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Abstract: Accurate forest above-ground biomass (AGB) mapping is crucial for sustaining forest
management and carbon cycle tracking. The Shuttle Radar Topographic Mission (SRTM) and Sentinel
satellite series offer opportunities for forest AGB monitoring. In this study, predictors filtered from
121 variables from Sentinel-1 synthetic aperture radar (SAR), Sentinal-2 multispectral instrument
(MSI) and SRTM digital elevation model (DEM) data were composed into four groups and evaluated
for their effectiveness in prediction of AGB. Five evaluated algorithms include linear regression such
as stepwise regression (SWR) and geographically weighted regression (GWR); machine learning (ML)
such as artificial neural network (ANN), support vector machine for regression (SVR), and random
forest (RF). The results showed that the RF model used predictors from both the Sentinel series
and SRTM DEM performed the best, based on the independent validation set. The RF model
achieved accuracy with the mean error, mean absolute error, root mean square error, and correlation
coefficient in 1.39, 25.48, 61.11 Mg·ha−1 and 0.9769, respectively. Texture characteristics, reflectance,
vegetation indices, elevation, stream power index, topographic wetness index and surface roughness
were recommended predictors for AGB prediction. Predictor variables were more important than
algorithms for improving the accuracy of AGB estimates. The study demonstrated encouraging
results in the optimal combination of predictors and algorithms for forest AGB mapping, using
openly accessible and fine-resolution data based on RF algorithms.

Keywords: optimal predictors; algorithm comparison; Sentinel-1 SAR; Sentinel-2 MSI; SRTM DEM;
forest AGB mapping

1. Introduction

Forest carbon stocks have a key role in mitigation and adaptation with climate change. A
substantial portion (70–90%) of forest carbon is stored in above-ground biomass (AGB) [1–5]. Forests
absorb large amounts of atmospheric carbon dioxide (CO2) in terrestrial land and soil [6,7]. The spatial
distribution of forest AGB remains inadequately quantified with certain uncertainty, especially when
AGB values are higher than 150 Mg·ha−1 or lower than 40 Mg·ha−1, with large trees and tropical
issues [8,9]. This is particularly true when considering practical difficulties in inventory over broad
geographic scales and complexity of the forest ecosystems [10–12]. Therefore, accurate estimation and
rapid monitoring of forest AGB is recognized as a research challenge.
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Well-known sources for mapping AGB include field-based measurements with allometric
functions and data from passive and active remote sensors [13–15]. In contrast to forest inventories
and Light Detection and Ranging equipment (LiDAR) surveys, satellite images cover larger areas
in a more cost-effective and comparable manner [16,17]. The common approach for the upscaling
of accurate forest inventories or airborne LiDAR-derived AGB estimations were coupling reference
values with satellite data, and then using spatial predictive algorithms to acquire spatially explicit
AGB distributions [18–20]. Progress has been made in mapping forest AGB by optimal combinations
of satellite data-derived predictors and modeling algorithms, based on multisource remote sensing
techniques [21–24]. Those predictive algorithms were divided into two categories, i.e., physical and
empirical regression models, and the latter include conventional regression and machine learning
techniques [25,26]. Founded on physical principles with two main examples of radiative transfer and
geometric optical models, physical models conventionally depend on a number of factors to simulate
canopy reflectance, such as leaf area index, chlorophyll concentration, water and matter contents,
soil reflectance, and bidirectional reflectance distribution function, while those are often not readily
available [27–29]. On contrary, empirical regression techniques require support from a large number of
ground measurements, and they depend on the modeling relationship between spectral signals and
field-measured AGB samples. Common methodologies include stepwise regression (SWR), partial
least squares regression (PLSR), geographically weighted regression (GWR), k-nearest neighbor (KNN),
artificial neural network (ANN), support vector machine for regression (SVR), and random forest
(RF) [30–33]. Most of reported studies employed one method, however, there is lack of comparison of
performances from multiple algorithms.

The recent launch of Sentinel series, e.g., Sentinel-1 synthetic aperture radar (SAR) and
Sentinel-2 multispectral instrument (MSI), provides new effective data for monitoring and mapping of
AGB [34–36]. Sentinel-1 SAR data are available in C-band HH (horizontal transmit-horizontal) + HV
(horizontal transmit-vertical) or VV (vertical transmit- vertical) + VH (vertical transmit-horizontal)
polarizations [37]. Sentinel-2 MSI data include three vegetation red edge, two infrared, visible, and near
infrared bands [38]. The Sentinel series data have been applied in a variety of vegetation studies [39–41].
However, using Sentinel data for forest AGB mapping deserves further exploration. The Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM) were globally consistent and openly
available for providing topographic indices that are helpful for estimating forest biomass [42–44]. Thus,
data mining can be done from those free-access data for forest AGB mapping.

The specific objectives of this study included: (1) determining the best predictors for forest
AGB prediction among four groups of variables, i.e., Sentinel-1 (S1), Sentinel-2 (S2), Sentinel series
(S) including S1 and S2, and combination of S and SRTM DEM (S + S); (2) identifying the most
accurate algorithm for modeling the relationship between field-measured AGB and the above four
groups of predictors among linear regression (SWR and GWR) and machine learning (ANN, SVR
and RF) algorithms; (3) revealing the optimal combination of predictors and algorithms for forest
AGB mapping.

