to apply linear interpolation of nearest reliable values within an image [50].
This method is suitable when the nearest pixels are under the same land cover as that of missing
pixels. However, it may not be appropriate when the area with data gap is large and encompasses
heterogeneous terrain. Another approach includes the use of time-weighted interpolation of preceding
and following images [69]. This method adjusts the vegetation development using normalized
difference vegetation index (NDVI) across vegetated areas and residual soil moisture differences for
the areas with bare soil surface. Anderson et al. [39] applied the available water for the root zone
and soil surface layer to fill the gaps. The available water for the clear and cloudy days is used to
estimate the daily water depletion due to ET from the root zone and soil surface layer and the fraction
of available water is used to fill the gaps.

The final step is the interpolation of ET maps between consecutive satellite overpass dates
to construct daily ET time series. Several interpolation and data-fusion approaches have been
implemented for this purpose. A common approach is to apply linear interpolation of Λ or ETrF images
between consecutive satellite overpass dates [70]. Another approach is to apply a curvilinear function
using more than two Λ or ETrF images. For example, at least one cloud-free image for each month was
used for spline interpolation within METRIC to obtain monthly and seasonal ET [38,71,72]. Singh et
al. [70] evaluated the performance of several interpolation methods and found no significant difference
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in seasonal ET among cubic spline, fixed ETrF and linear interpolations. A backward-average iterative
approach has been also proposed to estimate ET in between Landsat overpass dates [73].

While numerous studies have been conducted to address the issues related to specific steps
involved in generating remotely sensed ET time series based on SEB models, only a few have focused
on developing automated modeling frameworks, covering all hierarchical steps mentioned above.
Such modeling frameworks, if validated, could have significant value in providing end-users with
daily ET time series for practical applications in improving land and water management. Furthermore,
a comprehensive and detailed documentation of the entire process of deriving daily ET maps at
regional scales could be a useful resource to potential end-users who currently need to understand
and select appropriate approaches for each of the six steps from many sources. Developing and
documenting a comprehensive framework that generates complete ET time series from raw input
data enables potential users outside the research community to utilize this framework for making
more informed decisions and policies. The main goal of this study was to develop and document a
modeling framework to construct daily time series of ET maps for the entire state of Oklahoma, USA.
The performance of this framework was also evaluated by comparing its results with ET estimates of
flux towers in Oklahoma. Finally, long-term variations in ET across Oklahoma were investigated.

2. Materials and Methods

2.1. Study Area

The study area covered the entire state of Oklahoma, USA, with an area of about 181,200 km2

(Figure 1). Oklahoma Climate is classified as humid subtropical at most parts of the state and cold
semi-arid at far west [74]. The state has nine climate divisions (CD) delineated based on precipitation
and temperature gradients. The normal (1981–2010) annual precipitation is about 925 mm yr−1,
with significant spatial variation across CDs. While southeast (CD9) receives the largest amount of
1301 mm yr−1 on average, the Panhandle (CD1) holds the smallest record of 520 mm yr−1. The normal
annual mean air temperature is 15.6 ◦C, with July and January being the hottest and coldest months,
respectively. The southcentral (CD8) has the maximum mean annual temperature of 16.7 ◦C, whereas
the Panhandle region has the minimum value at 13.6 ◦C. The top two land cover categories in Oklahoma
are grassland (36.4%) and pastureland (11.3%) [75]. The elevation varies between 88 m above mean
sea level at the southeast border with Arkansas and 1516 m at far-west border with New Mexico.
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2.2. Modeling Framework

The modeling framework was designed to use daily images from the MODIS Terra satellite as
input data. The single-source SEBS model [37] was selected as the SEB model for estimating energy
fluxes. The main reason for the selection of SEBS over other SEB models was its applicability over
large areas with heterogeneous surfaces [31]. In addition, this model does not require intermittent
human intervention, which facilitates the automation process. A graphical illustration of the proposed
framework is shown in Figure 2, followed by detailed explanation of specific approaches selected for
each of the six computational steps mentioned before.
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Figure 2. A descriptive flow diagram of the daily time series of evapotranspiration (ET)
modeling framework.

2.2.1. Step 1: Collation of Input Data

The daily surface reflectance (MOD09GA, [76]), daily land surface temperature (LST) and
emissivity (MDO11A1, [77]) data were downloaded from the US Geological Survey Land Processes
Distributed Active Archive Center (https://lpdaac.usgs.gov/). Ground-based meteorological data
included hourly air temperature, relative humidity, incoming shortwave solar radiation, wind speed
and atmospheric pressure. These data were obtained from the Oklahoma Mesonet [78,79] weather
stations installed across the state (Figure 1). The Oklahoma Mesonet is a world-class environmental
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monitoring network (https://www.mesonet.org/) consisting of 120 active stations with at least one
station at each of the 77 counties in Oklahoma.

2.2.2. Step 2: Quality Assessment and Preparation of Inputs

The initial quality assessment of suitable MODIS images was based on cloud coverage. Images
with less than 10% cloud cover were selected for further processing. Hence, any day when the cloud
coverage was above 10% was assumed as a day with missing remotely sensed data. When the period
of missing imagery was more than 10 consecutive days, images with less than 15% cloud cover were
also included as acceptable quality. Then, cloud-covered pixels in each selected image were masked by
applying a threshold of LST smaller than 250 K. These steps were repeated for all selected reflectance,
LST and emissivity images. Since a single MODIS image tile was not sufficient to cover the entire state
of Oklahoma, two image tiles (h09v05 and h10v05) were merged.

The quality assessment of each weather variables was performed as described in [47,48]. The solar
radiation was checked against the upper limit under clear sky condition. Daily average temperature
was compared against the average extreme temperatures to ensure the difference between them was
within the acceptable range (2 ◦C) [48]. The quality of wind speed was maintained by considering gust
factor threshold of more than 1. Relative humidity data were considered when the values were less
than 100%. The missing weather data were filled by an average value of that parameter from four
nearest Mesonet stations. Hourly alfalfa reference ET (ETr) [48] was then computed at each station
during the study period using the Bushland ET Calculator [80]. Daily ETr estimates were obtained by
summing 24-hour ETr values. To incorporate the weather variability between the weather stations,
spatial input data were generated by applying inverse distance weighted interpolation for all weather
variables, including hourly and daily ETr. As mentioned in the previous section, the Oklahoma
Mesonet is a densely distributed weather station network, with about 1510 km2 per station. This is a
significantly finer spatial resolution than the 5000 km2 per station value recommended by the World
Meteorological Organization for evaporation stations on interior plains [81]. Hence, the adjustment of
meteorological parameters with elevation was not considered during interpolation.

2.2.3. Step 3: The SEB Model

As mentioned before, the Surface Energy Balance System (SEBS) model of [37] was selected as the
SEB model in the present study. However, other SEB models such as those reviewed in the Introduction
section can be used in this step based on user resources, availability of input data and desired accuracy.
Like other SEB models, SEBS estimates the latent heat flux (LE) as a residual of the land surface energy
balance as shown in Equation (1). The Rn was calculated by applying the surface radiation balance
equation:

Rn = (1− α)Rs + εs εa σ T4
A − εs σ T4

S (2)

where RS is incoming shortwave solar radiation, α is surface albedo (dimensionless) estimated
following [82], εa and εs are emissivities (dimensionless) of atmosphere and surface, estimated
following [83,84], respectively. σ is the Stefan-Boltzmann constant (5.67 × 10−8 W m−2 K−4), TA is air
temperature (K) and Ts is the surface temperature (K), estimated as a ratio of brightness temperature
to εs

−0.25. The G was estimated by applying the relationship developed by [35]:

G
Rn

=
(Ts − 273.15)

100α

(
c1 α+ c2 α

2
)(

1− 0.98NDVI4
)

(3)

where c1 and c2 are calibration coefficients and were considered as 0.24 and 0.46, respectively.
SEBS uses similarity theories to estimate H: the bulk atmospheric similarity (BAS) theory

for atmospheric boundary layer (ABL) scaling [85] and the Monin-Obukhov similarity (MOS) for
atmospheric surface layer (ASL) scaling [86]. The ABL is a part of the atmosphere that is directly
impacted by earth’s surface and responds to surface forcing with a timescale of an hour or less, whereas

https://www.mesonet.org/
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ASL is usually the bottom 10% of ABL [37]. During unstable conditions, an appropriate atmospheric
(BAS or MOS) scaling is determined as presented in [83]. For stable conditions, functions given
by [83,87] are used for ABL and ASL scaling, respectively. In the ASL, the similarity relationships for
mean wind speed (u) and the difference between potential temperature profiles are derived using the
MOS theory as:

u =
u∗
k

[
ln
(

z− d0

z0m

)
−ψm

(
z− d0

L

)
+ψm

(z0m

L

)]
(4)

