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Abstract: As a laboratory proximal sensing technique, the capability of visible and near-infrared
(Vis-NIR) diffused reflectance spectroscopy with partial least squares (PLS) regression to determine
soil properties has previously been demonstrated. However, the evaluation of the soil phosphorus
(P) content—a major nutrient constraint for crop production in the tropics—is still a challenging task.
PLS regression with waveband selection can improve the predictive ability of a calibration model,
and a genetic algorithm (GA) has been widely applied as a suitable method for selecting wavebands
in laboratory calibrations. To develop a laboratory-based proximal sensing method, this study
investigated the potential to use GA-PLS regression analyses to estimate oxalate-extractable P in
upland and lowland soils from laboratory Vis-NIR reflectance data. In terms of predictive ability,
GA-PLS regression was compared with iterative stepwise elimination PLS (ISE-PLS) regression and
standard full-spectrum PLS (FS-PLS) regression using soil samples collected in 2015 and 2016 from
the surface of upland and lowland rice fields in Madagascar (n = 103). Overall, the GA-PLS model
using first derivative reflectance (FDR) had the best predictive accuracy (R2 = 0.796) with a good
prediction ability (residual predictive deviation (RPD) = 2.211). Selected wavebands in the GA-PLS
model did not perfectly match wavelengths of previously known absorption features of soil nutrients,
but in most cases, the selected wavebands were within 20 nm of previously known wavelength
regions. Bootstrap procedures (N = 10,000 times) using selected wavebands also confirmed the
improvements in accuracy and robustness of the GA-PLS model compared to those of the ISE-PLS
and FS-PLS models. These results suggest that soil oxalate-extractable P can be predicted from
Vis-NIR spectroscopy and that GA-PLS regression has the advantage of tuning optimum bands for
PLS regression, contributing to a better predictive ability.

Keywords: Madagascar; oxalate-extractable soil P; partial least squares regression; soil fertility;
spectral assessments; waveband selection

Remote Sens. 2019, 11, 506; doi:10.3390/rs11050506 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-2824-1266
https://orcid.org/0000-0003-2101-9715
http://www.mdpi.com/2072-4292/11/5/506?type=check_update&version=1
http://dx.doi.org/10.3390/rs11050506
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 506 2 of 18

1. Introduction

Phosphorus (P) deficiency is a major constraint for rice production in the tropics [1] because
strongly weathered soils, which cover vast regions of the tropics, contain low concentrations of readily
exchangeable inorganic phosphate [2,3]. In tropical soils, available P can generally be even less due to
strong sorption to aluminium (Al) and iron (Fe) oxides and often limits crop production in low input
agricultural systems [4,5].

In our previous study [6], we examined highly weathered and typical P-deficient soils in the
central highland of Madagascar and found that the P uptake of rice under flooded conditions is related
not only to easily soluble P content but also to the amounts of active Fe and Al, which are bound to
incalcitrant P fractions. Acid ammonium oxalate extraction is a powerful extraction method and covers
both soluble and incalcitrant Fe- and Al-bound P fractions, unlike certain conventional extraction
methods (e.g., the Olsen method) that normally consider only easily soluble P [6,7]. In addition,
recently, Helfenstein et al. [8] revealed that the incalcitrant P fraction (NaOH-extractable inorganic P
pool) turns over in weeks to months, suggesting that the incalcitrant P fraction would potentially play
a significant role as a P source within a cropping season. Rabeharisoa et al. [9] also found the amount
of oxalate-extractable P in soils had a significant correlation with the P concentrations of rice leaves in
farmers’ fields in Madagascar. Therefore, we assumed that oxalate-extractable P reflects bioavailable P
for rice production in the region and applied this assumption in the current study.

Soil P occurs in a variety of chemical forms that differ markedly in their behavior and
bioavailability in the soil environment [6,10]. Our previous study also revealed that these soil P
contents and forms largely varied among neighboring fields. These observations indicate that P
nutrient management for rice production can be further improved by understanding field-to-field
variations in bioavailable P (i.e., oxalate-extractable P) in the tropics. Thus, the development of a rapid
and accurate methodology for evaluating bioavailable P in soils is needed. However, a quantitative
assessment of soil P using standard procedures (e.g., wet chemistry) can often be difficult, especially in
spatially heterogeneous assessments that require numerous soil samples, a process that is costly and
time consuming.