2. Materials and Methods

2.1. Study Site and Field-Measured Above-Ground Biomass

This study area covers 17,481 hectares of forests (Figure 1). The site is located within the
eastern mountainous area of Jilin Province, northeast China. This region has a four-season,
monsoon-influenced, humid continental climate, with an annual average temperature of 3.28 ◦C and
an annual precipitation of 632 mm. Characterized by dense forest cover of the Changbai Mountains,
the major forest types include deciduous broadleaved forest (90.7%) and mixed broadleaf-conifer
forest (6.4%). Typical tree species include Mongolian oak (Quercus spp.), Betula platyphylla (Suk.),
Tilia amurensis (Rupr.), and Fraxinus mandschurica (Rupr.).
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Figure 1. The outline of the study area, sampling sites, and the coverage of Sentinel-1 synthetic 
aperture radar (SAR), Sentinel-2 multispectral instrument (MSI), and Shuttle Radar Topographic 
Mission (SRTM) data. 

The field campaign was carried out in July, 2017. The distribution of sampling plots was 
randomly generated, and non-forest areas were masked out. A total of 1,162 10 m × 10 m plots were 
located and sampled (Figure 1). The plots included 982 for broadleaved deciduous forests, 94 for 
mixed broadleaf-conifer forests, 59 for deciduous-coniferous forests, and 27 for evergreen coniferous 

Figure 1. The outline of the study area, sampling sites, and the coverage of Sentinel-1 synthetic
aperture radar (SAR), Sentinel-2 multispectral instrument (MSI), and Shuttle Radar Topographic
Mission (SRTM) data.

The field campaign was carried out in July, 2017. The distribution of sampling plots was randomly
generated, and non-forest areas were masked out. A total of 1,162 10 m × 10 m plots were located
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and sampled (Figure 1). The plots included 982 for broadleaved deciduous forests, 94 for mixed
broadleaf-conifer forests, 59 for deciduous-coniferous forests, and 27 for evergreen coniferous forests.
Based on allometric equations [45–48], measured diameter at breast height (1.3 m from the ground)
and tree height, field-based forest AGB at each plot was calculated. The forest AGB samples were from
0.67 to 533.60 Mg·ha−1, with the median value being between 103.36 to 143.64 Mg·ha−1 (Figure 2a),
and mainly below 200 Mg·ha−1 with 77.8% (Figure 2b). The 1,162 sampling sites were randomly
divided into training (n = 775) and validation (n = 387) sets (Figure 1) for establishing and examining
the performance of the models.
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Figure 2. The values of measured above-ground biomass (AGB). (a) Field plot profiles of AGB in the
study site from Plot 1 to 1,162; (b) Components of AGB.

2.2. Satellite Data Pre-Processing and Derived Variables

Sentinel series images were downloaded from the Copernicus Sentinel Scientific Data Hub (https:
//scihub.copernicus.eu/). The data included one Sentinel-1 C-band SAR VH and VV polarizations,
and one Sentinel-2 MSI image. The SAR data were at a high-resolution (HR) Level-1 ground range
detected (GRD) processing level with a pixel size of 10 m [37]. The Sentinel-2 Level 1C data were
top-of-atmosphere reflectance, and they were processed for orthorectification and registration [38].
The MSI data had 13 spectral bands and were in 10 m (bands 2–4, 8), 20 m (band 5–7, 8a, 11–12),
and 60 m (band 1, 9–10) spatial resolutions, respectively [38]. SRTM DEM data at a 30 m resolution
were obtained from USGS were acquired (https://earthexplorer.usgs.gov/).

The procedures were illustrated in Figure 3. SNAP software (version 6.0, European Space Agency)
was used to pre-process the Sentinel-1 and Sentinel-2 images. The steps based on the Sentinel-1 Toolbox
of acquiring an accurate radar intensity backscatter coefficient with a map projection from the SAR
images consisted of image calibration, speckle reduction using the Refined Lee Filter, and terrain
correction by the Range-Doppler [36,49]. A bottom-of-atmosphere-corrected reflectance image was
atmospherically corrected and processed from the Sentinel-2 Level 1C data by the radiative transfer
model-based SEN2COR atmospheric correction processor (version 2.5.5, European Space Agency).
The pre-processed Sentinel series images and the SRTM DEM data were registered into UTM Zone 52
WGS84 projection, and resampled to 10 m pixel sizes.

