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Abstract: Crop planting area mapping and phenology monitoring are of great importance to
analyzing the impacts of climate change on agricultural production. In this study, crop planting area
and phenology were identified based on Sentinel-1 backscatter time series in the test region of the
North China Plain, East Asia, which has a stable cropping pattern and similar phenological stages
across the region. Ground phenological observations acquired from a typical agro-meteorological
station were used as a priori knowledge. A parallelepiped classifier processed VH (vertical
transmitting, horizontal receiving) and VV (vertical transmitting, vertical receiving) backscatter
signals in order to map the winter wheat planting area. An accuracy assessment showed that the
total classification accuracy reached 84% and the Kappa coefficient was 0.77. Both the difference (σd)
between VH and VV and its slope were obtained to contrast with a priori knowledge and then used
to extract the phenological metrics. Our findings from the analysis of the time series showed that the
seedling, tillering, overwintering, jointing, and heading of winter wheat may be closely related to
σd and its slope. Overall, this study presents a generalizable methodology for mapping the winter
wheat planting area and monitoring phenology using Sentinel-1 backscatter time series, especially
in areas lacking optical remote sensing data. Our results suggest that the main change in Sentinel-1
backscatter is dominated by the vegetation canopy structure, which is different from the established
methods using optical remote sensing data, and it is available for phenological metrics extraction.

Keywords: backscatter time series; planting area mapping; phenology monitoring; winter wheat;
Sentinel-1

1. Introduction

Phenology is strongly related to the seasonal dynamics of a growth environment and therefore
plays an important role in vegetation monitoring [1,2]. Phenology also controls many types of
biophysical and biochemical feedback from vegetation to the climate system [3]. Against the
background of global warming, the phenology of many plants has changed, and these shifts are
related to climate change [4,5]. For crops, phenology controls the partition of biomass to different
organs and is related to the optimal timing of agronomic management options [6,7]. Therefore,
understanding the change in phenological phases is helpful for improving agricultural management
for higher crop yields and better food quality [8,9].

Field and satellite-based observations are two popular ways of obtaining crop phenological data
and information. Usually, measuring and observing crops on farmland directly records phenological
information. The development of digital camera technology, the ecosystem phenology camera,
and a new method for near-surface remote sensing, has shown great potential for monitoring
phenological events [10]. However, the sparsely distributed observational stations with or without
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digital cameras have limited the representation of large-scale phenology. In contrast, satellite-based
observation can offer a practical way to acquire crop information over a large area. With excellent
spatial coverage and short revisit times, optical remote sensing data sources such as the Advanced
Very-High-Resolution Radiometer (AVHRR), Medium-Resolution Imaging Spectrometer Instrument
(MERIS), and Moderate-Resolution Imaging Spectroradiometer (MODIS) have been widely used for
regional-scale to global-scale vegetation trend analysis [11–13]. Meng et al. [14] developed a method
for detecting the key phenological stages of winter wheat in the North China Plain from MERIS time
series. Chu et al. [15] used MODIS time series to extract the greening up and heading of winter wheat
in the Yellow River Delta from 2012 to 2013. Although these studies have suggested that optical
remote sensing would be adequate for phenology extraction over large areas, atmospheric effects
such as cloud and haze contamination will always exist and probably lead to large uncertainty in
vegetation information.

To overcome these difficulties, it is important to consider the usage of Synthetic Aperture Radar
(SAR) [16,17]. Satellite-based imaging radar such as SAR is not limited by cloud cover and has
regular revisiting intervals. Sentinel-1 launched in 2014 and 2016, carrying C-band SAR sensors,
and is well suited to capturing agricultural land use dynamics for crop mapping [18]. Sentinel-1, as a
new SAR data source with better spatiotemporal resolution, has been used for crop monitoring and
mapping [19–22]. For example, Navarro et al. [23] assessed the complementarity of optical and SAR
data for crop type classification (maize, soybean, bean, and pasture) and estimated the length of each
phenological stage in Angola. Muro et al. [24] used the S1-omnibus, which is a detection approach
for Sentinel-1 time series changes, to capture the spatiotemporal changes produced by water surface
dynamics in wetlands and agricultural practices in farmlands. In addition, SAR time series were also
used to monitor the phenology of rice and winter rapeseed [25,26]. However, there are no studies
that have investigated winter wheat phenology using Sentinel-1 backscatter time series even though
wheat feeds about 40% of the world’s population and occupies a central position in maintaining the
world’s food security [27]. Vreugdenhil et al. proposed that Sentinel-1 backscatter time series have
potential for monitoring crop phenology [28]. Based on their findings, our study tried to generalize a
methodology using SAR time series to monitor winter wheat.