To overcome the issues with the standard procedure, laboratory visible and near-infrared (Vis-NIR)
spectroscopy has been widely adopted for soil studies as a non-destructive, rapid and reproducible
analytical method and has been used for the simultaneous prediction of a variety of primary and
secondary soil attributes [11]. Vis-NIR spectroscopy is an analytical technique that characterizes
materials according to their reflectance at light absorption in the visible (400–700 nm) and NIR
(700–2,500 nm) regions. These techniques measure the radiation absorbed by various bonds of O-H,
C-H, N-H, C=O, C-N, N-H, or C=C, resulting in bending, twisting, stretching, or scissoring [11,12].
Spectroscopy has been used in conjunction with chemometric (multivariate regression) analyses to
relate soil spectra to soil attributes, such as carbon content, clay and iron oxide [13–15].

Although partial least squares (PLS) regression is the most commonly used approach for soil
spectral analyses, waveband selection can refine the performance of a PLS analysis [16–18]. The PLS
regression method combines the most useful information from hundreds of wavebands into the
first several PLS factors (or latent variables), whereas the less important factors might include
background effects [19,20]. Thus, many techniques for selecting wavebands or wavelength regions have
been developed, such as iterative stepwise elimination-PLS (ISE-PLS) regression [21], uninformative
variable elimination-PLS (UVE-PLS) regression [22], competitive adaptive reweighted sampling (CARS)
regression [23], interval PLS (iPLS) regression [24], moving window-PLS (MW-PLS) regression [25],
and genetic algorithm-PLS (GA-PLS) regression [26]. In our previous study [18], removal of the
redundant wavebands by ISE-PLS regression greatly improved the estimation of total carbon (TC) and
total nitrogen (TN) in paddy soils. Among the waveband selection methods, GA-PLS regression has
been used as a suitable method in chemometrics [27]. Leardi and González [28] demonstrated that the
GA-PLS method, after suitable modifications, produces more interpretable results because the selected
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wavelengths are less dispersed in this method than in other methods. Several studies have reported
that the GA-PLS method obtained a better solution than did the ISE-PLS method [29–31].

To date, there have been several attempts to predict soil P using Vis-NIR spectroscopy at field
and laboratory scales with the standard full-spectrum PLS (FS-PLS) method [32–34]. However,
the predictive accuracy was relatively low compared with that for other macro-nutrients (e.g., nitrogen,
carbon), and waveband selection coupled with PLS regression analysis has not been evaluated.
The objective of this study was to develop a laboratory-based proximal sensing method based on
an empirical relationship between soil P and Vis-NIR spectral characteristics using PLS analyses.
To improve the predictive ability, we investigated the potential to use GA-PLS regression analyses to
estimate the soil P status of upland and lowland soils from laboratory Vis-NIR reflectance data. Here,
we targeted amounts of oxalate-extractable P based on the above-noted field observations regarding
its relative importance for rice production and on P uptake as noted by Rabeharisoa et al. [9] and
Nishigaki et al. [6]. The predictive ability of the GA-PLS method was compared with the predictive
abilities of ISE-PLS and FS-PLS methods using first derivative reflectance (FDR) spectra data. Rapid
measurements of soil P status at low cost and with less soil sample preparation could be an application
of the present study instead of the routine chemical methods.

2. Materials and Methods

2.1. Study Site and Soil Sampling and Chemical Analyses

The field survey was conducted in the central highland of Madagascar (Figure 1). This region
has a subtropical climate with an altitude of 1000–1500 m above sea level. The mean temperature is
14–17◦C in winter and 20–22◦C in summer. The average annual rainfall is 1100 mm (>80% occurs in
November–March) [35]. The area is dominated by inherently nutrient-poor soil types that are mainly
classified into Ferralsols and Acrisols [36] or into Oxisols of semiarid to humid climates [37].
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DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and
the GIS User Community. Source in (c) and (e): The ASTER GDEM version 2 data were downloaded
via EarthExplore (https://earthexplorer.usgs.gov/).

In 2015 and 2016, soil sampling was conducted in 103 rice fields—the major production system in
the region — with 63 upland and 40 lowland fields under various management practices. The sampling
positions were recorded with a handheld GPS (Colorado 300, Garmin, Ltd., Kansas, TX, USA). Surface
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soil samples were collected at a 0–10 cm depth as composites of three to four cores in each field.
The spatial distributions of soil sampling points were plotted on the maps using satellite images
(Figure 1a,b,d) and ASTER global digital elevation model (GDEM) version 2 data (Figure 1c,e), which
is a product of METI and NASA.

In the laboratory, soil samples were air dried for 14 days and sieved to <2 mm. Soil P was extracted
using the acid ammonium oxalate method as described by Schwertmann [38], and the concentration of
P in the oxalate extraction was analyzed using the malachite green colorimetric method [39].