Uncertainties for the estimated AGB have been considered an important issue associated
with modeling, based on remote sensing-derived variables [50,51]. For example, reported studies
suggested that improved spatial resolution from the Sentinel series helped to reduce the uncertainty,
and improved the accuracy of AGB mapping at finer scale [52,53]. Promising results demonstrated
that texture measurement of SAR data with higher spatial resolution could improve biomass
estimation [54,55]. However, uncertainties in implementing the texture measurement for biomass
estimation were reported, due to the selection of window size [56,57]. Vegetation indices and
biophysical variables are strongly related to reflectance, but they showed uncertainties for the estimated
AGB in spectral sensitivity [58,59]. The reported study suggested that the red edge bands of Sentinel-2
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(band 5, 6, 7, and 8A) were sensitive to phenological dynamics in vegetation, and that they were
helpful for reducing the uncertainty [60,61]. In this study, 121 variables, including those that were
suggested to be helpful in reducing uncertainties in forest AGB estimation, were selected and extracted
for comparison evaluation [48,54–57,60–64]. A total of 109 variables were derived from the Sentinel
series images, including 83 from Sentinel-1 SAR and 26 from Sentinel-2 MSI, and 12 topographic
indices from SRTM DEM were also included (Table 1). The variables derived from the Sentinel series
were conducted in the Sentinel-1 and Sentinel-2 Toolboxes of SNAP, and that from SRTM DEM were
calculated in Spatial Analyst of ArcGIS (Figure 3). The biophysical variables were also calculated
in SNAP from their biophysical processor by the reflectance of bands 3–8A, band 11, band 12 and
geometric parameters, which used a neural network algorithm based on the PROSAIL radiative
transfer model [65,66].
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Table 1. Remote sensing indices from the Sentinel series and SRTM digital elevation model (DEM) data for AGB mapping.

Source Image Relevant Variables Description

Sentinel-1
10 m resolution

Polarization
VV Vertical transmit-vertical channel
VH Vertical transmit-horizontal channel

V/H 1 VV/VH

Texture 2

VV/VH_CON5/7/9/11 Contrast
VV/VH_DIS5/7/9/11 Dissimilarity

VV/VH_HOM5/7/9/11 Homogeneity
VV/VH_ASM5/7/9/11 Angular second moment
VV/VH_ENE5/7/9/11 Energy
VV/VH_MAX5/7/9/11 Maximum probability
VV/VH_ENT5/7/9/11 Entropy
VV/VH_MEA5/7/9/11 Gray-level co-occurrence matrix (GLCM) mean
VV/VH_VAR5/7/9/11 GLCM variance
VV/VH_COR5/7/9/11 GLCM correlation

Sentinel-2
10 m resolution

Multispectral bands

B2 Blue, 490 nm
B3 Green, 560 nm
B4 Red, 665 nm
B5 Red edge, 705 nm
B6 Red edge, 749 nm
B7 Red edge, 783 nm
B8 Near infrared, 842 nm
B8a Near infrared, 865 nm
B11 Short-wave infrared, 1610 nm
B12 Short-wave infrared, 2190 nm

Vegetation indices 3

NDVI Normalized difference vegetation index, (B8 − B4)/(B8 + B4)
NDI45 Normalized difference vegetation index with bands 4 and 5, (B5 − B4)/(B5 + B4)
IRECI Inverted red-edge chlorophyll index, (B7 − B4)/(B5/B6)

TNDVI Transformed normalized difference vegetation index, [(B8 − B4)/(B8 + B4) + 0.5]1/2
TSAVI Transformed soil adjusted vegetation index, 0.5 × (B8 − 0.5 × B4 − 0.5)/(0.5 × B8 + B4 − 0.15)

GNDVI Green normalized Difference vegetation index, (B7 − B3)/(B7 + B3)
ARVI Atmospherically resistant vegetation index, [B8 − (2 × B4 − B2)]/[B8 + (2 × B4 − B2)]
MTCI Medium-resolution imaging spectrometer terrestrial chlorophyll index, (B6 − B5)/(B5 − B4)

MCARI Modified chlorophyll absorption ratio index, [(B5 − B4) − 0.2 × (B5 − B3)] × (B5 − B4)
S2REP Sentinel-2 red-edge position index, 705 + 35 × [(B4 + B7)/2 − B5] × (B6 − B5)
PSSRa Pigment specific simple ratio chlorophyll index, B7/B4

Vegetation biophysical
variables 3

LAI Leaf area index
FVC Fraction of vegetation cover

FAPAR Fraction of absorbed photosynthetically active radiation
Cab Chlorophyll content in the leaf
Cwc Canopy water content

SRTM DEM
30 m resolution

Elevation H Elevation

First order micro
topographic factors 4–8

β Slope
sinα Sine of aspect, the extent of the location toward the east
cosα Cosine of aspect, the extent of the location toward the north

Second order micro
topographic factors 4–8

sos Slope of slope, the curvature of the surface
soa Slope of aspect, the curvature of the contour line
Cv Profile curvature
Ch Plan curvature

Hybrid macro topographic
factors 4–8

RLD Relief of land surface, Hmax−Hmin
M Surface roughness

TWI Topographic wetness index, Ln[Ac9/tanβ],
SPI Stream power index, Ln[Ac × tanβ × 100]

1 Berninger et al. (2018); Bourgoin et al. (2018) [15,67]; 2 Gray-level co-occurrence matrix (GLCM) of four size windows (i.e., 5 × 5, 7 × 7, 9 × 9, 11 × 11), Haralick et al. (1973) [68]; 3 SNAP
(2016) [63]; 4 Jacob (1999) [69]; 5 Murdock and Dodds (2007) [70]; 6 Tang and Yang (2013) [62]; 7 Hou et al. (2014) [71]; 8 Xu (2015) [72]; 9 Ac is the catchment area directed to the vertical flow.
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2.3. Modeling Algorithms and Evaluation

Firstly, a pairwise Pearson’s product-moment correlation analysis was operated to determine
the relationship between field-based AGB and multisensor-derived indices, and collinearity among
variables. Then the variance inflation factor (VIF) was calculated to delete the redundancy among
variables (Figure 3). Variables that were highly correlated (r ≥ 0.8), and that had high VIF (VIF ≥ 10)
in regression analysis were excluded from predictors of the modeling [48,73]. Those analyses were
performed using SPSS (version 21.0, IBM, Armonk, NY, USA).