This study aims to assess the potential of Sentinel-1 satellite SAR imagery for mapping a winter
wheat planting area and further monitoring phenology when optimal remote sensing data are not
available due to atmospheric effects such as cloud and haze contamination. For this purpose,
we focused on a test region in the North China Plain, which is a staple wheat-producing area of
China. The SAR data were used for mapping winter wheat planting area based on a method using
a parallelepiped classifier and reconstructing the backscatter time series. Furthermore, phenological
metrics were extracted from dual-polarization (VV, VH) backscattering time series based on a priori
knowledge. Lastly, our study will help (1) distinguish the winter wheat planting area from other land
types, (2) explain how the backscatter signatures change during the winter wheat growing season,
and (3) monitor winter wheat phenology using a stable and robust data source.

2. Study Area and Data

The test region considered in this study is located in the central part of the North China Plain
(NCP) at the juncture of the Hebei, Shandong, and Henan provinces of China (Figure 1). The North
China Plain is the second largest plain in China, including Beijing and Tianjin as well as the Hebei,
Shandong, Henan, Anhui, and Jiangsu provinces. In the NCP, winter wheat is the main food crop,
which occupied about 20% of the entire crop output of China, and therefore plays a vital role in
guaranteeing grain security in East Asia [29,30]. Generally, winter wheat is sowed in early October of
every year and harvested in early to the middle of June of the following year (Table 1).
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Table 1. Phenological stages of winter wheat in the North China Plain. 

Month October November December 
January 
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Ten Days E M L E M L E M L E M L E M L E M L E M L E M L 

Winter wheat 1 1/2 2 2/3 3 3 3 3 4 4 4 5 5 5/6 6 6/7 7 7/8 8 8/9 9/10 10/11 11/12 12 - 

Winter wheat: 1, Sowing 2, Seedling. 3, Tillering. 4, Overwintering. 5, Greening up. 6, Jointing. 7, 
Booting. 8, Heading. 9, Flowering. 10, Milk ripening. 11, Maturing. 12, Harvesting. E, M, and L 
represent the first, middle, and last 10 days of a month, respectively. 

Sentinel-1 can operate in four modes—Interferometric Wide Swath (IW), Extra Wide Swath 
(EW), Wave (WV), and Stripmap (SM)—with different resolutions, extents, incidence angles, and 
polarizations. In this study, we used Sentinel-1A C-band IW mode Ground Range Detected High-
Resolution (GRDH) images, which were requested from ESA (European Space Agency), with high 
spatial (10 m) and stable temporal (12 days now and 6 days in the future) resolution. The IW mode 
GRDH, as the pre-defined mode over land, provides dual-polarization imagery: VV (vertical 
transmitting, vertical receiving) and VH (vertical transmitting, horizontal receiving). Twenty-two 
Sentinel-1A images, acquired between 9 October 2016 and 30 June 2017 (Table 2), cover the entire test 
region with a revisit time of 12 days. 

Table 2. Sentinel-1A acquisition dates (the day of year, DOY) u sed in this study. 

Year 2016  
DOY 283 295 307 319 331 343 355  
Year 2017  
DOY 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 

The meteorological data and grou nd phenological observations of the test region were archived 
at the National Meteorological Information Center (NMIC) of China. During the growing season, the 
precipitation mainly happened in October 2016 and May 2017 (Figure 2). The precipitation affects the 
SAR backscatter significantly, especially in the early growth stage of winter wheat with bare soil. In 
addition, more precipitation during the growing season means a large amount of cloudy days in this 
area which lead to unavailable optical remote sensing data. In addition, phenological observations at 

Figure 1. Location of the test region and an agro-meteorological station in the North China Plain,
East Asia.

Table 1. Phenological stages of winter wheat in the North China Plain.