2.2. Vis-NIR Diffuse Reflectance Measurement

Laboratory soil reflectance measurements were conducted in a dark room at the Japan
International Research Center for Agricultural Sciences (JIRCAS), Japan, on July 31–August 1, 2017.
Soil samples were scanned by a portable spectroradiometer (FieldSpec 4 Hi-Res, Analytical Spectral
Devices (ASD) Inc., Longmont, CO, USA) and an ASD contact probe. The ASD FieldSpec measures
spectral reflectance in the 350–2500 nm wavelength region, which has one silicon array (350–1000 nm)
and two indium gallium arsenide (InGaAs) detectors (1000–1800 and 1800–2500 nm). The spectral
sampling interval was 1.4 nm in the 350–1000 nm range and 1.1 nm in the 1001–2500 nm range.
The spectral resolution (full-width-half-maximum; FWHM) was 3 nm in the 350–1000 nm range and
6 nm in the 1000–2500 nm range, which were calculated to 1 nm resolution wavelengths for output data
using the cubic spline interpolation function in ASD software (RS3 for Windows; ASD Inc., Longmont,
CO, USA).

The contact probe light source (halogen lamp) was aligned at 12◦ to the probe body, ensuring
illumination at a fixed angle without the influence of ambient light. The fiber optic cable of the ASD
FieldSpec was attached to the contact probe at a fixed measurement angle of 35◦. The sensed spot
area had a diameter of ~1.1 cm with a field of view of 1.33 cm2. A Spectralon (Labsphere Inc., Sutton,
NH, USA) reference panel (white reference) was used to optimize the ASD instrument prior to taking
Vis-NIR reflectance measurements for each sample.

Bulk soil samples were spread in optical-glass Petri dishes that were 85 mm in diameter and
pressed to form a layer ~19 mm thick. The soil surfaces were scanned 25 times with five replications
for the soil samples, and the spectral readings were averaged.

2.3. Overview of Data Processing

In this section, an overview of the data processing process is described using a flowchart in
Figure 2 that shows a general overview of the methodology. In this study, two types of validations
were performed for the models: (i) a leave-one-out cross-validation (LOO-CV) procedure based on
whole data sets (n = 103) and (ii) a modified bootstrap procedure based on an independent test data
set, which was similar to our previous study [30]. Here, the LOO-CV procedure included waveband
selection in ISE-PLS and GA-PLS regression analyses, while the bootstrap procedure was performed
using the selected wavebands; the best GA-PLS model and final wavebands from five GA runs were
justified by the residual predictive values (RPD). More details on the predictive abilities are described
in Section 2.9.
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All data handling and linear regression analyses were performed using PLS_Toolbox version 8.6
(Eigenvector Research Inc., Manson, WA, USA) in MATLAB software ver. 9.3 (MathWorks Sherborn,
MA, USA).

2.4. Preprocessing of Spectral Data

Spectral data in both edge wavelength regions (350–399 nm and 2401–2500 nm) were eliminated
because of low signal-to-noise ratios in the instrument. Thus, a total of 2001 spectral bands between
400 nm and 2400 nm were used for the analyses.

FDR spectra were used to reduce baseline variation and enhance spectral features [40]. The FDR was
calculated using the Savitzky-Golay smoothing filter [41]. A third-order, 15-band moving polynomial
was fitted according to the original reflectance signatures. The parameters of this polynomial were
subsequently used to calculate the derivative at the center waveband of the moving spline window.
In addition, a standard normal variate transform (SNV) was employed to reduce the particle size
effect [42].

To detect outliers, a principal component analysis was performed on spectral data for calculating
the Mahalanobis distance H, and samples with H > 3 were eliminated as outliers. As a result, three
samples were considered outliers, leaving 103 samples for further analyses.

2.5. Standard Full-Spectrum Partial Least Squares (FS-PLS) Regression

PLS regression analyses were performed to estimate soil parameters using reflectance and FDR
data sets (n = 103). The standard FS-PLS regression equation was calculated as follows:

y = β1x1 + β2x2 + . . . + βixi + ε (1)

where the response variable y is a vector of the soil oxalate-extractable P; the predictor variables x1 to
xi are surface reflectance or FDR values for spectral bands 1 to i (400, 401, . . . , 2400 nm), respectively;
β1 to βi are the estimated weighted regression coefficients; and ε is the error vector. The latent variables
were introduced to simplify the relationship between response variables and predictor variables.
To determine the optimal number of latent variables (NLV), a LOO-CV was performed to avoid
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over-fitting of the model and was based on the minimum value of the root mean squared error of
cross-validation (RMSECV). The RMSECV was calculated as follows:

RMSECV =

√
∑n

i=1
(
yi − yp

)2

n
(2)

where yi and yp represent the respective measured and predicted soil parameters for sample i, and n is
the number of samples in the data sets (n = 103).