Sentinel series and SRTM DEM data were composed into four variable groups, including S1,
S2, S, and S + S (Figure 3). The first group of variables (S1) was related to AGB with Sentinel-1 SAR
polarization channels (i.e., VH and VV) and texture characteristics in four window sizes. The second
group of variables (S2) was related AGB with Sentinel-2 multispectral bands, vegetation indices, and
biophysical variables. The third group of variables was a combination of S1 and S2. The fourth group
of variables used the factors of the combination of S1, S2, and topographic indices derived from
SRTM DEM.

The five tested algorithms were listed in Table 2. Linear regression algorithms included SWR
and GWR, which were implemented in SPSS and GWR software (version 4.0, Ritsumeikan University,
Kyoto, Japan), respectively. SWR is a global fitting regression model. SWR selects vital variables
automatically. The contribution of variables to SWR can be determined by the coefficients [74].
GWR estimates individual parameters for each estimation location as a spatial model, the closer to the
location of an observation, the greater the weight in a GWR model [75].

Table 2. Linear regression and machine learning algorithms used in the study. The algorithms are
available from SPSS, GWR, and WEKA software [76–78].

Algorithms Software Key Description Necessary Parameters

Stepwise regression
(SWR) SPSS Linear Regression in

Analyze Stepwise method

Geographically weighted
regression (GWR) GWR Geographically

Weighted Regression
Model type, Kernel type, Bandwidth

selection method and Selection criteria

Artificial neural network
(ANN)

WEKA

Multilayer Perceptron in
Functions,

Backpropagation to
classify instances

Hidden layers, Learning rate, Momentum
and Training time

Support vector machine
for regression (SVR)

SMOreg in Functions,
Support vector machine

for regression

C (the regularization parameter), Kernel
and its σ (the bandwidth parameter),

Regoptimizer (the learning algorithm)

Random Forest (RF)
Random Forest in Trees,
Construction a forest of

random trees

Numfeatures (the number of randomly
selected predictor

variables at each node), Numiterations (the
number of trees to grow in the forest)

Machine learning algorithms were modeled in WEKA software (version 3.8, The University
of Waikato, Hamilton, NZ). The ANN is a multi-layer perception neural network. Its architecture
consists of input, hidden, and output layers, along with interconnection weights characterizing the
connection strength. The algorithm takes the back-propagation learning rule to minimize the mean
square error between the desired target and the actual output vectors [79]. The initial weights are
assigned randomly, and when developing the network, the interconnection weights are adjusted to
minimize the prediction error. SVR can construct an optimal hyperplane by projecting the data onto a
new hyperspace based on means of kernel functions. The hyperplane can fit data with a modeling
function that minimizes empirical risk and complexity when representing non-linear patterns [80].

RF combines bagging with random variable selections at each node to iteratively generate a large
group of classification and regression trees. Every node in trees is a condition on a single feature,
designed to split the dataset into two. Impurity is a measure that is based on the locally optimal
condition that is chosen. For regression trees, it is variance. Thus, when training a tree, it can be
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computed to learn how much each feature decreases the weighted impurity in a tree. For a forest,
the impurity decrease from each feature can be averaged, and the features are ranked according to
this measure. In other words, the attribute importance in RF algorithms were calculated based on the
mean decrease variance. The classification output represents an average from the whole ensemble for
regression. Hence, it achieves a more robust result than a single classification tree that is produced
by a single model run [81].The performances of SWR, GWR, ANN, SVR, and RF algorithms of each
variables group were tested and compared, based on the root mean squared error (RMSE, Equation (1)),
mean absolute error (MAE, Equation (2)), mean error (ME, Equation (3)), and correlation coefficient
between the measured and predicted AGB (r, Equation (4)) [36,82]. The algorithm with the highest
accuracy was selected for use in the predictive mapping of the AGB distribution in each group of
variables. Four predictive maps were produced, which were derived from S1, S2, S, and S + S variables.

RMSE =

√√√√ n

∑
1

(yi ∑ ŷi)
2

n
(1)

MAE =
n

∑
1

|yi − ŷi|
n

(2)

ME =
n

∑
1

(yi − ŷi)

n
(3)

r =

n
∑

i=1
(yi − y)(ŷi − ŷ)√

n
∑

i=1
(yi − y)

√
n
∑

i=1
(ŷi − ŷ)

(4)

where ŷi is the estimated AGB value of each model, yi is the measured AGB value, and n is 387 in this
study. The RMSE, MAE, and ME should be as small as possible, while r should be larger.

3. Results

3.1. Relationship between Field-Measured Biomass with Sentinel-Based and Topographical Variables

Among the S1 variables, 54 were significantly related to forest AGB (p < 0.05), including two
backscatter values (VV, VH), four window sizes of VH_MEA, VH_VAR, VH_COR, and all 10 texture
variables of VV. The backscatter values were positively related to AGB. With the growth of the window
size, the r values of those 13 texture variables increased. Except for four sizes of VV_CON, VV_DIS
and VV_ENT were negatively related to AGB, and the other 40 texture variables showed positive
correlations. In other words, increasing the smoothness and the order of the VV backscatter indicated
the decrease of the forest AGB. The top five AGB-related S1 variables were VV_ASM11, VV_ENE11,
VV_MAX11, VV_ENT11, and VV_HOM11.