Month October November December January February March April May June

Ten Days E M L E M L E M L E M L E M L E M L E M L E M L

Winter wheat 1 1/2 2 2/3 3 3 3 3 4 4 4 5 5 5/6 6 6/7 7 7/8 8 8/9 9/10 10/11 11/12 12 -

Winter wheat: 1, Sowing 2, Seedling. 3, Tillering. 4, Overwintering. 5, Greening up. 6, Jointing. 7, Booting.
8, Heading. 9, Flowering. 10, Milk ripening. 11, Maturing. 12, Harvesting. E, M, and L represent the first, middle,
and last 10 days of a month, respectively.

Sentinel-1 can operate in four modes—Interferometric Wide Swath (IW), Extra Wide Swath
(EW), Wave (WV), and Stripmap (SM)—with different resolutions, extents, incidence angles,
and polarizations. In this study, we used Sentinel-1A C-band IW mode Ground Range Detected
High-Resolution (GRDH) images, which were requested from ESA (European Space Agency), with high
spatial (10 m) and stable temporal (12 days now and 6 days in the future) resolution. The IW
mode GRDH, as the pre-defined mode over land, provides dual-polarization imagery: VV (vertical
transmitting, vertical receiving) and VH (vertical transmitting, horizontal receiving). Twenty-two
Sentinel-1A images, acquired between 9 October 2016 and 30 June 2017 (Table 2), cover the entire test
region with a revisit time of 12 days.

Table 2. Sentinel-1A acquisition dates (the day of year, DOY) u sed in this study.

Year 2016

DOY 283 295 307 319 331 343 355
Year 2017
DOY 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169

The meteorological data and grou nd phenological observations of the test region were archived
at the National Meteorological Information Center (NMIC) of China. During the growing season,
the precipitation mainly happened in October 2016 and May 2017 (Figure 2). The precipitation affects
the SAR backscatter significantly, especially in the early growth stage of winter wheat with bare soil.
In addition, more precipitation during the growing season means a large amount of cloudy days in
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this area which lead to unavailable optical remote sensing data. In addition, phenological observations
at an agro-meteorological experimental station (Anyang station) were used as a priori knowledge
(Figure 1). The beginning dates of the 11 wheat growth stages were recorded at the agro-meteorological
experimental station (Table 3).
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Figure 2. Time series of daily precipitation (blue) and average temperature (red) in the test region
during the growth stage of winter wheat from DOY 283 to DOY 169 (1 October 2016 to 6 June 2017).

Table 3. The beginning dates of winter wheat phenological stages as recorded at Anyang station.

Stage Sowing Seedling Tillering Overwintering Greening Up Jointing Booting Heading Flowering Milk Ripening Maturing

DOY 280 288 317 12 43 57 87 114 120 144 154

3. Methodology

3.1. SAR Data Pre-Processing

Sentinel-1A data were pre-processed using ESA’s open source Sentinel-1 Toolbox, SNAP. The
pre-processing steps mainly included the orbit correction, radiometric calibration, and Range-Doppler
terrain correction. The data were first calibrated to obtain the sigma0 backscatter coefficient, and then
applied to accurately geocode the images using a digital elevation model. Batch Processing and Graph
Builder in SNAP were used to batch all these pre-processing steps and convert the linear values to dB
values. All the SAR images were converted from power scale values into logarithmic scale values to
correctly represent dB values using the following equation:

σi(dB) = 10 × log10(σi) (1)

where σi is the sigma-calibrated backscattering coefficient obtained from SNAP pre-processing for each
pixel of the SAR images [23]. Meanwhile, the regions of interest (ROIs) were selected as the affirmed
winter wheat planting area based on experiential knowledge and fieldwork.

3.2. Classification Method

A parallelepiped classifier, which is a supervised classification method, was used to classify the
images of the test region to map the winter wheat planting area. The method is based on the division
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of every axis of a multidimensional feature vector, and it is one of the most simple and accurate
classification techniques [31]. For each class, the lowest and highest values on each axis are used to
define the decision boundary (Figure 3) [32,33]. The parallelepiped classifier allows multidimensional
boxes that are used for multispectral bands [34]. Therefore, all the images we acquired—22 VV images
and 22 VH images—were stacked into one image with 44 bands. The 44 bands as 44-dimensional
feature vectors were used to classify and map the winter wheat planting area in the test region, i.e.,
every axis was the backscatter signatures of one VV or VH image on a certain date during the growing
season. In this study, a parallelepiped classifier was used to classify and extract the winter wheat
planting area from among other classes (urban area, other crops, water, and bare soil).
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Figure 3. The parallelepiped classifier in the 3D feature space. Each axis (a, b, c) represents band
values of the remote sensing image. The boxes represent the classes which we defined as the decision
boundaries using the training regions of interest (ROIs).