θ0 − θa =
H

k u∗ ρa Cp

[
ln
(

z− d0

z0h

)
−ψh

(
z− d0

L

)
+ψh

(z0h
L

)]
(5)

L = −
ρaCpu3

∗θv

kgH
(6)

where u* is the friction velocity (m s−1), k is the von Karman’s constant (0.41), z is the height above the
surface (m), d0 is the zero plane displacement height (m), z0m is the roughness height for momentum
transfer (m) estimated using an empirical relationship with NDVI [88], z0h is roughness height for heat
transfer (m), θ0 is the potential air temperature at surface (K), θa is the potential air temperature at z
(K), θv is the potential virtual temperature near the surface (K), ρa is the air density (kg m−3), Cp is the
specific heat capacity of air (1013 J kg−1 K−1) and g is the gravitational acceleration (9.8 m s−2). ψm

and ψh are the stability correction functions for momentum and sensible heat transfer, respectively
and L is the Monin–Obukhov length (m).

The scalar roughness height for heat transfer, z0h, is an important parameter to regulate the heat
transfer between the land surface and the atmosphere and estimated as:

z0h =
z0m

exp
(

kB−1
) (7)

where kB−1 is the Stanton number, a dimensionless heat transfer coefficient, estimated using a
formulation from [89] as:

kB−1 =
kCd

4Ct
u∗

u(h)

(
1− e

−nec
2

) f2
c + 2 fc fs

k
(

u∗
u(h)

)( z0m
h

)
C∗t

+ kB−1
s f2

s (8)

The heat transfer coefficient in Equation (8) was formulated to account for three different land
surface conditions. The first term follows the Choudhury and Monteith [90] model for full canopy,
the second term accounts for the interaction between the vegetation and soil surface and the third
term is for the bare soil surface given [83]. In this equation, fc and fs are canopy and soil fraction
coverage, respectively, Cd is the drag coefficient for the foliage with a value of 0.2; Ct and Ct

* are the
heat transfer coefficients of the leaf and soil, respectively. The value of Ct was taken as 0.03 and Ct

* was
computed from Prandtl number and roughness Reynolds number (Re*) [37]. The u(h) in Equation (8)
is the horizontal wind speed at the canopy top (m s−1) and h is canopy height (m) estimated as a ratio
of z0m to 0.136 [37]. The nec (within-canopy wind speed profile extinction coefficient) and Brutsaert
term kBS

−1 (for bare soil surface) were calculated as:

nec =
Cd LAI

2u2∗
u(h)2

(9)

kB−1
s = 2.46(Re∗)

0.25 − ln(7.4) (10)

where LAI is the leaf area index and estimated as a functional relation with NDVI [91].
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SEBS requires estimation of H for dry (Hdry) and wet (Hwet) boundary conditions. Under dry
conditions, the Hdry is equivalent to the available energy (Rn − G) as there is no evaporation due to
the limitation of water availability and Hwet is calculated using the Penman-Monteith equation [92,93].
After computing H for boundary conditions, the relative evaporative fraction (Λr), the evaporative
fraction (Λ) and ET are estimated. The steps and explanation are detailed in [37]

2.2.4. Step 4: Extrapolation of Instantaneous to Daily ET

The SEBS uses the Λ approach for scaling instantaneous ET to daily ET, assuming the Λ at the time
of overpass is equal to the daily Λ. In this study, a modified approach was implemented where either
Λ or ETrF is used for extrapolation of each pixel based on its NDVI value as shown in Equation (15).

Λr = 1− H−Hwet

Hdry −Hwet
(11)

Λ =
Λr(Rn −G−Hwet)

Rn −G
(12)

ETinst =

(
Rn −H−G

λ

)
× 3600 (13)

ETrF =
ETinst

ETr
(14)

ET24 = [Λ× ETr24 for NDVI < 0.30] or [ETrF× ETr24 for NDVI ≥ 0.30] (15)

where ETinst and ETr are the actual and reference ET at the hour of satellite overpass (mm h−1), λ is the
latent heat of vaporization (~2.45 MJ kg−1). ETr24 is the daily reference ET and ET24 is the daily actual
ET (mm d−1). This modification was made to take the advantage of Λ and ETrF approach to better
represent the water limited and energy limited conditions, respectively. The ETrF was estimated as a
ratio of ET obtained from Step 3 to reference ET at the satellite overpass time (MODIS Terra satellite
overpass local time around 10:30 AM).

2.2.5. Step 5: Filling the Gaps Due to Cloud Cover

Data-gaps due to cloud cover is a common issue in all space-borne satellites. In this study, crop
coefficient (Kc) was used to fill the data-gaps. The Kc maps were created for all images as the ratio
of ET24 and respective daily ETr. To fill the Kc of a cloud covered (missing) pixel for a specific image
date, the Kc value of the same pixel from the preceding image date was first used. If the same pixel
was missing in the preceding image, the Kc value was obtained from the next Kc map. The latter step
was repeated if the next day was missing until a date was found with a Kc value estimated for the
same pixel. This interpolation method was suitable to fill the data gaps as most of the selected images
were less than 10 days apart during the crop growing season (April to October).

2.2.6. Step 6: ET for Longer Periods

After filling the data gaps in daily ET maps due to clouds, the ET maps needed to be created for
days when the cloud coverage was more than 10% (or 15%) and thus no input imagery was available.
To fill these gaps, the average Kc of the preceding and following images closest to the image date of
interest was used. The Kc images were then multiplied with respective daily ETr to obtain complete
time series of daily ET maps. Construction of weekly, monthly, seasonal and annual ET maps was
accomplished by summation of daily ET maps over corresponding periods. The processing of all steps
was executed in Python language within ArcGIS environment.
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2.3. Comparison with Flux Tower Data

Daily ET time series from the modeling framework explained above were compared against
observed ET from three flux towers: US-ARc (35.5464 N, 98.0400 W), US-ARb (35.5497 N, 98.0402
W) [94] and US-AR2 (36.6358 N, 99.5975 W) [95]. The US-ARc and US-ARb were located close to each
other over native grassland in central Oklahoma. The US-AR2 was located over planted switchgrass in
northwest Oklahoma. The 30-minute flux data from the towers were downloaded from the AmeriFlux
data archive (http://ameriflux.lbl.gov/) for years 2005 and 2006 for US-ARc and US-ARb sites and
years 2010 and 2011 for the US-AR2 site. The flux tower data usually have the issue with energy balance
closure, therefore, the closure error was corrected by maintaining constant Bowen-ratio following [96].
The corrected 30-min data were averaged to obtain daily data. The daily observed ET was then
compared with the average values of 3 × 3 pixels (~1390 m × 1390 m) from the SEBS ET at the flux
tower locations. It should be noted that the three flux towers used for validating the performance of
the modeling framework in this study represent only two land covers (native and managed grassland).
Hence, the performance of the framework may be different from what is documented here over
different types of land covers not included in the present analysis.

For statistical analysis, correlation coefficient (r), the coefficient of determination (R2), mean
absolute error (MAE), mean bias error (MBE) and root mean square error (RMSE) were used:

MAE =
1
n

n

∑
i=1
|SEBS-ET− FT-ET| (16)

MBE =
1
n

n

∑
i=1

(SEBS-ET− FT-ET) (17)

RMSE =

√
1
n

n

∑
i=1

(SEBS-ET− FT-ET)2 (18)

where FT-ET is the observed flux tower daily ET and SEBS-ET is the estimated daily ET from the
SEBS model.