As for S2, 21 variables were significantly related to forest AGB, excluding B5, 12, TSAVI, S2REP,
and Cwc. The reflectance of B2–B4 were negatively related to AGB, while the other 18 variables
showed the positive correlation. The reflectance of B2, NDI45, PSSRa, MCARI, and GNDVI displayed
the strongest correlation with AGB. The vegetation indices that were calculated and synthesized by
characteristic bands of S2 to monitor the chlorophyll of the vegetation were more distinguished and
important for predicting forest AGB.

There were four topographical variables, i.e., H, M, TWI, and SPI, that obtained significant
correlation with forest AGB, while impacts from the other eight factors were marginal. Elevation
and wetness derived from SRTM DEM showed a positive influence on the increase of AGB; however,
the surface roughness was negative. Hybrid macro-topographic indicators, as well as elevation,
were more useful than other variables from SRTM DEM.
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Above all, 79 variables acquired from Sl, S2, and SRTM DEM explained the valid information of
forest AGB. Based on the average response of the entire samples, elevation, the texture characteristics
of the VV channel in the 11×11-pixel window size, and the vegetation indices were comparatively
vital for the forest AGB prediction.

3.2. Modeling Forest AGB

3.2.1. Predictors Selection and Descriptive Statistics

Based on the result from Section 3.1, 42 variables that had p values for the correlation analysis
with AGB were above 0.05 were excluded. Then, 64 variables that had r values of the correlation
analysis among predictors above 0.8 were disposed from the remaining 79 variables. Specifically,
r values among VH_MEA and VH_VAR of four window sizes, as well as VH, were above 0.8,
so that VH_MEA11 with the highest r values of the correlation analysis with AGB was chosen as
a predictor. Similarly, VH_COR11 was chosen from VH_COR of four window sizes, then VV_DIS11

was selected from VV_CON and VV_DIS of four window sizes, and VV_ASM11 was selected from
VV_HOM5/7/9/11, VV_ASM5/7/9/11, VV_ENE5/7/9/11, VV_MAX5/7/9/11 and VV_ENT5/7/9/11, while
VV_VAR9 was elected from VV_MEA5/7/9/11, VV_VAR5/7/9/11 and VV_COR5/7/9/11. B2 was selected
rather than B3, B4, NDI45, and PSSRa, and B6 was chosen on behalf of B7, B8, B8A, IRECI, LAI,
FVC, FAPAR, and Cab. The GDNVI was selected, on behalf of NDVI, TNDVI, and ARVI. As for the
topographical variables, SPI was chosen rather than TWI. Among the remaining 15 variables, B6 and
GNDVI, whose VIF exceeded the threshold of 10 were deleted. The predictors involved in modeling
were the following 13 shown in Table 3. Their r values, which represent the simple linear relationship
with AGB, were relatively low. It was revealed that combing predictors from multiple sources and
modeling algorithms were necessary.

Table 3. Descriptive statistics of field-measured forest AGB, Sentinel-based, and topographical
predictors.

Mean Median SD 2 CV 3

(%)
Kurtosis Skewness Min Max r

AGBall
1 136.90 121.57 100.07 73 0.49 0.92 0.67 533.60 1

AGBt
1 132.51 117.85 97.92 74 0.86 0.99 2.88 533.60 /

AGBv
1 145.69 127.83 103.81 71 −0.07 0.77 0.67 433.24 /

VV 0.17 0.14 0.11 65 18.20 3.18 0.01 1.21 0.06 *

VV_VAR9 1894.57 1922.00 136.21 7 90.72 −8.58 9.21 1922.00 0.14 **

VV_DIS11 0.46 0.00 1.84 402 62.39 7.09 0.00 25.40 −0.15 **

VV_ASM11 3.52 4.00 1.04 30 3.26 −2.14 0.02 4.00 0.20 **

VH_MEA11 31.34 28.30 18.03 58 –1.24 0.25 0.00 62.00 0.11 **

VH_COR11 0.91 0.95 0.11 12 11.70 −2.80 0.00 1.00 0.19 **

B2 0.04 0.04 0.01 17 6.18 1.67 0.02 0.08 −0.20 **

B11 0.17 0.17 0.02 11 9.24 −0.70 0.03 0.26 0.08 *

MTCI 4.48 4.61 0.80 18 15.59 −1.43 –2.01 11.93 0.07 *

MCARI 0.11 0.11 0.02 22 2.13 −0.51 0.01 0.20 0.16 **

H 670.10 654.00 188.87 28 −0.70 0.39 339.00 1187.00 0.34 **

M 1.03 1.03 0.03 3 5.47 1.77 1.00 1.24 −0.07 *

SPI 3.79 4.18 2.77 73 −0.19 0.15 0.00 13.45 0.06 *

1 AGBall, AGBt, and AGBv are the whole, model training, and model validation biomass samples, respectively.
2 SD means the standard deviation. 3 CV represents the coefficient of variation, which is defined as the ratio of the
standard deviation to the mean. *denotes significance with a p-value of the t-test being below 0.05; ** denotes strong
significance with a p-value below 0.01.