3.3. Time Series Reconstruction

After pre-processing, we reconstructed time series from Sentinel-1A images to analyze the
backscatter signatures tied to winter wheat phenology. The backscatter signatures of Sentinel-1A
in different phenological stages represent information on the canopy structure and physiological traits
of crops which is related to the vegetation coverage and field management [25]. Different backscatter
signatures could be found even in one winter wheat field due to speckle and other noise-like influences.
Therefore, filtering the backscatter time series was necessary and had the purpose of reducing the
short-term influence of environmental conditions.

A filter algorithm called HANTS (Harmonic Analysis of Time Series) is used to smooth noisy data
and can be an appropriate tool to describe the temporal behavior of remote sensing parameters [35].
This algorithm is implemented by calculating a Fourier series for the data while the Fourier transform
determines the values of the filtering outliers. It is one of the fastest filter methods for smoothing and
reconstructing time series of remote sensing parameters [36]. An easily operated tool known as the
IDL (Interactive Data Language) version of HANTS was used in this study. Hence, the smoothed
backscatter signals were used for analyzing the winter wheat backscatter time series and extracting the
phenological metrics.

3.4. Phenological Metrics Extraction

Using an equation to combine both VV and VH images could reduce the ground and vegetation
interaction effects (e.g., double-bounce) and eliminate the errors of the acquisition system or
environmental factors. In previous studies, a cross ratio between VH and VV was calculated as VH/VV
in the linear domain and then converted to the logarithmic domain [28,37]. Therefore, in this study,
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VH and VV were converted to the logarithmic domain first in pre-processing according to Equation (1).
Then, the difference between VH and VV was calculated according to the following equation:

σd(dB) = σvh − σvv (2)

where σd is the difference between VH and VV, and σvv and σvh are the dB values of the VV and VH
images, respectively.

Although some previous studies also utilized the cross ratio VH/VV to understand the temporal
behavior of crops, the smoothed backscatter time series in this study was used to derive the
winter wheat phenology metrics. Based on a priori knowledge obtained from ground phenological
observations, a one-on-one correspondence relationship between the phenological stages and the
specific points of the time series was created. In addition, we also analyzed the slope of the σd (VH-VV)
time series to find some other specific points. Lastly, the specific points in both σd and its slope curve
were inferred as phenological metrics and then used to monitor the winter wheat phenology.

4. Results and Discussion

4.1. Mapping the Sentinel-1-Derived Winter Wheat Planting Area

Figure 4 shows the temporal backscatter coefficient profiles of land cover types selected from
ROIs at both VV and VH polarization from 9 October 2016 to 30 June 2017. The results show that the
mean σvv values of winter wheat, urban, other crops, water, and bare soil during the winter wheat
growth period were −14.46, −7.08, −11.26, −19.70, and −9.76 dB, respectively. The mean σvh values
were −20.68, −13.65, −18.54, −23.94, and −16.65 dB, respectively. In addition, although most of
the temporal backscatter profiles in σvv were relatively independent and separable, the backscatter
coefficients at VH polarization provided an alternative at a different polarization mode. Overall,
the results indicate that it is feasible to distinguish winter wheat from other land cover types and map
the winter wheat planting area using Sentinel-1.
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Figure 4. Temporal backscatter profiles of different land cover types (winter wheat, urban, other crops,
water, and bare soil). The results showed the curve changes of σvv (left) and σvh (right) selected from
ROIs during the growth stages of winter wheat from 9 October 2016 to 30 June 2017.