2.4. Application of the Modeling Framework

After evaluating the accuracy of the modeling framework, it was used to estimate annual ET maps
over the entire state of Oklahoma, as well as its nine climate divisions (CD), during the 2001–2014
period. The annual ET were also compared with publicly available MOD16 ET dataset [97,98] over
the same period, which covers the most recent drought episode of 2011–2014. The degree of water
availability for each pixel and CD within Oklahoma was assessed by estimating the ratio of annual
ET from the modeling framework and the reference ET. This ratio is an indication of the portion of
the atmospheric demand that is supplied at each pixel and CD. Areas with smaller ratios represent
water scarcity since the actual ET from the model is far from the potential limits of ET. The information
on annual ET variations and water availability across Oklahoma can assist state water managers
with making critical decisions based on long-term objective data from the implemented framework.
As mentioned before, the validation dataset only represented native and managed grassland. About
half (47%) of all lands in Oklahoma are under rangeland and grassland. With winter wheat being
the most dominant crop, the majority of croplands have similar canopy characteristics. Nevertheless,
the lack of representation of other land covers (e.g., 21% of forest in Oklahoma) should be considered
in applications and interpretations of the results of the modeling framework.

http://ameriflux.lbl.gov/
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3. Results and Discussion

3.1. Comparison with Flux Tower Data

The comparison with flux tower data showed good agreement between daily SEBS-ET and FT-ET.
The modeling approach captured the spatial and temporal variations in ET. However, the model
overestimated ET at all sites and years (Figure 3), with average MBE of 20.1 W m−2. The range of MBE
was between 1.7 W m−2 at US-AR2 in 2011 and 29.3 W m−2 at US-ARb in 2006 (Table 1). The mean
MAE and RMSE were 33.0 W m−2 and 42.7 W m−2, respectively. The correlation coefficients varied
from 0.61 to 0.81 and R2 from 0.37 to 0.66.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 20 

 

 
Figure 3. Comparison of daily ET from surface energy balances (SEBS) and flux tower (FT). 

Table 1. Statistical indicators between SEBS and flux tower ET. 

Site Year r R2 MAE (W m-2) MBE (W m-2) RMSE (W m-2) 

US-ARc 
2005 0.78 0.61 39.6 19.1 40.1 
2006 0.77 0.59 36.7 27.5 49.2 

US-ARb 2005 0.81 0.66 31.9 26.6 43.3 
2006 0.78 0.61 35.9 29.3 47.7 

US-AR2 
2010 0.61 0.37 29.4 16.4 41.7 
2011 0.62 0.39 24.7 1.7 34.1 

 
The errors in the ET estimates of the modeling framework are due to errors generated in each of 

the six steps outlined in previous section. A major step for error introduction is step three, that is, the 
surface energy balance model. Previous studies have reported uncertain characterization of kB-1 in 
water limited environments [99–101] and in low vegetation cover conditions [102]. Overestimating 
kB-1 under these conditions would lead to overestimating z0h, underestimating H and consequently 
overestimating ET [99]. The overestimation errors observed in this study were within the range of 
errors in previous studies when using MODIS as the input imagery to SEBS model. For example, 
[103] reported ET overestimation with MBE of 6.1 W m-2; [104] found MBE of 20.1 W m-2 and RMSE 
of 34.7 W m-2; [105] reported MBE of 144.9 W m-2 when comparing SEBS-ET from cropland and 
grassland with flux tower estimates; [106] found overall MBE of 31 W m-2 and RMSE of 76 W m-2; 
and, [107] reported MBE of 95.1 W m-2 and RMSE of 122.2 W m-2 across several land covers and 
climatic conditions. While several studies have reported overestimation error from SEBS, the mean 
absolute error from the current study was smaller than the threshold of 50 W m-2 suggested by [108]. 

Errors in other steps of the framework can contribute to biases in final ET estimates. A common 
source of error in estimating ET from satellite imagery is due to cloud contamination. A thin layer of 
cloud or a shaded area due to cloud presence over nearby pixels can result in underestimation of LST 
and consequently, overestimation of ET. In practical applications, it is impossible to remove all these 
contaminated pixels from the entire image even after applying the LST thresholds during quality 
control. In this study, there were days with underestimated LST due to cloud presence. For example, 

Figure 3. Comparison of daily ET from surface energy balances (SEBS) and flux tower (FT).

Table 1. Statistical indicators between SEBS and flux tower ET.

Site Year r R2 MAE (W m−2) MBE (W m−2) RMSE (W m−2)

US-ARc
2005 0.78 0.61 39.6 19.1 40.1
2006 0.77 0.59 36.7 27.5 49.2

US-ARb
2005 0.81 0.66 31.9 26.6 43.3
2006 0.78 0.61 35.9 29.3 47.7

US-AR2
2010 0.61 0.37 29.4 16.4 41.7
2011 0.62 0.39 24.7 1.7 34.1

The errors in the ET estimates of the modeling framework are due to errors generated in each
of the six steps outlined in previous section. A major step for error introduction is step three, that
is, the surface energy balance model. Previous studies have reported uncertain characterization
of kB−1 in water limited environments [99–101] and in low vegetation cover conditions [102].
Overestimating kB−1 under these conditions would lead to overestimating z0h, underestimating
H and consequently overestimating ET [99]. The overestimation errors observed in this study were
within the range of errors in previous studies when using MODIS as the input imagery to SEBS
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model. For example, [103] reported ET overestimation with MBE of 6.1 W m−2; [104] found MBE of
20.1 W m−2 and RMSE of 34.7 W m−2; [105] reported MBE of 144.9 W m−2 when comparing SEBS-ET
from cropland and grassland with flux tower estimates; [106] found overall MBE of 31 W m−2 and
RMSE of 76 W m−2; and, [107] reported MBE of 95.1 W m−2 and RMSE of 122.2 W m−2 across several
land covers and climatic conditions. While several studies have reported overestimation error from
SEBS, the mean absolute error from the current study was smaller than the threshold of 50 W m−2

suggested by [108].
Errors in other steps of the framework can contribute to biases in final ET estimates. A common

source of error in estimating ET from satellite imagery is due to cloud contamination. A thin layer
of cloud or a shaded area due to cloud presence over nearby pixels can result in underestimation of
LST and consequently, overestimation of ET. In practical applications, it is impossible to remove all
these contaminated pixels from the entire image even after applying the LST thresholds during quality
control. In this study, there were days with underestimated LST due to cloud presence. For example,
the LST at the flux tower pixel area dropped by 10.6 K from Day of Year (DOY) 113 to 114, while both
DOYs were identified as cloud-free and no precipitation was recorded. The instantaneous TA increased
by 3.2 K over the same period. The smaller LST on DOY 114 affected ET estimation for this day and
the following days until another cloud-free image was obtained for DOY 117 (Figure 3a).

A sensitivity analysis study [109] on SEBS model reported LST as the most sensitive parameter,
with up to 70% error in H from irrigated fields expected with 0.5 K bias in LST. Another study [110]
found that error in H varied between −41% and 152% when LST bias ranged from −4 K to 10 K. These
studies show that a small bias in LST can significantly impact H and ultimately ET. The magnitude
of error may depend upon the sensitivity of SEBS to LST, including other parameters such as TA, u,
∆t [111] and could vary depending on whether the wet or dry limits have been reached [110,112].

In this study, the filtering criteria of less than 15% cloud cover limited the availability of cloud-free
images. Applying this filter resulted in 125 and 154 cloud-free images for processing during 2005 and
2006, respectively. For the days with no cloud-free images, the ET estimate was dependent on the
Kc approach explained before. However, the Kc approach may fail to account for the variability in
pixel conditions, especially if land and weather conditions change dramatically during long periods
of gaps in imagery. In this study, 10 to 15 cloud-free images each month were available for most
months, which was assumed sufficient to capture general daily soil moisture and weather variations.
In other periods, however, it was not possible to keep the length of gap periods short. For example,
cloud-free images were not available for 17 consecutive days from DOY 270 to 286 in 2005, when larger
differences between FT-ET and SEBS-ET were observed (Figure 3a,c).

The combined impact of LST bias due to cloud contamination and unavailability of cloud-free
images significantly increase biases in ET estimation. The 15% cloud cover filter could be reduced to
reduce cloud contamination issue but this would come at the cost of increasing the length of periods
with no imagery at all. Increasing the filtering limit will have an opposite effect (more available
imagery with larger cloud contamination within each image). Another solution is to manually inspect
and select images. However, this increases the processing time and interrupts the automated nature of
the ET modeling framework. Another factor that could play a significant role in increasing ET errors
is the availability and quality of input weather data. Su et al. [113] reported about 40% increase in
RMSE (from 73 W m−2 to 102 W m−2) when using reanalysis dataset—Global Land Data Assimilation
System within SEBS instead of ground-based weather data. In this study, the impact of this source of
error is expected to be minimal since rigorous quality control was conducted on ground-based data
and only less than 2% of data were missing during the study period.