Table 3 displays the basic statistics of the measured AGB and the multiple remote sensor predictors
used as explanatory variables. The AGB of all the samples varied from 0.67 to 533.60 Mg·ha−1,
with a standard deviation and coefficient of variation (CV) of 100.07 and 0.73, respectively, which
indicated moderate variability. For the explanatory variables, the CV of surface roughness was 0.03,
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which showed the least variability. The CV of VV_DIS11, SPI, VV, and VH_MEA11 were 4.02, 0.73,
0.65, and 0.58, indicating a stronger variability than the other predictors, respectively. The kurtosis
of AGB was 0.49, and the skewness was 0.92, indicating that the AGB data had an approximately
normal distribution.

3.2.2. Linear Regression

The four SWR models automated the selection of the best explanatory variables based on different
predictors groups (Table 4). According to the formula and the p-values of the F-test, the four SWR
models were strongly significant, while the factors influencing forest AGB varied. Specifically,
VV_ASM11 and VH_COR11 were factors of forest AGB based on S1 predictors, and their impacts were
significantly active, which was consistent with the above correlation analysis. B2 and B11 represented
S2 indices for predicting AGB and explaining its variation significant influence. In accordance with
adjusted R2, AGB predicted by the SWR model based on S2 fit the measured AGB better that that based
on S1. When combining S1 and S2, MTCI became much more important by replacing VH_COR11,
and the effect of B2 turned out to be unclear, due to the insignificance of its coefficient. In regard to the
S+S variables, all four predictors from S1 and S2 models were retained. Among three predictors from
SRTM DEM, only elevation showed a significant impact. Overall, VV_ASM11, B2, B11, and H were
relatively essential for AGB modeling, based on the SWR algorithm, and the SWR model based on
predictors from S + S explained more of the information on forest AGB then the other three, on the
basis of the highest adjusted R2.

Table 4. Summary of AGB models by SWR.

Group Formula p-Value of F-Test Adjusted R2

S1 AGB = 12.589 ** × VV_ASM11 + 85.359 * ×
VH_COR11 + 14.621 <0.01 0.042

S2 AGB = −3801.981 ** × B2 + 678.913 ** × B11
+ 155.048 ** <0.01 0.053

S AGB = 15.361 × VV_ASM11 ** − 3927.917 ** × B2 +
548.177 × B11 ** − 8.468 *×MTCI + 166.187 ** <0.01 0.078

S + S
AGB = 6.335 × VV_ASM11 + 82.607 * × VH_COR11 +

1582.612 * × B2 + 309.763 * × B11 + 0.215 **×H −
273.557 ** ×M + 2.563 ** × SPI + 57.209

<0.01 0.158

* denotes significance with a p-value of t-test below 0.05; ** denotes strong significance with a p-value below 0.01.

The GWR models were the Gaussian approach, where the weight function was an adaptive
Gaussian kernel. The models found the optimal bandwidth by using a golden section search and
the corrected Akaike information criterion (AICc, small sample bias corrected AIC). The GWR was a
local regression method whose parameters in the formula varied across the study area. The top three
predictors with the largest absolute mean values of coefficients in each GWR model were recorded
in Table 5. B2 and B11 were relatively important in GWR modeling for predicting forest AGB in the
study area. According to the values of the adjusted R2 of four models, predictors from S2 were more
influential than that from S1 on forest AGB prediction. However, the effective information decreased
when S1 variables or topographic indices were added, as indicated by the lowest value of AICc of the
S2 model, among the four.

To sum up, both global and local linear regression algorithms indicated that predictors from
S2 performed better than those from S1. Combining all of the factors from S1, S2, and SRTM DEM
improved the ability of the linear regression models to predict forest AGB.
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Table 5. Summary of AGB models by GWR.

Group Top Three Ranked Predictors of Absolute
Mean Values of Coefficients Bandwidth Adjusted R2 AICc

S1 VH_COR11, VV, VV_ASM11 88.72 0.302 13618.33
S2 B11, B2, MCARI 50.82 0.336 13566.47
S B11, B2, MCARI 88.83 0.341 13572.94

S+S B2, B11, M 80.29 0.351 13578.47

3.2.3. Machine Learning Algorithms

The necessary parameters of machine learning models are shown in Table 6. The optimized ANN
architecture of the S1 model used 13 input nodes in the input layer, six nodes in the hidden layer with
the unipolar sigmoid as the transfer function, and one node in the output layer (i.e., 13-16-1). Using
the Levenberg–Marquardt learning algorithm, the best learning rate, momentum, and training time
obtained were determined to be 0.1, 0.2, and 500, respectively. Likewise, the other three ANN models
were built with parameters in Table 6. As for the SVR models, using the SMO (sequential minimal
optimization) algorithm with Shevade et al. [83] and the RBF (radial basis function) kernel, the best
parameters for C and σ that were obtained were both five and five, respectively. With a tree number of
1000, and feature numbers of four, two, five, and eight, the RF models based on S1, S2, S, and S+S were
acquired, respectively.

Table 6. Summary of AGB models by ANN, SVR and RF.