2.6. Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression

ISE-PLS is a PLS model that incorporates a waveband elimination algorithm. The ISE method
eliminates noisy variables and selects useful predictors. When PLS models include large numbers of
redundant variables or outliers, the models’ predictive abilities may perform poorly, while the ISE
method can overcome such problems. Performance depends on the importance of predictors (zi),
described as follows:

zi =
|βi|si

∑I
i=1|βi|si

(3)

where si is the standard deviation, and βi is the regression coefficient; both si and βi correspond to the
predictor variable of the waveband i.

Initially, all available wavebands (2001 bands, 400–2400 nm) are used to develop the PLS regression
model. Then, to create a scope in which useless predictor variables are removed and predictive ability
is improved, each predictor zi is evaluated, and the less informative wavebands are eliminated.
Subsequently, the PLS model is re-calibrated with the remaining predictors [43]. The model-building
procedure is repeated until the final model is calibrated with the maximum predictive ability.

2.7. Genetic Algorithm Partial Least Squares (GA-PLS) Regression

The GA is an efficient numerical optimization method based on genetic principles and natural
selection [44]. In a GA, a population of individuals (or chromosomes) is created automatically and
typically stored as binary strings in a computer memory, which means that a binary integer “zero”
or “one” represent one gene. Then, each chromosome consists of sequences of a “gene” or “bits.”
During this evolutionary computation, one or more bits are swapped within or between individuals
by computer operations using mechanisms of natural variation, selection and inheritance. Briefly,
selection, crossover and mutation form the core of GA, and these three operations are applied to the
initial populations to generate a new population. This process is repeated until a pre-defined number
of generations is propagated.

Although GA is well suited for solving variable subset selection problems [45], the major
risk associated with using GA-PLS regression is over-fitting due to the large number of variables
(wavebands) used in the Vis-NIR spectroscopy data set. To minimize the risk of over-fitting, Leardi [27]
developed the GA program used in the present study. The GA program was designed to contain
the following features: (i) The parameters are set with the highest possible elitism, a very limited
population size and a relatively high mutation rate to ensure a rapid response increase and to find
a good solution very early in the process. Here, elitism means to encourage the propagation of the best
band repressors between generations without being disrupted by crossover or mutation so that the
search speed of the program can be improved. (ii) The final model is determined via 100 independent
and short GA runs. (iii) A weighted average of the selection frequency of the variables from the starting
run to the previous runs is used to describe the current frequency of selection of the variables. Thus,
each run is able to ‘learn’ information from the previous runs. (iv) A moving average (window size 3)
is applied to the selection of the variables to take into account high spectral correlations and to ensure
that highly correlated spectral bands are selected together.
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Before the GA run, the suitability of our data set for applying GA band selection was assessed
by a fitness function [27,46]. In the present study, five GA runs were performed on the FDR data set
because each GA-PLS gave a slightly different model. The parameters and their conditions (Table 1)
were taken from previous studies [27,30,31,46].

Table 1. Parameter conditions of the genetic algorithms-partial least squares (GA-PLS) regression.

Parameter Condition

Population size 30 chromosomes
Regression method PLS

Response
Cross-validated percent explained variance (five deletion

group; the number of components is determined by
cross-validation)

Maximum number of variables selected
for the same chromosome 30

Probability of mutation 1%
Maximum number of latent variables 15

Number of runs 100
Window size for smoothing 3

2.8. Predictive Ability of the PLS Models

To evaluate the predictive ability of the FS-PLS, ISE-PLS and GA-PLS models, two types of
validation were used for the models (see Figure 2): (i) a waveband selection with a LOO-CV procedure
based on whole data sets (n = 103), including waveband selection in ISE-PLS and GA-PLS models,
and (ii) a modified bootstrap procedure based on an independent test data set using the selected
wavebands from (i).

In waveband selections with the LOO-CV procedure, each sample is estimated using the remaining
samples. This process means that for each variant, we developed 103 individual models, which were
constructed with data from 102 observations. The calibration model was then used to predict the
observation that was left out. As the predicted samples were not the same as the samples used to
establish the models, the RMSECV was used as the accuracy indicator of the model in predicting
unknown samples. The predictive abilities of the PLS models were assessed by calculating the
coefficient of determination (R2), RMSECV and the residual predictive deviation (RPD) using a LOO-CV.
High R2 and low RMSECV values indicate the best model for predicting the soil parameters. The RPD
has been defined as the ratio of standard deviation (SD) of reference data for predicting RMSECV.
For the performance ability of calibration models, an RPD of 3 has been suggested for agriculture
applications, while RPD values between 2 and 3 indicate a model with good prediction ability;
1.5 < RPD < 2 is an intermediate model needing some improvement; and an RPD < 1.5 indicates that
the model has poor prediction ability.