As highlighted before, the daily ET results, uncertainty and potential biases of the proposed ET
modeling framework were evaluated and discussed based on flux tower measurements over native
and managed grassland at central and northwest Oklahoma. Flux tower data across other land covers
were not available for comparison, thus the results from the framework may need further assessment
to warrant the similar level of accuracy and uncertainty while applying the results to different land
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covers and climates across the state. In particular, the analysis and interpretation of results from
current study may differ for vegetation with different canopy structure compared to grassland.

3.2. Application of the Modeling Framework

The automated operational ET modeling framework proposed in this study was used to create
annual ET maps covering the entire state of Oklahoma for the period from 2001 to 2014. As expected,
the annual ET followed the precipitation pattern and increased from southeast to Panhandle (Figure 4).
When averaged over the entire 14 years, the southeast climate division (CD9) had the largest annual
ET of 1272 mm yr−1 and the Panhandle climate division (CD1) had the smallest annual ET of 588 mm
yr−1 (Table 2). The reference ET (ETr) had an opposite pattern, with CD1 having the largest amount
at 2140 mm yr−1 and CD9 the smallest (1360 mm yr−1). This means that on average, about 94% of
atmospheric demand was fulfilled at southeast, compared to only 27% in the Panhandle during the
study period. In other words, water scarcity is a larger issue in CD1 compared to CD9 as available
resources were not sufficient to keep up with atmospheric demand. The statewide average annual ET
was 994 mm yr−1, about 57% of the average annual ETr of 1755 mm yr−1.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 20 
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Figure 4. Annual ET maps (SEBS-ET) of Oklahoma from 2001 to 2014. The solid lines represent
boundaries of the nine climate divisions. It should be noted that CDs 6 and 9 in southeast have a
forested area of more than 29%. Hence, their ET estimates may not be accurate since the flux towers
used in validation did not include forest land cover.

Table 2. Average annual SEBS-ET, MOD16-ET, ETr and the ratio of SEBS-ET to ETr for all Oklahoma
climate divisions (CD) during the 2001–2014 period.

Climate Division SEBS-ET (mm yr−1) MOD16-ET (mm yr−1) ETr (mm yr−1) SEBS-ET ETr
−1

CD1 (Panhandle) 588 259 2140 0.27
CD2 (North Central) 918 364 1871 0.49

CD3 (Northeast) 1098 657 1521 0.72
CD4 (West Central) 790 338 2018 0.39

CD5 (Central) 1095 531 1700 0.64
CD6 (East Central) * 1175 736 1492 0.79

CD7 (Southwest) 845 363 2009 0.42
CD8 (South Central) 1163 599 1683 0.69

CD9 (Southeast) * 1272 798 1360 0.94
Oklahoma 994 516 1755 0.57

* These CDs have a forested area of more than 29%. The results presented in this table may not be accurate for these
CDs since the flux towers used in validation did not include forest land cover.

The average annual ET comparison between MOD16 and SEBS indicated large differences across
all Oklahoma CDs (Table 2). The differences between MOD16-ET and SEBS-ET varied between 37%
at CD9 to 60% at CD2, with an average of 48% lower ET rates from MOD16. Three eastern humid
CDs (CD3, CD6, CD9) had smaller differences between MOD16-ET and SEBS-ET compared to three
western CDs (CD1, CD4, CD7). The difference between SEBS-ET and MOD16-ET is possibly due to a
combination of overestimations from SEBS and underestimation from MOD16. The underestimation
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of ET from MOD16 has been reported in previous studies, particularly in semi-arid and arid
climates [114,115].

The ratio of SEBS-ET to ETr can be estimated on a pixel wise basis to provide information on
water scarcity at a finer resolution for local water management and planning. This ratio is mapped in
Figure 5. The general patterns are similar to those presented in Table 2, with western parts of the state
under relatively larger water scarcity compared to the eastern parts. However, significant variability
can be observed within some CDs. In CD1, for example, the western half of CD (Cimarron and Texas
counties) had smaller ratios compared to the eastern half, suggesting a more severe water scarcity.
CD2 was similar in terms of variations in the ET ratios across the CD. The surface water resources
in western Oklahoma were visible in regions with a ratio value of more than 0.5. Examples include
the riparian areas of Cimarron and North Canadian rivers in southwest of CD2, as well as Canton
Lake and Foss reservoir in CD4 and the five reservoirs in CD7 (Lugert-Altus, Tom Steed, Lawtonka,
Ellsworth and Fort Cobb). Maps similar to the one in Figure 5 can be developed at varying temporal
and spatial scales to monitor changes in water availability more closely. The ratio of actual ET to
reference or potential ET has been used in the past in monitoring water stress and drought, such as in
the Evaporative Stress Index [17].
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Figure 5. The ratio of average annual SEBS-ET to ETr across Oklahoma during the period 2001–2014. It
should be noted that CDs 6 and 9 in southeast have a forested area of more than 29%. Hence, their ET
estimates may not be accurate since the flux towers used in validation did not include forest land cover.

The inter-annual variations in ET were also examined for each CD and for the entire state. Figure 6
demonstrates deviations in SEBS-ET as percentage of the average annual ET during the 2001–2014
period. The impact of the 2011–2014 drought in western Oklahoma can be observed in this graph,
with the maximum reduction in ET occurring in 2011 for the three western CDs of CD1, CD4 and
CD7. The percent deviations from average was −22%, −21% and −33% for the same CDs, respectively.
According to the U.S. Drought Monitor (USDM) [116], more than 80% of the three CDs was under
extreme drought (D3 category) from June. The drought condition worsened in July and remained
under D4 category until December 2011. The three eastern CDs of CD3, CD6 and CD9 were above
average in 2011, with percent deviations of 9%, 8% and 10%, respectively. The USDM indicated
almost no drought at CD3 in 2011, whereas CD6 and CD9 had less than 40% of their area under
extreme drought from August to November 2011. The middle three CDs registered close to long-term
average ET. The largest positive deviations for the three western CDs occurred in 2007, a year that was
characterized by above normal precipitation.
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The ET modeling framework proposed in this study can automatically generate time series of
daily ET maps on a continuous basis, with several applications beyond those mentioned in previous
sections. For example, ET maps over agricultural areas can be analyzed in conjunction with yield
data to evaluate the water use efficiency. However, this modeling framework has some limitations
that must be considered and improved in future applications. One limitation is the size of MODIS
pixels, which practically hinders the possibility of using the ET data at field scale. This limitation can
be overcome by modifying the framework to use satellite imagery at finer resolution (e.g., Landsat).
Another challenge is identifying and removing cloud contaminated pixels. The filters used in this
study were not always effective in identifying pixels that were covered by thin layers of cloud or
were in the shadow of a cloud. Thus, further investigation and application of robust methods to
examine cloud contamination are needed. Finally, there were periods when no images were available
for several days due to clouds covering the entire scene. This negatively affects the ability to capture
ET fluctuations during those periods. Data-fusion approaches can be implemented in the modeling
framework as a potential solution to improving ET interpolation for days with missing images.

4. Conclusions

An ET modeling framework was proposed to automatically construct daily time series of ET
maps across Oklahoma by integrating MODIS imagery, ground-based weather data and surface energy
balance model. The comparison of the results with daily observations at three flux towers (two years
of data at each site) showed good performance of the modeling framework with mean bias errors
less than 30 W m−2 and root mean squared errors less than 50 W m−2. The results were then used to
investigate spatial and temporal variations in ET across the state and its nine climate divisions (CD).
The statewide annual ET varied between 841 and 1100 mm yr−1 during the period from 2001 to 2014,
with an average of 994 mm yr−1. A large difference in ET was observed among CDs, with Oklahoma
Panhandle (CD1) having the smallest and southeast (CD9) the largest average annual ET of 588 and
1272 mm yr−1, respectively. The ratio of estimated ET to reference ET was used as an indicator of
water scarcity at pixel and CD levels. The deviations in annual ET from the 2001–2014 average ET
were also studied and found to be in good agreement with temporal and spatial variations in drought.
The proposed ET modeling framework provided a pathway to construct daily time series of ET maps
with potential for a range of applications. However, further improvements are necessary to resolve the
issues highlighted in the current study.

Author Contributions: Conceptualization, P.G. and G.P.; methodology, P.G. and G.P.; formal analysis, K.K., P.G.
and G.P.; investigation, K.K., S.T. and P.G.; writing—original draft preparation, K.K. and S.T.; writing—review
and editing, K.K., S.T. and P.G.; project administration, S.T. and P.G.; funding acquisition, S.T. and P.G.