ANN SVR RF

Group Learning
Rate Momentum Training

Time
Hidden
Layers C σ Features Tree

S1 0.1 0.2 500 6 5 5 4 1000
S2 0.2 0.01 500 4 5 5 2 1000
S 0.1 0.1 500 7 5 5 5 1000

S+S 0.3 0.2 500 8 5 5 8 1000

The attribute importance for the four RF models was calculated based on the mean decrease
variance, and illustrated in Figure 4. In detail, VH_COR11 was the most important factor of the
RF model based on the S1 predictors, which was in accordance with the linear regression models.
In the S2 RF model, MCARI was the most needed predictor, which was different to the linear models.
When integrating S1 and S2 to build the RF models, the attribute importance ranking of the S1
variables changed a little, which was that VH_MEA11 turned out to be more important than VV_ASM11.
While the attribute importance ranking of the S2 variables changed, B2 surpassed MTCI and MCARI,
and became the primary predictor. Additionally, predictors from S2 were more crucial than those from
S1, due to the higher importance in the S model. After adding topographic indices to the S RF model,
the attribute importance ranking of factors from S1 remained the same, while that from S2 changed,
where MTCI was shown to be the most important among the S2 predictors. Elevation was the most
essential factor, followed by MTCI and SPI. In short, predictors from S2 were more vital than that from
S1, which was also found by linear models, and elevation from SRTM DEM contributed to a lot of RF
modeling for predicting forest AGB.
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3.3. Models Assessment and Biomass Mapping.

Calculated by an independent validation dataset, the accuracies of the five algorithms were
depicted in Figure 5. All five S1 models underestimated AGB, except for the ANN model. The S1
RF model, with the lowest RMSE (19.90 Mg·ha−1), MAE (30.31 Mg·ha−1), and ME (2.65 Mg·ha−1)
as well as the highest r (0.9781), was an algorithm chosen to predict forest AGB based on S1 indices.
The S2 models all underestimated the AGB. The RF algorithm also was considered the optimal one,
where the RMSE, MAE, ME, and r were 21.37, 28.61, 1.37 Mg·ha−1, and 0.9715, respectively. Coupling
the S1 and S2 explanatory variables, the accuracies of all the models increased, and the RF was also
the most accurate algorithm with the lowest RMSE (12.51 Mg·ha−1), MAE (27.15 Mg·ha−1), and ME
(1.15 Mg·ha−1), as well as the highest r (0.9790). The models combining the explanatory variables from
S1, S2, and SRTM DEM all showed the tendency for underestimation. Although the ANN algorithm
obtained the lowest RMSE and ME among the S + S models, its value of ME was relatively high, and r
was low. Thus, the RF model was selected again with the lowest MAE (25.48 Mg·ha−1) and the highest
r (0.9769), where the RMSE and ME were 61.11 and 1.39 Mg·ha−1, respectively. In summary, all of
the models underestimated forest AGB except for the ANN one based on the S1 factors, and four RF
algorithms were selected to map forest AGB distribution.

The predicted values of forest AGB of the study area ranged from 5.91 to 442.82 Mg·ha−1 (Figure 6).
For a better comparison among the four models, the values were divided into seven levels by intervals
of measured AGB values in Figure 2a. All maps showed that the southern part of the study area was a
high AGB region, with values ranging from 208.06 to 442.82 Mg·ha−1. Low AGB (5.91 to 53.37 Mg·ha−1)
zones were located close to non-forest areas. Comparing the predicted and measured AGB (Figure 2),
the RF model built by multisource explanatory variables from S1, S2, and SRTM DEM performed
the best (Figure 6a). The map produced from the RF model based on six S1 predictors displayed the
fragmentation of AGB, where spatial distribution was rather random (Figure 6d). Although there
were only four predictors from S2, they demonstrated better performance compared to S1 factors on
forest AGB mapping by the RF algorithm (Figure 6c), but it was still difficult to predict high values of
forest AGB (238–533.06 Mg·ha−1, shown in Figure 2a). The distribution of forest AGB predicted by
the RF model using S1 and S2 predictors (Figure 6b) was similar with that by the S2 RF model. This S
model made progress in high values of forest AGB; however, it overestimated low values of AGB
(0.67–29.83 Mg·ha−1, shown in Figure 2a). It had a great improvement on the accuracy of forest AGB
mapping, where topographic indices from SRTM DEM were joined to the explanatory variables of the
RF model (Figure 6a). In detail, the distribution of the predicted values of forest AGB by the Sentinel
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series, combined with the SRTM DEM model depicted in Figure 6a, was relatively in keeping with the
field data (Figure 2).
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4. Discussion