In the bootstrap procedure, the data were divided randomly into training (n = 69) and test (n = 34)
data sets with replacement for N = 10,000 times. In each process, a PLS regression model was developed
using the training data set. Here, ISE-PLS and GA-PLS were developed using selected wavebands in
the LOO-CV procedure. The PLS model was then used to predict soil oxalate-extractable P in the test
data set. The robustness of the calibration models was evaluated by the mean (±SD) values of R2 and
the root mean squares error of prediction (RMSEP) from 10,000 runs in the test data set. The RMSEP
was calculated as follows:

RMSEP =

√√√√∑n
i=1

(
yv

i − yv
p

)2

n
(4)

where yv
i and yv

p are the measured and predicted soil parameters, respectively, for sample i in the test
data set.
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2.9. Assessing Significant Wavelengths

To assess the importance of the wavelengths in the FS-PLS calibration, the variable importance in
the projection (VIP) [47,48] was used and referred to the selected wavelength regions from the ISE-PLS
and GA-PLS models. The VIP score provides a summary of the importance of an x variable (waveband)
for an observed y variable and is calculated using the following equation:

VIPk(a) = m ∑
a

W2
ak

(
SSYa

SSYt

)
(5)

where VIPk(a) is the importance of the kth predictor variable based on a model with a factors, Wak is the
corresponding loading weight of the kth variable in the ath PLS regression factor, SSYa is the explained
sum of squares of y obtained from a PLS regression model with a factors, SSYt is the total sum of
squares of y, and m is the total number of predictor variables. A high VIP score (>1) indicates an
important x variable (waveband) [47,49].

3. Results and Discussion

3.1. A Wide Range of Soil Oxalate-Extractable P Contents in Upland and Lowland Rice Fields

The descriptive statistics of soil oxalate-extractable P in the whole (n = 103) upland (n = 63) and
lowland (n = 40) data sets are shown in Figure 3, and Table 2 summarizes the minimum, maximum,
median, mean, SD and coefficients of variation (CV) values. The soil oxalate-extractable P values in
the upland and lowland data sets ranged between 30.73–1225.16 mg kg−1 and 30.73–826.64 mg kg−1,
respectively. The mean value of the upland data set (588.74 mg kg−1) showed significantly higher
values than that of the lowland data set (319.41 mg P kg−1) (p < 0.001, two sample t-test). The
lower values in soil oxalate-extractable P is probably because of little fertilizer input in lowland
fields compared to upland fields in the central highlands of Madagascar. Similarly, the soil TC
was significantly higher (p < 0.05) in lowland soils due to the anaerobic condition, while there
was no significant difference in soil clay contents (Figure S1). It is, therefore, suggested that soil
physicochemical properties were inherently not different between upland and lowland soils as they
were collected nearby fields, and have been changed by the agricultural practices, i.e., fertilization
and flooding.
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Table 2. Descriptive statistics of soil oxalate-extractable P data. n, number of samples; SD, standard
deviation; CV, coefficient of variation (SD/mean × 100%).

Data Set n Min Max Median Mean SD CV

Whole 103 30.73 1225.16 496.84 484.15 319.10 65.91

Upland 63 30.78 1225.16 609.23 588.74 324.93 55.70

Lowland 40 30.73 826.64 245.79 319.41 223.26 69.89

Our whole data set (upland + lowland) covered a wide range of variations in oxalate-extractable P
content. The mean (and SD) values of soil oxalate-extractable P were 484.15 mg kg−1 (±319.10 mg kg−1),
with a range of 30.73–1225.16 mg kg−1, and CV = 65.91%. The SD and range of the sample affect the
accuracy of soil property predictions using Vis-NIR spectroscopy [34]. In the present study, the range
of soil oxalate-extractable P values was considered sufficiently large to develop the calibration models
using PLS regression analyses. Our data set also demonstrated that the oxalate-extractable P content had
a good correlation with the total P content in soils [6].