Funding: This research was funded by a joint research and extension program funded by the Oklahoma
Agricultural Experiment Station (Hatch funds) and Oklahoma Cooperative Extension (Smith-Lever funds) received
from the National Institutes for Food and Agriculture, U.S. Department of Agriculture. Additional support was
provided by the Oklahoma Water Resources Center through the U.S. Geological Survey 104(b) grants program.



Remote Sens. 2019, 11, 508 15 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R. A Landsat-based energy balance and evapotranspiration
model in Western US water rights regulation and planning. Irrig. Drain. Syst. 2005, 19, 251–268. [CrossRef]

2. Droogers, P.; Bastiaanssen, W. Irrigation performance using hydrological and remote sensing modeling.
J. Irrig. Drain. Eng. 2002, 128, 11–18. [CrossRef]

3. Santos, C.; Lorite, I.J.; Tasumi, M.; Allen, R.G.; Fereres, E. Performance assessment of an irrigation scheme
using indicators determined with remote sensing techniques. Irrig. Sci. 2010, 28, 461–477. [CrossRef]

4. Taghvaeian, S.; Neale, C.M.; Osterberg, J.C.; Sritharan, S.I.; Watts, D.R. Remote Sensing and GIS Techniques
for Assessing Irrigation Performance: Case Study in Southern California. J. Irrig. Drain. Eng. 2018, 144,
05018002. [CrossRef]

5. Taghvaeian, S.; Neale, C.M. Water balance of irrigated areas: A remote sensing approach. Hydrol. Process.
2011, 25, 4132–4141. [CrossRef]

6. Folhes, M.T.; Rennó, C.D.; Soares, J.V. Remote sensing for irrigation water management in the semi-arid
Northeast of Brazil. Agric. Water Manag. 2009, 96, 1398–1408. [CrossRef]

7. Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL model
with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig.
Drain. Eng. 2005, 131, 85–93. [CrossRef]

8. Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring
evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [CrossRef]

9. Yao, Y.; Liang, S.; Qin, Q.; Wang, K. Monitoring drought over the conterminous United States using MODIS
and NCEP Reanalysis-2 data. J. Appl. Meteorol. Climatol. 2010, 49, 1665–1680. [CrossRef]

10. Anderson, M.C.; Hain, C.; Wardlow, B.; Pimstein, A.; Mecikalski, J.R.; Kustas, W.P. Evaluation of drought
indices based on thermal remote sensing of evapotranspiration over the continental United States. J. Clim.
2011, 24, 2025–2044. [CrossRef]

11. Zhang, J.; Mu, Q.; Huang, J. Assessing the remotely sensed Drought Severity Index for agricultural drought
monitoring and impact analysis in North China. Ecol. Indic. 2016, 63, 296–309. [CrossRef]

12. Moorhead, J.E.; Gowda, P.H.; Singh, V.P.; Porter, D.O.; Marek, T.H.; Howell, T.A.; Stewart, B.A. Identifying
and evaluating a suitable index for agricultural drought monitoring in the Texas high plains. J. Am. Water
Resour. Assoc. 2015, 51, 807–820. [CrossRef]

13. Li, H.; Zheng, L.; Lei, Y.; Li, C.; Liu, Z.; Zhang, S. Estimation of water consumption and crop water
productivity of winter wheat in North China Plain using remote sensing technology. Agric. Water Manag.
2008, 95, 1271–1278. [CrossRef]

14. Ahmad, M.U.D.; Turral, H.; Nazeer, A. Diagnosing irrigation performance and water productivity through
satellite remote sensing and secondary data in a large irrigation system of Pakistan. Agric. Water Manag.
2009, 96, 551–564. [CrossRef]

15. Teixeira, A.D.C.; Bastiaanssen, W.G.M.; Ahmad, M.U.D.; Bos, M.G. Reviewing SEBAL input parameters for
assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil:
Part A: Calibration and validation. Agric. For. Meteorol. 2009, 149, 462–476. [CrossRef]

16. Cai, X.L.; Sharma, B.R. Integrating remote sensing, census and weather data for an assessment of rice yield,
water consumption and water productivity in the Indo-Gangetic river basin. Agric. Water Manag. 2010, 97,
309–316. [CrossRef]

17. Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Yilmaz, M.T.; Gao, F.; Otkin, J.A.;
Tetrault, R. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment
based on crop yield impacts. Remote Sens. Environ. 2016, 174, 82–99. [CrossRef]

18. Oberg, J.W.; Melesss, A.M. Evapotranspiration dynamics at an ecohydrological restoration site: An energy
balance and remote sensing approach. J. Am. Water Resour. Assoc. 2006, 42, 565–582. [CrossRef]

19. Nepstad, D.; Lefebvre, P.; Lopes da Silva, U.; Tomasella, J.; Schlesinger, P.; Solorzano, L.; Moutinho, P.;
Ray, D.; Guerreira Benito, J. Amazon drought and its implications for forest flammability and tree growth:
A basin-wide analysis. Glob. Chang. Biol. 2004, 10, 704–717. [CrossRef]

http://dx.doi.org/10.1007/s10795-005-5187-z
http://dx.doi.org/10.1061/(ASCE)0733-9437(2002)128:1(11)
http://dx.doi.org/10.1007/s00271-010-0207-7
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0001306
http://dx.doi.org/10.1002/hyp.8371
http://dx.doi.org/10.1016/j.agwat.2009.04.021
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85)
http://dx.doi.org/10.1016/j.rse.2011.08.025
http://dx.doi.org/10.1175/2010JAMC2328.1
http://dx.doi.org/10.1175/2010JCLI3812.1
http://dx.doi.org/10.1016/j.ecolind.2015.11.062
http://dx.doi.org/10.1111/jawr.12275
http://dx.doi.org/10.1016/j.agwat.2008.05.003
http://dx.doi.org/10.1016/j.agwat.2008.09.017
http://dx.doi.org/10.1016/j.agrformet.2008.09.016
http://dx.doi.org/10.1016/j.agwat.2009.09.021
http://dx.doi.org/10.1016/j.rse.2015.11.034
http://dx.doi.org/10.1111/j.1752-1688.2006.tb04476.x
http://dx.doi.org/10.1111/j.1529-8817.2003.00772.x


Remote Sens. 2019, 11, 508 16 of 20

20. Bawazir, A.S.; Samani, Z.; Bleiweiss, M.; Skaggs, R.; Schmugge, T. Using ASTER satellite data to calculate
riparian evapotranspiration in the Middle Rio Grande, New Mexico. Int. J. Remote Sens. 2009, 30, 5593–5603.
[CrossRef]

21. Taghvaeian, S.; Neale, C.M.; Osterberg, J.; Sritharan, S.I.; Watts, D.R. Water use and
stream-aquifer-phreatophyte interaction along a Tamarisk-dominated segment of the Lower Colorado River.
In Remote Sensing of the Terrestrial Water Cycle; John & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 95–113.

22. Nagler, P.L.; Glenn, E.P.; Nguyen, U.; Scott, R.L.; Doody, T. Estimating riparian and agricultural actual
evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index. Remote Sens.
2013, 5, 3849–3871. [CrossRef]

23. Khand, K.; Taghvaeian, S.; Hassan-Esfahani, L. Mapping Annual Riparian Water Use Based on the
Single-Satellite-Scene Approach. Remote Sens. 2017, 9, 832. [CrossRef]

24. Chen, J.M.; Chen, X.; Ju, W.; Geng, X. Distributed hydrological model for mapping evapotranspiration using
remote sensing inputs. J. Hydrol. 2005, 305, 15–39. [CrossRef]

25. Immerzeel, W.W.; Gaur, A.; Zwart, S.J. Integrating remote sensing and a process-based hydrological model
to evaluate water use and productivity in a south Indian catchment. Agric. Water Manag. 2008, 95, 11–24.
[CrossRef]

26. Herman, M.R.; Nejadhashemi, A.P.; Abouali, M.; Hernandez-Suarez, J.S.; Daneshvar, F.; Zhang, Z.;
Anderson, M.C.; Sadeghi, A.M.; Hain, C.R.; Sharifi, A. Evaluating the role of evapotranspiration remote
sensing data in improving hydrological modeling predictability. J. Hydrol. 2018, 556, 39–49. [CrossRef]

27. Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate
studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens.
Environ. 2011, 115, 801–823. [CrossRef]

28. Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. Remote sensing based energy
balance algorithms for mapping ET: Current status and future challenges. Trans. ASABE 2007, 50, 1639–1644.
[CrossRef]

29. Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using
remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [CrossRef]

30. Li, Z.L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies for
regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [CrossRef]
[PubMed]

31. Liou, Y.A.; Kar, S.K. Evapotranspiration estimation with remote sensing and various surface energy balance
algorithms—A review. Energies 2014, 7, 2821–2849. [CrossRef]

32. Menenti, M.; Choudhury, B. Parameterization of land surface evaporation by means of location dependent
potential evaporation and surface temperature range. Proc. IAHS Conf. Land Surf. Process. 1993, 212, 561–568.