4.1. Sentinel-Based and Topographical Predictors of Forest AGB Mapping

This study revealed that the relationships of the measured AGB with Sentinel-based and
topographical predictors varied by modeling the algorithms according to parameters from the SWR
and GWR formulas, and the attribute importance from RF models. VV_ASM11 and VH_COR11 were
the most important variables among the S1 variables for explaining the observed spatial patterns
of forest AGB both in the linear global and local regression, and this was also shown in the RF
models. Texture features were usually calculated for forest AGB mapping, with one fixed window
size [15,67,84]. It was helpful to note that the texture characteristics of the Sentinel SAR backscatters
with a larger window size (i.e., 11 × 11) achieved a greater potential for mapping forest AGB, based
on the correlation analysis. The backscatter coefficients of S1 and their calculation were useful as
common predictors [36,85,86]. The study indicated that direct use of the backscatter coefficients from
the SAR C band might not be appropriate. The lack of penetrability could affect biomass information
retrieval. Meanwhile, the variation and disorder of backscatters showed in texture might be caused
by vegetation diversity and density. These texture characteristics denoted a significant relationship
with AGB. In other words, vegetation diversity and density was reflected as variation of backscatter
texture, resulting in higher forest AGB. Some of the S2 variables showed a significant relationship
with forest AGB [87–89]. This indicated that the selection of predictors were necessary for S2-based
prediction. Owing to the acquisition from the band calculation, two vegetation indices were deleted
in the S2 SWR model, while they showed a greater impact on GWR and RF modeling of forest AGB.
It revealed that variables obtained from the operation of S2 multispectral bands, especially vegetation
indices representing chlorophyll characteristics, were more efficient for complex regression algorithms,
whereas the reflectance of multispectral bands as the direct information of S2 were more important
for simple global linear modeling. However, collinearity and redundancy of the predictors decreased
the effective information of models, and this pre-processing for modeling needs to be improved in
future work. It was supposed that predictors were obtained by synthesizing indices such as principal
component analysis, rather than simply deleting variables with lower correlation with forest AGB.

The strongest related predictor was elevation, as shown in Table 3 and Figure 4. The vital
role of topography was also reported in other studies by influencing water and sunlight supply
and storage [36,44,64]. As a proxy for the potential soil–water storage for vegetation [90], TWI was
reported as being an important factor for estimating forest AGB, using nonlinear regression models [64].
However in this study, it was replaced by SPI, which was more relative to measured AGB. SPI was the
third important predictor of the RF model (Figure 4), after H and MTCI, and it is also listed in the SWR
model. It demonstrated that SPI was an essential predictor for forest AGB mapping. Due to the close
correlation between AGB and TWI and SPI, it was proposed that both indices should be tested in other
geographical settings that are different than this study. Surface roughness (M) was also a vital predictor
in this study, both in linear regression and machine learning models, which had a greater influence
than S1 predictors. Predictors from S2 were comparatively primary for forest AGB prediction. Factors
from SRTM DEM were effective compared to that from S1 in complex AGB modeling, while S1 texture
features were useful in simple AGB models. It is suggested that texture characteristics measured in an
11×11-pixel window of S1, and the reflectance and vegetation indices of S2, as well as elevation, SPI,
TWI, and M be recommended predictors for forest AGB mapping.

4.2. Optimal Combination of Predictors and Modeling Algorithms

Based on the predictor selection in Section 3.2.1, the best predictors for forest AGB mapping were
determined to be those listed in Table 3, which belong to the four variable groups, S1, S2, S and S +
S. In contrast, the optimal modeling algorithm for predictors from the four variable groups were all
the RF algorithm. This study revealed the powerful capacity of the RF algorithm to predict forest
AGB, as in other reported studies [88,91–93]. The SVR algorithm, however, performed the worst for
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S1 variables, while the SWR algorithm performed the worst for S2 and S, as well as S+S modeling.
Different from other studies [29,33,91], the performances of linear regression algorithms in this research
were closer to that by machine learning. The improvement might be from the contribution of the
localized spatial scale of the study, and the density of representative field samples of forest AGB. It was
demonstrated that SVR algorithm was suitable for limited samples prediction, in agreement with other
studies [25,48,94]. Figure 5 indicated that predictor variables were more important than algorithms for
remote sensing-based estimations of forest AGB. The linear regression depended more on predictors
than on machine learning algorithms.

L- and P-band SAR, as well as LiDAR were crucial for prediction of high forest AGB values.
Although C band SAR and optical multispectral have demonstrated the saturation for detecting the
sensibility of forest AGB, the Sentinel series, and SRTM DEM in fine-resolution with full coverage
provided critical information for applications in comparison to forest AGB estimation.

5. Conclusions

Predictors from Sentinel-1 C band SAR, Sentinel-2 MSI, and SRTM DEM were extracted with a
resolution of 10 m and divided into four variable groups. Five modeling algorithms, including SWR
(a global linear regression), GWR (a local linear model), ANN, SVR, and RF, were built using 775
field measurements, and tested by 387 independent field samples. The results demonstrated that the
RF algorithm was the best for predicting and mapping spatial patterns of AGB, with all groups of
predictors in the study site. It also proposed that for texture characteristics in an 11 × 11-pixel window
of Sentinel-1 SAR, the reflectance and vegetation indices of Sentinel-2 MSI, as well as elevation, SPI,
TWI, and M from SRTM DEM were the vital predictors for explaining the observed variability of AGB.
Sentinel-2 MSI were considered primary, and SRTM DEM were more important than Sentinel-1 SAR
in complex AGB modeling, while texture features of SAR were useful in simple models. Predictor
variables were more important than algorithms for improving the accuracy of AGB estimates. Machine
learning models were less dependent on predictors than linear regression. Overall, the comparison
assessment of this study provided a reference for the selection of combinations of predictors and
algorithms for forest AGB modeling.
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