Figure 5 illustrates a map of the winter wheat planting area from the multi-temporal stacked
dual-polarization bands based on the parallelepiped classifier. Analyzing the results of the confusion
matrix, the total accuracy of our classification was 84% and the Kappa coefficient was 0.77. Previous
research has shown that many more classification methods could improve the accuracy of crop
mapping [38,39]. However, the method we chose in this case is relatively simple and sufficiently
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accurate. In addition, it should be noted that this study focused on the representative and pure
classification results even though they tended to underestimate the true planting extent.Remote Sens. 2019, 1, x FOR PEER REVIEW  7 of 13 
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4.2. Analysis of the Winter Wheat Backscatter Time Series

Winter wheat is a kind of narrow-leaf cereal crop that is planted in the autumn, remains in
the vegetative phase during the winter, and resumes growth in early spring. In Figure 6, both the
smoothed and unsmoothed backscatter time series of the test region show the winter wheat growing
season from 9 October 2016 (DOY 283) to 30 June 2017 (DOY 169). Although the results show that the
unsmoothed VV and VH profiles were complex and fluctuated, the physical structural properties of the
target could explain most of their variations. In addition, the smoothed VV and VH time series based
on the HANTS algorithm did not exhibit strong variations but looked relatively smooth, like NDVI
(Normalized Difference Vegetation Index) from optical remote sensing [15].
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Based on a priori knowledge, winter wheat was planted in early October (around DOY 285) and
went into the overwintering stage around DOY 1 in this case. During these stages (sowing, seedling,
tillering, and overwintering), the winter wheat began to emerge and developed into young plants
above the bare soil of the ground surface. For the unsmoothed backscatter time series, the results
show that large variations occurred in VV and VH before the greening up stage of the winter wheat
(before DOY 49). Previous research has indicated that VH and VV could contain the interaction
between vegetation and the ground caused by stem–ground double scattering [40–42]. VV and VH
were affected mostly by changes in the soil backscatter driven by soil water content and roughness.
This means that rainfall events may explain the increase in the backscatter. At DOY 295 and DOY 1 in
particular, there were two peaks of the unsmoothed time series mainly caused by rainfall and frozen
soils. Vreugdenhil et al. in Austria also observed this phenomenon for winter cereals [28].

For the smoothed backscatter time series, the results showed that there were differences between
the curves of the VV and VH backscatter signals. VV backscatter decreased with the germination
and growth of winter wheat and had a small flat curve before the overwintering period (around
DOY 1), then kept decreasing steadily until the end of the stem extension phase, and increased rapidly
until the harvest season. The minimum of VV occurred around DOY 109, which could be the end of
the booting stage and the start of the heading stage. Although it might seem that the change in VV
was related to the leaf area index (LAI), the emergence of wheatear and the number of stems should
also be considered. Therefore, the canopy structure and the scattering mechanisms of crops mostly
likely drove the changes in VV [43–45]. Furthermore, the VH backscatter time series appeared to be
a wave curve with several peaks and troughs dominated by double-bounce and volume scattering
mechanisms [46,47]. Although the VH backscatter signal profile might seem to have no distinct rule, it
was likely a result of ground and vegetation interaction. For example, during the tillering stage (around
DOY 319 to DOY 1), the increase in VH was most likely caused by an increase in the volume fraction of
the vegetation, while the decrease in VH was driven by frozen soils during the overwintering period.
In addition, a small increase in VH related to the increase in the number of stems was also found
at the greening up stage of the winter wheat (around DOY 49). Hence, the contributions of ground
and vegetation interaction (e.g., double-bounce) and volume scattering mechanisms could lead to the
changes in the VH backscatter.

The differences in the smoothed backscatter time series in the different growth stages of winter
wheat, such as tillering, overwintering, greening up, jointing, booting, and heading provided key
information and the possibility for monitoring phenology. The results indicate that the phenological
metrics of winter wheat could be extracted by analyzing the backscatter time series. In addition,
it should be noted that this study examined only one winter wheat growth cycle and lacks a comparison
with different crop calendars.