33. Norman, J.M.; Becker, F. Terminology in thermal infrared remote sensing of natural surfaces. Agric. For.
Meteorol. 1995, 77, 153–166. [CrossRef]

34. Kustas, W.P.; Norman, J.M. Evaluation of soil and vegetation heat flux predictions using a simple two-source
model with radiometric temperatures for partial canopy cover. Agric. For. Meteorol. 1999, 94, 13–29.
[CrossRef]

35. Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance
algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 1998, 212, 198–212. [CrossRef]

36. Roerink, G.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy
balance. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2000, 25, 147–157. [CrossRef]

37. Su, Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst.
Sci. 2002, 6, 85–99. [CrossRef]

38. Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with
internalized calibration (METRIC)-model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [CrossRef]

39. Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of
evapotranspiration and moisture stress across the continental United States based on thermal remote
sensing: 1. Model formulation. J. Geophys. Res. Atmos. 2007, 112, D11112. [CrossRef]

40. Samani, Z.; Bawazir, A.S.; Skaggs, R.K.; Bleiweiss, M.P.; Piñon, A.; Tran, V. Water use by agricultural crops
and riparian vegetation: An application of remote sensing technology. J. Contemp. Water Res. Educ. 2007, 137,
8–13. [CrossRef]

http://dx.doi.org/10.1080/01431160802695683
http://dx.doi.org/10.3390/rs5083849
http://dx.doi.org/10.3390/rs9080832
http://dx.doi.org/10.1016/j.jhydrol.2004.08.029
http://dx.doi.org/10.1016/j.agwat.2007.08.006
http://dx.doi.org/10.1016/j.jhydrol.2017.11.009
http://dx.doi.org/10.1016/j.rse.2010.11.006
http://dx.doi.org/10.13031/2013.23964
http://dx.doi.org/10.1007/s10712-008-9037-z
http://dx.doi.org/10.3390/s90503801
http://www.ncbi.nlm.nih.gov/pubmed/22412339
http://dx.doi.org/10.3390/en7052821
http://dx.doi.org/10.1016/0168-1923(95)02259-Z
http://dx.doi.org/10.1016/S0168-1923(99)00005-2
http://dx.doi.org/10.1016/S0022-1694(98)00253-4
http://dx.doi.org/10.1016/S1464-1909(99)00128-8
http://dx.doi.org/10.5194/hess-6-85-2002
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
http://dx.doi.org/10.1029/2006JD007507
http://dx.doi.org/10.1111/j.1936-704X.2007.mp137001002.x


Remote Sens. 2019, 11, 508 17 of 20

41. Elhaddad, A.; Garcia, L.A. Surface energy balance-based model for estimating evapotranspiration taking
into account spatial variability in weather. J. Irrig. Drain. Eng. 2008, 134, 681–689. [CrossRef]

42. Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational
evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the
SSEB approach. J. Am. Water Resour. Assoc. 2013, 49, 577–591. [CrossRef]

43. Yang, Y.; Long, D.; Shang, S. Remote estimation of terrestrial evapotranspiration without using meteorological
data. Geophys. Res. Lett. 2013, 40, 3026–3030. [CrossRef]

44. Timmermans, W.J.; Kustas, W.P.; Anderson, M.C.; French, A.N. An intercomparison of the surface energy
balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes. Remote
Sens. Environ. 2007, 108, 369–384. [CrossRef]

45. Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors
governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [CrossRef]

46. Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology.
Glob. Ecol. Biogeogr. 2011, 20, 1–18. [CrossRef]

47. Allen, R.G. Assessing integrity of weather data for reference evapotranspiration estimation. J. Irrig. Drain.
Eng. 1996, 122, 97–106. [CrossRef]

48. Environmental and Water Resources Institute for the American Society of Civil Engineers (ASCE-EWRI).
The ASCE Standardized Reference Evapotranspiration Equation; Report of the ASCE-EWRI Task Committee on
Standardization of Reference Evapotranspiration; ASCE: Reston, VA, USA, 2005.

49. Webster, E.; Ramp, D.; Kingsford, R.T. Spatial sensitivity of surface energy balance algorithms to
meteorological data in a heterogeneous environment. Remote Sens. Environ. 2016, 187, 294–319. [CrossRef]

50. Senay, G.B.; Friedrichs, M.; Singh, R.K.; Velpuri, N.M. Evaluating Landsat 8 evapotranspiration for water use
mapping in the Colorado River Basin. Remote Sens. Environ. 2016, 185, 171–185. [CrossRef]

51. Biggs, T.W.; Marshall, M.; Messina, A. Mapping daily and seasonal evapotranspiration from irrigated crops
using global climate grids and satellite imagery: Automation and methods comparison. Water Resour. Res.
2016, 52, 7311–7326. [CrossRef]

52. Moorhead, J.; Gowda, P.; Hobbins, M.; Senay, G.; Paul, G.; Marek, T.; Porter, D. Accuracy assessment of
NOAA gridded daily reference evapotranspiration for the Texas High Plains. J. Am. Water Resour. Assoc.
2015, 51, 1262–1271. [CrossRef]

53. Porter, D.; Gowda, P.; Marek, T.; Howell, T.; Moorhead, J.; Irmak, S. Sensitivity of grass-and alfalfa-reference
evapotranspiration to weather station sensor accuracy. Appl. Eng. Agric. 2012, 28, 543–549. [CrossRef]

54. Elhaddad, A.; Garcia, L.A. ReSET-Raster: Surface energy balance model for calculating evapotranspiration
using a raster approach. J. Irrig. Drain. Eng. 2011, 137, 203–210. [CrossRef]

55. Kustas, W.P.; Humes, K.S.; Norman, J.M.; Moran, M.S. Single-and dual-source modeling of surface energy
fluxes with radiometric surface temperature. J. Appl. Meteorol. 1996, 35, 110–121. [CrossRef]

56. Long, D.; Singh, V.P. A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal
framework. Water Resour. Res. 2012, 48, W02528. [CrossRef]

57. Kjaersgaard, J.H.; Allen, R.G.; Garcia, M.; Kramber, W.; Trezza, R. Automated selection of anchor pixels
for Landsat based evapotranspiration estimation. In Proceedings of the World Environmental and Water
Resources Congress, Kansas City, MO, USA, 17–21 May 2009.

58. Allen, R.G.; Burnett, B.; Kramber, W.; Huntington, J.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated
calibration of the METRIC-Landsat evapotranspiration process. J. Am. Water Resour. Assoc. 2013, 49, 563–576.
[CrossRef]

59. Bhattarai, N.; Quackenbush, L.J.; Im, J.; Shaw, S.B. A new optimized algorithm for automating endmember
pixel selection in the SEBAL and METRIC models. Remote Sens. Environ. 2017, 196, 178–192. [CrossRef]

60. Trezza, R.; Allen, R.G.; Tasumi, M. Estimation of actual evapotranspiration along the Middle Rio Grande of
New Mexico using MODIS and Landsat imagery with the METRIC model. Remote Sens. 2013, 5, 5397–5423.
[CrossRef]

61. Khand, K.; Numata, I.; Kjaersgaard, J.; Vourlitis, G.L. Dry Season Evapotranspiration Dynamics over
Human-Impacted Landscapes in the Southern Amazon Using the Landsat-Based METRIC Model.
Remote Sens. 2017, 9, 706. [CrossRef]