3.2. Soil Spectral Response and Its Correlation to Oxalate-Extractable P in Soil

Figure 4 shows the original reflectance spectra, FDR and Pearson’s correlation coefficient (r)
values between soil oxalate-extractable P content and reflectance and FDR spectra at each waveband.
Large variations in the reflectance spectra were obtained from heterogeneous soil samples, which
were collected from upland and lowland soils under various rice-based cropping systems. In general,
soils from different fields show variations in the absorbance at wavelengths associated with iron oxides
(400–500 nm), clay minerals (OH bond: 1400 and 1900 nm, Al-OH bond: 2200 nm) and organic matter
(CH bond: 2300–2400 nm) in soil [50].
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Soil reflectance in visible regions (400–700 nm) is primarily associated with absorption in minerals
containing Fe [51–53] and organic matter [54,55]. NIR regions (700–2500 nm) are dominated by
absorption related to water (1400 and 1900 nm), minerals (1300–1400, 1800–1900, and 2200–2500 nm)
and organic matter (1100, 1600, 1700–1800, 2000, and 2200–2400 nm) [56]. Carbonates also have weak
absorption peaks in the NIR region [57]. These absorptions in the NIR region are due to overtone
and combination bands primarily of C-H, N-H and O-H groups with fundamental bands related
to molecular stretching that occurs in the mid-infrared (MIR) spectral region. However, there is
no specific absorption by P in the Vis-NIR region, and thus, differences in the shape of reflectance
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due to P are still in the process of being determined [33]. In the reflectance spectra of this study,
oxalate-extractable P had a positive correlation with the wavelength between the red and shorter range
NIR regions (600–1300 nm), while oxalate-extractable P had negative correlations in the blue–green
region (400–580 nm) and NIR regions (1420–2100 nm). In the FDR spectra, positive correlations were
found in the green–red region (508–676 nm) with some peaks in the NIR region (1000, 1410 and
2133 nm), while negative correlations were observed in the 800–1850 nm region with some peaks in
the 2200–2400 nm region.

3.3. Selected Wavebands from ISE-PLS and GA-PLS Models

Selected wavebands from ISE-PLS analysis and five GA-PLS runs using FDR spectra to estimate
soil oxalate-extractable P contents are shown in Figure 5, with the regression coefficient and VIP
score in the FS-PLS model as information to assist in considering the importance of the selected
wavelengths. In comparison to the ISE-PLS model, the GA-PLS model selected a wider range of
spectral wavelength regions from within the visible (400–699 nm) and NIR (700–2400 nm) spectra,
with slightly different regions for the five runs. The commonly selected regions from the five GA-PLS
runs (red bar in Figure 5) were 454–457, 506–508, 517, 518, 660, 1732, 1847–1849, 1957–1961, 2105,
2107, 2109, and 2312 nm. These wavelengths did not match those identified for soil characteristics
in previous studies (Table 3); in most cases, the wavelengths were found within 20 nm of previously
known wavebands. As P is not spectrally active in the Vis-NIR region, the wavelengths detected in
this study are potentially important spectral bands in the FDR spectra to indirectly estimate the soil
oxalate-extractable P content via a link to other soil components with spectral properties.
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Figure 5. (a) Selected wavebands in ISE-PLS analysis (green bars) and GA-PLS (blue bars in each run)
using the FDR data set (n = 103) to estimate oxalate-extractable P contents of upland and lowland soils,
with commonly selected wavebands from five GA-PLS runs (red bars), (b) regression coefficients in the
FS-PLS model, and (c) VIP score (>1, grey bars). Specific absorption wavebands for the different bonds
present in soil are specified on the top x-axis (modified by [58]).
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When comparing the GA-PLS model-selected wavebands with the ISE-PLS models, the selected
wavebands were different but the GA-PLS model selected wavebands in the visible region (22-bands
in 454–457, 506–508, 517, 518, 660 nm) were all selected with the ISE-PLS model. In contrast,
no overlapping wavebands in the NIR region were found between the GA-PLS and ISE-PLS models.
ISE-PLS regression analysis is a model-wise elimination technique, while GA-PLS regression analysis
is a numerical optimization method based on genetic principles and natural selection, which are
slightly different models. Thus, we performed five GA-PLS runs and used the commonly selected
wavebands. However, the GA-PLS models also contained the wavebands selected by ISE-PLS model
plus additional bands, especially in the NIR region. In some cases, these extra regions could be readily
interpreted, but in other cases, they could not [27]. Nevertheless, previous studies have reported that
the wavebands selected by GA-PLS models clearly contain relevant information since the waveband
subset decreases the RMSECV, and the wavebands were consistently selected in independent GA
runs [27,30,31].