4.3. Monitoring of Winter Wheat Phenology

The time series of σd (VH-VV) is shown for the growing season of winter wheat from 9 October
2016 (DOY 283) to 30 June 2017 (DOY 169) in Figure 7a. Clearly, a complete time series of σd consisted
of two peaks and two troughs in an entire winter wheat growing season. While the crop started to
grow slowly from sowing (around DOY 280), a trough occurred at DOY 295, which was likely driven
by a soil roughness change due to rainfall. A steady increase in σd can be observed from the first trough
at DOY 295, which was during the seedling and tillering stage of the winter wheat. The increase in
σd became slow before the winter and then reached the peak visible at DOY 355. This first peak in σd
was likely caused by the tillering of winter wheat. It should be noted that σd started to decrease at
DOY 355 before the overwintering stage (observed at DOY 12). This was likely driven by the slow
growth of winter wheat due to the decrease in air temperature. A trough around DOY 13 and DOY
25 was observed during the overwintering stage and was most likely driven by the cold weather
which retarded development of the crop and further changed the canopy structure. A steady increase
in σd can be seen from DOY 25, which was the beginning of the greening up stage of the winter
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wheat. During the jointing and booting stages, the increase continued and reached its maximum at the
beginning of the heading stage (around DOY 109), mainly due to the increase in canopy saturation
and canopy thickness. Thereafter, σd started to decrease, which was mostly due to the decline in the
leaf area index (LAI) and the change in canopy structure. The decrease was also likely related to the
appearance of the wheat spike. Although some previous research suggested that VH/VV, which we
called σd, should be correlated with vegetation water content and fresh biomass, our results indicated
that σd was more strongly correlated with the canopy structure and vegetation coverage [28,36].
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Figure 7. (a) The σd (VH-VV) time series from 9 October 2016 (DOY 283) to 30 June 2017 (DOY 169).
(b) The change in the slope of the σd time series.

The slope of the σd (VH-VV) time series is also presented in Figure 7b. The results show that there
were some other curve characteristics in the slope of the σd time series which could be considered as
additional information for extracting phenological metrics. For example, the first peak (DOY 331) in the
slope curve was at the tillering stage, which is one of the periods of fastest growth, and is likely a result
of the increase in the number of stems. The maximum value occurred at DOY 61 during the jointing
stage and was most likely caused by changes in vertical structure, such as stem extension. In addition,
the slope curve is mostly negative from DOY 355 to DOY 25, which means that the overwintering
stage faded in and out and lasted longer than expected.
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Table 4 lists the main phenological metrics of the Sentinel-1 backscatter time series. The results
suggest that some of the growth stages of winter wheat, such as seedling, tillering, overwintering,
jointing, and heading, could be identified from σd and its slope value. Although some other growth
stages could not be identified in this case, our study has thrown light on the monitoring of winter
wheat using Sentinel-1 backscatter time series. The results indicate that inflection points both in the σd
time series and in the slope curve could be correlated with phenological metrics. Compared with the
previous studies using optical remote sensing data, there were fewer atmospheric effects (e.g., cloud,
haze) on the C-band SAR data, which would lead to a better and steadier temporal resolution [10,48].
In addition, it should be noted that the phenological metrics based on the analysis of backscatter
time series have shown the main changes in the canopy structure (e.g., vertical structure, vegetation
coverage) which are different than those in previous research based on NDVI or other vegetation
indices [49,50].

Table 4. Phenological metrics of Sentinel-1 backscatter time series.

Stage Observations (DOY) Phenological Metrics

Sowing 280 -
Seedling 288 The first trough in σd, DOY 295

Tillering 317 The first peak in σd and the first peak in the slope of σd,
DOY 355 and DOY 319

Overwintering 12 The second trough in σd and the first trough in the
slope, DOY 13 and DOY 1

Greening up 43 -
Jointing 57 The second peak in the slope of σd, DOY 61
Booting 87 -
Heading 114 The second peak in σd, DOY 109

Flowering 120 -
Milk ripening 144 -

Maturing 154 -

5. Conclusions

In this study, we introduced a methodology to map the winter wheat planting area and further
monitor phenology using Sentinel-1 SAR data, especially in areas lacking optical remote sensing data
due to atmospheric effects such as cloud and haze contamination. This study used a parallelepiped
classifier to map the winter wheat planting area. Using this approach, the representative and pure
winter wheat planting area was extracted using Sentinel-1 SAR data. By comparing this with ground
phenological observations as a priori knowledge, the σd time series and its slope curve derived
from VV and VH backscatter signals were found to be closely related to the seedling, tillering,
overwintering, jointing, and heading stages of winter wheat. Time series analysis demonstrated that
the VV and VH backscatter signals were correlated with the vegetation canopy structure and vegetation
coverage. These findings were achieved without using MODIS or other optical remote sensing data.
The presented research also provides valuable insights into ultimately monitoring phenology using
backscatter time series via a steady and robust approach. Although some other growth stages could not
be identified in this case, it does show the potential for phenological information to be obtained from
Sentinel-1 SAR data. Further studies should focus on applying the method developed by our study to
a larger region of interest and comparing the crop phenology of different planting regions. We hope
more researchers will join us in exploring the application of SAR to agriculture using Sentinel-1 data.
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