62. Brutsaert, W.; Sugita, M. Application of self-preservation in the diurnal evolution of the surface energy
budget to determine daily evaporation. J. Geophys. Res. Atmos. 1992, 97, 18377–18382. [CrossRef]

http://dx.doi.org/10.1061/(ASCE)0733-9437(2008)134:6(681)
http://dx.doi.org/10.1111/jawr.12057
http://dx.doi.org/10.1002/grl.50450
http://dx.doi.org/10.1016/j.rse.2006.11.028
http://dx.doi.org/10.1016/j.agwat.2010.12.015
http://dx.doi.org/10.1111/j.1466-8238.2010.00578.x
http://dx.doi.org/10.1061/(ASCE)0733-9437(1996)122:2(97)
http://dx.doi.org/10.1016/j.rse.2016.10.019
http://dx.doi.org/10.1016/j.rse.2015.12.043
http://dx.doi.org/10.1002/2016WR019107
http://dx.doi.org/10.1111/1752-1688.12303
http://dx.doi.org/10.13031/2013.42100
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000282
http://dx.doi.org/10.1175/1520-0450(1996)035&lt;0110:SADSMO&gt;2.0.CO;2
http://dx.doi.org/10.1029/2011WR010607
http://dx.doi.org/10.1111/jawr.12056
http://dx.doi.org/10.1016/j.rse.2017.05.009
http://dx.doi.org/10.3390/rs5105397
http://dx.doi.org/10.3390/rs9070706
http://dx.doi.org/10.1029/92JD00255


Remote Sens. 2019, 11, 508 18 of 20

63. Kustas, W.P.; Perry, E.M.; Doraiswamy, P.C.; Moran, M.S. Using satellite remote sensing to extrapolate
evapotranspiration estimates in time and space over a semiarid rangeland basin. Remote Sens. Environ. 1994,
49, 275–286. [CrossRef]

64. Trezza, R. Evapotranspiration Using a Satellite-Based Surface Energy Balance with Standardized Ground
Control. Ph.D. Thesis, Biological and Irrigation Engineering Department, Utah State University, Logan, UT,
USA, 2002.

65. Gentine, P.; Entekhabi, D.; Chehbouni, A.; Boulet, G.; Duchemin, B. Analysis of evaporative fraction diurnal
behaviour. Agric. For. Meteorol. 2007, 143, 13–29. [CrossRef]

66. Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. Comparison of five models to scale daily evapotranspiration
from one-time-of-day measurements. Trans. ASABE 2006, 49, 1409–1417. [CrossRef]

67. Chávez, J.L.; Neale, C.M.; Prueger, J.H.; Kustas, W.P. Daily evapotranspiration estimates from extrapolating
instantaneous airborne remote sensing ET values. Irrig. Sci. 2008, 27, 67–81. [CrossRef]

68. Delogu, E.; Boulet, G.; Olioso, A.; Coudert, B.; Chirouze, J.; Ceschia, E.; Le Dantec, V.; Marloie, O.;
Chehbouni, G.; Lagouarde, J.P. Reconstruction of temporal variations of evapotranspiration using
instantaneous estimates at the time of satellite overpass. Hydrol. Earth Syst. Sci. 2012, 16, 2995–3010.
[CrossRef]

69. Kjaersgaard, J.; Allen, R.; Trezza, R.; Robison, C.; Oliveira, A.; Dhungel, R.; Kra, E. Filling satellite image
cloud gaps to create complete images of evapotranspiration. In Proceedings of the Remote Sensing and
Hydrology 2010 Symposium, Jackson Hole, WY, USA, 27–30 September 2010.

70. Singh, R.K.; Liu, S.; Tieszen, L.L.; Suyker, A.E.; Verma, S.B. Estimating seasonal evapotranspiration from
temporal satellite images. Irrig. Sci. 2012, 30, 303–313. [CrossRef]

71. Kjaersgaard, J.; Allen, R.; Irmak, A. Improved methods for estimating monthly and growing season ET using
METRIC applied to moderate resolution satellite imagery. Hydrol. Process. 2011, 25, 4028–4036. [CrossRef]

72. Khand, K.; Kjaersgaard, J.; Hay, C.; Jia, X. Estimating impacts of agricultural subsurface drainage on
evapotranspiration using the Landsat imagery-based METRIC model. Hydrology 2017, 4, 49. [CrossRef]

73. Dhungel, R.; Allen, R.G.; Trezza, R.; Robison, C.W. Evapotranspiration between satellite overpasses:
Methodology and case study in agricultural dominant semi-arid areas. Meteorol. Appl. 2016, 23, 714–730.
[CrossRef]

74. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification
updated. Meteorol. Z. 2006, 15, 259–263. [CrossRef]

75. Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.;
Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United
States–representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015,
81, 345–354.

76. Vermote, E.; Wolfe, R. MOD09GA MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid
V006; NASA EOSDIS LP DAAC; NASA: Washington, DC, USA, 2015. [CrossRef]

77. Wan, Z.; Hook, S.; Hulley, G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km
SIN Grid V006; NASA EOSDIS LP DAAC; NASA: Washington, DC, USA, 2015. [CrossRef]

78. Brock, F.V.; Crawford, K.C.; Elliott, R.L.; Cuperus, G.W.; Stadler, S.J.; Johnson, H.L.; Eilts, M.D. The Oklahoma
Mesonet: A technical overview. J. Atmos. Ocean. Technol. 1995, 12, 5–19. [CrossRef]

79. McPherson, R.A.; Fiebrich, C.A.; Crawford, K.C.; Kilby, J.R.; Grimsley, D.L.; Martinez, J.E.; Basara, J.B.;
Illston, B.G.; Morris, A.D.; Kloesel, K.A.; et al. Statewide monitoring of the mesoscale environment:
A technical update on the Oklahoma Mesonet. J. Atmos. Ocean. Technol. 2007, 24, 301–321. [CrossRef]

80. Gowda, P.H.; Ennis, J.; Howell, T.A.; Marek, T.H.; Porter, D.O. The ASCE Standardized Equation-Based
Bushland Reference ET Calculator. In Proceedings of the World Environmental and Water Resources
Congress, Albuquerque, NM, USA, 20–24 May 2012.

81. WMO. Hydrology–From Measurement to Hydrological Information. In Guide to Hydrological Practices; WMO:
Geneva, Switzerland, 2008; Volume I.

82. Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ.
2001, 76, 213–238. [CrossRef]

83. Brutsaert, W.H. Evaporation into the Atmosphere; D. Reidel: London, UK, 1982.
84. Liang, S. Quantitative Remote Sensing of Land Surfaces; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 1–528.

http://dx.doi.org/10.1016/0034-4257(94)90022-1
http://dx.doi.org/10.1016/j.agrformet.2006.11.002
http://dx.doi.org/10.13031/2013.22056
http://dx.doi.org/10.1007/s00271-008-0122-3
http://dx.doi.org/10.5194/hess-16-2995-2012
http://dx.doi.org/10.1007/s00271-011-0287-z
http://dx.doi.org/10.1002/hyp.8394
http://dx.doi.org/10.3390/hydrology4040049
http://dx.doi.org/10.1002/met.1596
http://dx.doi.org/10.1127/0941-2948/2006/0130
http://dx.doi.org/10.5067/MODIS/MOD09GA.006
http://dx.doi.org/10.5067/MODIS/MOD11A1.006
http://dx.doi.org/10.1175/1520-0426(1995)012&lt;0005:TOMATO&gt;2.0.CO;2
http://dx.doi.org/10.1175/JTECH1976.1
http://dx.doi.org/10.1016/S0034-4257(00)00205-4


Remote Sens. 2019, 11, 508 19 of 20

85. Brutsaert, W. Aspect of bulk atmospheric boundary layer similarity under free-convective conditions. Rev
Geophys. 1999, 37, 439–451. [CrossRef]

86. Monin, A.S.; Obukhov, A.M.F. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib.
Geophys. Inst. Acad. Sci. USSR 1954, 24, 163–187.

87. Beljaars, A.C.M.; Holtslag, A.A.M. Flux parameterization over land surfaces for atmospheric models. J. Appl.
Meteorol. 1991, 30, 327–341. [CrossRef]

88. Gupta, R.K.; Prasad, T.S.; Vijayan, D. Estimation of roughness length and sensible heat flux from WiFS and
NOAA AVHRR data. Adv. Space Res. 2002, 29, 33–38. [CrossRef]

89. Su, Z.; Schmugge, T.; Kustas, W.P.; Massman, W.J. An evaluation of two models for estimation of the
roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteorol. 2001, 40,
1933–1951. [CrossRef]

90. Choudhury, B.J.; Monteith, J.L. A four-layer model for the heat budget of homogeneous land surfaces. Q. J.
R. Meteorol. Soc. 1988, 114, 373–398. [CrossRef]

91. Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Howell, T.A.; Schwartz, R.C.; Marek, T.H. Relationship between
LAI and Landsat TM spectral vegetation indices in the Texas Panhandle. In Proceedings of the American
Society of Agricultural and Biological Engineers Annual Meeting, Minneapolis, MI, USA, 17–20 June 2007.