The commonly selected wavebands in the visible region (454–457, 506–508, 517, 518 and 660 nm)
seem to be closely relevant to Fe oxide minerals (Table 3). In addition, the waveband at approximately
2270 nm, which is relevant to gibbsite (Al oxide mineral) [59], had a high regression coefficient
and VIP score, although it was not always selected. These results are supported by our previous
findings [6], in which oxalate-extractable P was significantly and positively correlated with active Al
and Fe, respectively. The other selected wavebands likely overlapped or corresponded to previously
known wavebands, which are most likely related to soil organic matter. Based on the study by
Knadel et al. [56], the selected wavebands were considered to be associated with organic matter (C-H
bond: 1720, 2111 and 2300 nm) [55,60,61], methyls (C-H bond: 1730–1852 nm) [61,62] and phenolics
(C-OH bond: 1961 nm) [61,62]. Our previous study also found that active Al and Fe had a positive
correlation with soil TC and organic phosphorus content, respectively [6]. This finding suggested that
active Al and Fe play a significant role as sorbents for both oxalate-extractable P mainly in inorganic
forms and organic matter in the studied soils. Turner [63] investigated the chemical nature of P in
a range of rice field soils in Madagascar and reported that a considerable proportion of the TP extracted
by NaOH-EDTA occurred in organic forms (19–44%), mostly as phosphate monoesters. Since the
acid ammonium oxalate method can partly extract organically bound P, our results also indirectly
indicated the importance of organic compounds, probably containing organic P, in oxalate-extractable
P. Thus, the selected wavelengths in our data set should also be relevant to chemical associations of
oxalate-extractable P in soils.

Table 3. Commonly selected wavebands from five GA-PLS runs to estimate soil oxalate-extractable P
using the FDR data set (n = 103) and possible soil components.

Selected
Waveband (nm)

Previously Known Waveband and Related Soil Component

Waveband (nm) Soil Component Reference

454–457 400–700 organic matter (color) [11,64]
470 Fe3+, ferric oxide [65]

506–508, 517, 518 488–499 ferrihydrite [52]
495, 510 hematite [66]

660 660 goethite [67]
655 schwertmannite [52]

1732 1720 organic matter [55]
1726 aliphatic C-H stretch, cellulose, lignin, starch, pectin, wax, humic acid [60]

1730 protein, cellulose, aliphatic C-H stretch, lignin, starch, pectin, wax,
humic acid [68]

1847–1849 1730–1852 methyl (C-H) [61,62]
1957–1961 1950 sugar, starch, cellulose, lignin, protein [68]

1961 phenolics (C-OH) [61,62]
1970 smectite, shoulder due to absorbed water [69]

2105, 2107, 2109 2111 organic matter, cellulose, glucan, pectin [60]
2312 2300 C-H stretch fundamentals [61]

2307–2469 methyl [62]
2309 aliphatic C-H, aromatic stretch, humic acid wax, starch [60]
2310 oil [54]
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3.4. Waveband Selection with Cross-Validated Calibration Results

Figure 6 shows the relationships among the cross-validated calibration results between the FDR
spectra and soil oxalate-extractable P using FS-PLS, ISE-PLS and GA-PLS regression analyses, with the
selected number of wavebands (NW) and the selected NW as a percentage of the full-spectrum
(NW% = NW/whole waveband [n = 2001] × 100) (Table 4). The optimum NLVs were 7, 7 and 6 using
FS-PLS, ISE-PLS and GA-PLS methods, respectively, and they were determined as the lowest RMSECV
values calculated from LOO-CV to avoid over-fitting of the model. Overall, the best R2 and lowest
RMSECV values were obtained with the GA-PLS model for estimating the soil oxalate-extractable P
content (R2 = 0.796 and RMSECV = 143.625). Based on RPD > 2 in the GA-PLS and ISE-PLS models,
the quality and future applicability of our results could be considered to have a good predictive ability.
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Figure 6. Relationships between observed and predicted values of soil oxalate-extractable P contents
using (a) FS-PLS, (b) ISE-PLS and (c) GA-PLS regressions.

Table 4. Optimum number of latent variables (NLV), coefficient of determination (R2), root mean
squared errors of cross-validation (RMSECV), and residual predictive values (RPD) from FS-PLS,
ISE-PLS and GA-PLS models with selected number of wavebands (NW) and their percentages of the
full spectrum (NW%). NW% = NW / 2001 bands × 100%.

Regression
Method

Cross-Validation for Whole Data Set (n = 103)

NLV R2CV RMSECV RPD NW NW%

FS-PLS 7 0.686 179.146 1.773
ISE-PLS 7 0.770 152.984 2.076 158 7.9
GA-PLS 6 0.796 143.625 2.211 94 4.7

The NW (NW%) remaining after waveband selection was 158 (7.9%) in ISE-PLS and 94 (4.7%)
in GA-PLS, which were considered useful wavelengths for estimating the soil oxalate-extractable
P content. These results also suggested that over 92% of the waveband information from the soil
reflectance spectrum was redundant and did not contribute to or disturb the prediction. These findings
support previous findings that the performance of PLS models can be improved through waveband
selection, and the most useful information in the Vis-NIR region (400-2400 nm) predicted less than 20%
of the forage [30,70], water [71] and soil parameters [18]. Moreover, the spectral data efficiency is also
expected to improve by the optimization of the waveband subset using the GA-PLS model [30].