92. Monteith, J.L. Evaporation and the Environment: The State and Movement of Water in Living Organism; XIXth
Symposium; Cambridge University Press: Swansea, UK, 1965.

93. Monteith, J.L. Evaporation and surface temperature. Q. J. R. Meteorol. Soc. 1981, 107, 1–27. [CrossRef]
94. Fischer, M.L.; Torn, M.S.; Billesbach, D.P.; Doyle, G.; Northup, B.; Biraud, S.C. Carbon, water, and heat flux

responses to experimental burning and drought in a tallgrass prairie. Agric. For. Meteorol. 2012, 166, 169–174.
[CrossRef]

95. Billesbach, D.; Bradford, J.; Margaret, T. AmeriFlux US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2;
U.S. Department of Agriculture: Washington, DC, USA; University of Nebraska: Lincoln, NE, USA, 2015.

96. Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.;
Wesely, M.L. Correcting Eddy-Covariance Flux Underestimates over a Grassland. Agric. For. Meteorol. 2000,
103, 279–300. [CrossRef]

97. Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based
on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [CrossRef]

98. Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm.
Remote Sens. Environ. 2011, 115, 1781–1800. [CrossRef]

99. Gokmen, M.; Vekerdy, Z.; Verhoef, A.; Verhoef, W.; Batelaan, O.; Van der Tol, C. Integration of soil moisture
in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sens. Environ.
2012, 121, 261–274. [CrossRef]

100. Gibson, L.A. The Application of the Surface Energy Balance System Model to Estimate Evapotranspiration
in South Africa. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2013.

101. Paul, G.; Gowda, P.H.; Prasad, P.V.; Howell, T.A.; Aiken, R.M.; Neale, C.M. Investigating the influence of
roughness length for heat transport (zoh) on the performance of SEBAL in semi-arid irrigated and dryland
agricultural systems. J. Hydrol. 2014, 509, 231–244. [CrossRef]

102. Bhattarai, N.; Mallick, K.; Brunsell, N.A.; Sun, G.; Jain, M. Regional evapotranspiration from image-based
implementation of the Surface Temperature Initiated Closure (STIC1. 2) model and its validation across an
aridity gradient in the conterminous United States. Hydrol. Earth Syst. Sci. 2018, 22, 2311–2341. [CrossRef]

103. Khan, I.S.; Hong, Y.; Vieux, B.; Liu, W. Development and evaluation of an actual evapotranspiration
estimation algorithm using satellite remote sensing and meteorological observational network in Oklahoma.
Int. J. Remote Sens. 2010, 31, 3799–3819. [CrossRef]

104. Liaqat, U.W.; Choi, M. Accuracy comparison of remotely sensed evapotranspiration products and their
associated water stress footprints under different land cover types in Korean peninsula. J. Clean. Prod. 2017,
155, 93–104. [CrossRef]

105. Yang, Z.; Zhang, Q.; Yang, Y.; Hao, X.; Zhang, H. Evaluation of evapotranspiration models over semi-arid
and semi-humid areas of China. Hydrol. Process. 2016, 30, 4292–4313. [CrossRef]

106. Li, Y.; Huang, C.; Hou, J.; Gu, J.; Zhu, G.; Li, X. Mapping daily evapotranspiration based on spatiotemporal
fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest
China. Agric. For. Meteorol. 2017, 244, 82–97. [CrossRef]

http://dx.doi.org/10.1029/1999RG900013
http://dx.doi.org/10.1175/1520-0450(1991)030&lt;0327:FPOLSF&gt;2.0.CO;2
http://dx.doi.org/10.1016/S0273-1177(01)00624-X
http://dx.doi.org/10.1175/1520-0450(2001)040&lt;1933:AEOTMF&gt;2.0.CO;2
http://dx.doi.org/10.1002/qj.49711448006
http://dx.doi.org/10.1002/qj.49710745102
http://dx.doi.org/10.1016/j.agrformet.2012.07.011
http://dx.doi.org/10.1016/S0168-1923(00)00123-4
http://dx.doi.org/10.1016/j.rse.2007.04.015
http://dx.doi.org/10.1016/j.rse.2011.02.019
http://dx.doi.org/10.1016/j.rse.2012.02.003
http://dx.doi.org/10.1016/j.jhydrol.2013.11.040
http://dx.doi.org/10.5194/hess-22-2311-2018
http://dx.doi.org/10.1080/01431161.2010.483487
http://dx.doi.org/10.1016/j.jclepro.2016.09.022
http://dx.doi.org/10.1002/hyp.10824
http://dx.doi.org/10.1016/j.agrformet.2017.05.023


Remote Sens. 2019, 11, 508 20 of 20

107. Huang, C.; Li, Y.; Gu, J.; Lu, L.; Li, X. Improving estimation of evapotranspiration under water-limited
conditions based on SEBS and MODIS data in arid regions. Remote Sens. 2015, 7, 16795–16814. [CrossRef]

108. Kustas, W.P.; Norman, J.M. Evaluating the effects of subpixel heterogeneity on pixel average fluxes. Remote
Sens. Environ. 2000, 74, 327–342. [CrossRef]

109. Van der Kwast, J.; Timmermans, W.; Gieske, A.; Su, Z.; Olioso, A.; Jia, L.; Elbers, J.; Karssenberg, D.; de Jong, S.
Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements
at the SPARC 2004 site (Barrax, Spain). Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 1165–1196. [CrossRef]

110. Liaqat, U.W.; Choi, M.; Awan, U.K. Spatio-temporal distribution of actual evapotranspiration in the Indus
Basin Irrigation System. Hydrol. Process. 2015, 29, 2613–2627. [CrossRef]

111. Wang, Y.; Li, X.; Tang, S. Validation of the SEBS-derived sensible heat for FY3A/VIRR and TERRA/MODIS
over an alpine grass region using LAS measurements. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 226–233.
[CrossRef]

112. Gibson, L.A.; Münch, Z.; Engelbrecht, J. Particular uncertainties encountered in using a pre-packaged SEBS
model to derive evapotranspiration in a heterogeneous study area in South Africa. Hydrol. Earth Syst. Sci.
2011, 15, 295–310. [CrossRef]

113. Su, H.; Wood, E.F.; McCabe, M.F.; Su, Z. Evaluation of remotely sensed evapotranspiration over the CEOP
EOP-1 reference sites. J. Meteorol. Soc. Jpn. 2007, 85, 439–459. [CrossRef]

114. Hu, G.; Jia, L.; Menenti, M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over
Europe for 2011. Remote Sens. Environ. 2015, 156, 510–526. [CrossRef]

115. Feng, X.M.; Sun, G.; Fu, B.J.; Su, C.H.; Liu, Y.; Lamparski, H. Regional effects of vegetation restoration on
water yield across the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 2617–2628. [CrossRef]

116. Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.;
Stooksbury, D.; et al. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs71215854
http://dx.doi.org/10.1016/S0034-4257(99)00081-4
http://dx.doi.org/10.5194/hessd-6-1165-2009
http://dx.doi.org/10.1002/hyp.10401
http://dx.doi.org/10.1016/j.jag.2012.09.005
http://dx.doi.org/10.5194/hess-15-295-2011
http://dx.doi.org/10.2151/jmsj.85A.439
http://dx.doi.org/10.1016/j.rse.2014.10.017
http://dx.doi.org/10.5194/hess-16-2617-2012
http://dx.doi.org/10.1175/1520-0477-83.8.1181
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Modeling Framework 
	Step 1: Collation of Input Data 
	Step 2: Quality Assessment and Preparation of Inputs 
	Step 3: The SEB Model 
	Step 4: Extrapolation of Instantaneous to Daily ET 
	Step 5: Filling the Gaps Due to Cloud Cover 
	Step 6: ET for Longer Periods 

	Comparison with Flux Tower Data 
	Application of the Modeling Framework 

	Results and Discussion 
	Comparison with Flux Tower Data 
	Application of the Modeling Framework 

	Conclusions 
	References