3.5. Evaluation of Predictive Ability Using Modified Bootstrapping

To evaluate the predictive ability of the PLS models, a modified bootstrap procedure (N = 10,000
times) was conducted using selected wavebands in the FDR data set. Table 5 summarizes the mean
values of NLV, R2 and RMSECV in the training data set (n = 69) and R2, RMSEP and the percent
difference of RMSEP (∆RMSEP) between FS-PLS and ISE-PLS or GA-PLS models in the test data set
(n = 34). In addition, Figure 7 demonstrates the distribution of R2 values in the test data set. The mean
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optimum NLV ranged from 5.364 in the GA-PLS model to 7.285 in the FS-PLS model. In the training
data set, GA-PLS obtained the best mean R2 (0.782) and the lowest mean RMSECV (148.930 mg P kg−1)
values, and ISE-PLS performed better than FS-PLS. Similarly, in the test data set, the GA-PLS model
obtained the best mean R2 (0.787) and the lowest mean RMSEP (149.013 mg P kg−1) values for estimating
soil oxalate-extractable P. In comparison with the FS-PLS model and GA-PLS, the ∆RMSEP showed
greater predictive accuracies in ISE-PLS (−16.21%) and GA-PLS (−24.69%) models, respectively.

Table 5. Mean values of NLV, R2 and RMSECV/RMSEP from N = 10,000 evaluations using independent
training and test data sets with FS-PLS, ISE-PLS and GA-PLS.

Regression
Method

Training Data Set (n = 69) Test Data Set (n = 34)

Mean NLV Mean R2 Mean RMSECV Mean R2 Mean RMSEP ∆RMSEP 1

FS-PLS 7.285 0.659 188.560 0.638 197.860
ISE-PLS 6.419 0.751 160.180 0.742 165.786 –16.21
GA-PLS 5.364 0.782 148.930 0.787 149.013 –24.69

1 ∆RMSEP, percent difference in the RMSEP to FS-PLS.
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These findings confirm previous results that showed that the performance of PLS models can be
improved through wavelength selection [20,70,72] and the predictive ability of GA-PLS can overcome
the ISE-PLS [29–31]. Yang et al. [16] suggested that reducing large spectral data sets is valuable for
more efficient storage, computation, and transmission as well as for the ease of spectral analysis.

Although spectral data efficiency could be improved by the optimization of a wavelength subset
in the PLS model, the over-fitting problems still remained in the GA-PLS method. Leardi and
Nørgaard [73] addressed a limitation of GA-PLS, which was that a greater number of variables (> 200)
would result in over-fitting and reduce the capability of obtaining a solution with good predictive
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ability. To solve this problem, they proposed a sequential application of backward-interval PLS (biPLS)
and GA for the selection of relevant spectral regions. The biPLS removes the non-informative regions
prior to GA runs, thereby reducing the number of variables. Future work needs to examine using such
sequential application of biPLS and GA-PLS with a larger number of data sets collected in different
fields with a range of various soil properties.

4. Conclusions

A timely and accurate assessment of the soil P content is crucial for resource-limited farmers
in Madagascar to improve rice production by site-specific fertilizer management. In this study,
we investigated the performance of GA-PLS regression analysis in laboratory Vis-NIR reflectance
spectroscopy for estimating soil oxalate-extractable P contents as a diagnostic indicator of soil P
status in rice fields of Madagascar. Our results showed that a large range of soil oxalate-extractable P
(30.73 to 1225.16 mg P kg−1) can be rapidly and non-destructively predicted by Vis-NIR spectroscopy
for rice fields irrespective of different cropping systems and geographical locations and that the
predictive ability was improved by GA-based waveband selection coupled with PLS regression analysis.
GA-based waveband selection in the PLS calibration suggested that the important wavebands for
estimating soil oxalate-extractable P were 4.7% of all 2001 wavebands in the 400–2400 nm range.
The selected wavebands were different from previously published absorption peaks of specific
materials. However, most of the peaks were within the 20 nm vicinity of such a peak and apparently
relevant to chemical associations of oxalate-extractable P in soils bound to Al and Fe oxides and
organic compounds. Thus, the selected wavelength in our study should be considered informative
for estimating soil oxalate-extractable P contents. Based on the selected FDR wavebands in the
GA-PLS model, soil oxalate-extractable P was determined to provide a good prediction (RPD = 2.211),
with 20.4% and 21.3% of errors when cross-validating and testing, respectively, the independent
data set. Such timely P sensing in soils might allow Madagascar’s farmers to implement better
fertilizer management.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/5/506/s1,
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