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Abstract: The sensitivity of synthetic aperture radar (SAR) coherence has been applied in delineating
the boundaries of alpine glaciers because it is nearly unaffected by cloud coverage and can collect
data day and night. However, very limited work with application of SAR data has been performed
for the alpine glaciers in the Qinghai-Tibetan Plateau (QTP) of China. In this study, we attempted
to investigate the change of coherence level in alpine glacier zone and access the glacier boundaries
in the QTP using time series of Sentinel-1A SAR images. The DaDongkemadi Glacier (DDG) in
the central QTP was selected as the study area with land cover mainly classified into wet snow,
ice, river outwash and soil land. We utilized 45 Sentinel-1A C-band SAR images collected during
October of 2014 through January of 2018 over the DDG to generate time series of interferometric
coherence maps, and to further extract the DDG boundaries. Based on the spatiotemporal analysis
of coherence values in the selected sampling areas, we first determined the threshold as 0.7 for
distinguishing among different ground targets and then extracted the DDG boundaries through
threshold-based segmentation and edge detection. The validation was performed by comparing the
DDG boundaries extracted from the coherence maps with those extracted from the Sentinel-2B optical
image. The testing results show that the wet snow and ice present a relatively low level of coherence
(about 0.5), while the river outwash and the soil land present a higher level of coherence (0.8–1.0).
It was found that the coherence maps spanning between June and September (i.e., the glacier ablation
period) are the most suitable for identifying the snow- and ice-covered areas. When compared
with the boundary detected using optical image, the mean value of Jaccard similarity coefficient
for the total areas within the DDG boundaries derived from the coherence maps selected around
July, August and September reached up to 0.9010. In contrast, the mean value from the coherence
maps selected around December was relatively lower (0.8862). However, the coherence maps around
December were the most suitable for distinguishing the ice from the river outwash around the
DDG terminus, as the river outwash areas could hardly be differentiated from the ice-covered areas
from June through September. The correlation analysis performed by using the meteorological data
(i.e., air temperature and precipitation records) suggests that the air temperature and precipitation
have a more significant influence on the coherence level of the ice and river outwash than the wet
snow and soil land. The proposed method, applied efficiently in this study, shows the potential of
multi-temporal coherence estimation from the Sentinel-1A mission to access the boundaries of alpine
glaciers on a larger scale in the QTP.

Remote Sens. 2019, 11, 392; doi:10.3390/rs11040392 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-7285-5425
http://dx.doi.org/10.3390/rs11040392
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/11/4/392?type=check_update&version=2


Remote Sens. 2019, 11, 392 2 of 25

Keywords: alpine glacier boundary; multi-temporal SAR coherence estimation; Sentinel-1A;
DaDongkemadi Glacier; Qinghai-Tibetan Plateau

1. Introduction

Glaciers are the indicator of climate change [1–3]. The Qinghai-Tibetan Plateau (QTP) of China
has the largest number of alpine glaciers in the middle and low latitude region. Compared to the
polar ice caps, alpine glaciers in the QTP (characterized with steeper landform and smaller area) have
been more sensitive to climate change in recent years [4]. The snow/ice melting in the QTP is also
the main agriculture irrigation and water supply sources in populated regions of South and Central
Asia [5–7]. Measurement of mass balance (MB) on the glacier surface is crucial for investigating the
interaction between glaciers and climate change and understanding the melt processes in the QTP [8,9].
MB on glacier surface is commonly calculated by integrating the products of surface ablation and
accumulation from in-situ measurements or surface elevation determined using satellite altimetry over
the glacier surface, thus requiring the accuracy knowledge of glacier boundaries [10–12].

Satellite-based optical sensors, e.g., the multi-spectral sensors onboard Landsat satellites and the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for the Terra Satellite
Earth Observing System, have provided large datasets for tracking the glacier boundaries [13,14].
The methods such as the supervised classification and the band ratios with use of optical satellite images
have been applied to provide visible interpretation of glacier extents [15–18]. However, these methods
are generally vulnerable to cloud condition at image acquisition time. As cloud coverage is quite
common in the QTP, alpine glacier investigation in the QTP using optical images is seriously hindered.

In contrast to optical imagery, synthetic aperture radar (SAR) represents a feasible alternative to
the optical sensors. SAR is independent of weather condition and can obtain images day and night.
The polarimetric SAR technology that investigates the backscattering characteristics of glaciers provides
an appropriate option for understanding the land cover classification in the glacier zones [19,20].
The interferometric synthetic aperture radar (InSAR) technology that exploits the phase information
of SAR images can measure glacier surface velocity at the centimeter level [21]. However, temporal
decorrelation frequently impedes the application of InSAR for tracking movements of glaciers [22].
In the alpine glacier zone, radar phase coherence can be influenced by melting/freezing processes,
snow/ice volume scattering as well as wind force [23–25]. The long temporal baseline (i.e., time
interval) of a SAR-image pair can also degrade the coherence as glacier surface changes significantly
during the SAR acquisitions [26,27].

Although decorrelation is generally regarded as an unexpected constraint in retrieving glacier
motion, it can provide some benefits in delineating the glacial boundaries [28–31]. The interferometric
phase is influenced by the backscattering conditions of the ground surface. Generally, the ice-free
area has higher coherence than the glaciation area due mainly to its steady radar backscattering
properties over the ice-free area. Hence, detecting the changes of coherence values is an effective way
to distinguish the glacier from the surrounding stable ground, thus providing a method for delineating
the glacier boundary [26,32]. Based on this hypothesis, the glacier extents of the Kennicott Glacier and
the Taku Glacier (Alaska) in 2008 were successfully delineated using the Advanced Land Observing
Satellite (ALOS) Phased Array L-band SAR (PALSAR) images [22]. However, few studies have been
carried out to access the glacier boundaries in the QTP by SAR coherence analysis, and there is limited
knowledge of interferometric coherence characteristics for the alpine glacier zone.

As a part of the Copernicus program, the Sentinel-1 mission was designed to provide continuous
observations and keep long-term data continuity of the Environmental Satellite (ENVISAT) and the
European Remote Sensing (i.e., ERS-1 and ERS-2) [33–35]. As the first Sentinel-1 mission satellite,
Sentinel-1A was launched in 2014, and its Terrain Observation by Progressive Scans (TOPS) imaging
mode provides us with the up-to-date C-band SAR images in the very short revisit time (12 days),
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thus providing a large amount of continuous data records [36]. In this study, we attempted to shed
light on the interferometric coherence characteristics of glacier zone and access the glacier boundaries
of the DaDongkemadi Glacier (DDG) in the central QTP of China based on multi-temporal SAR
interferometric coherence analysis with Sentinel-1A SAR acquisitions. We utilized 45 Sentinel-1A
C-band SAR images collected during October of 2014 through January of 2018 to generate the time
series of InSAR pairs and coherence maps. Furthermore, we conducted the correlation analysis between
the air temperature and precipitation records and the generated coherence values to investigate
influence of air temperature and precipitation on interferometric coherence characteristics of the
glacier zone.

2. Study Area and Datasets Used

2.1. Study Area

As shown in Figure 1, the Dongkemadi Glacier (DG) is located on the northern slope of the
Tanggula mountain range which runs from west to east in the central QTP of China. As illustrated in
the lower-left inset of Figure 2, this glacier is divided into two branches, i.e., DaDongkemadi Glacier
(DDG) with a length of 5.4 km and an area of 14.63 km2, and XiaoDongkemadi Glacier (XDG) with a
length of 2.8 km and a smaller area of 1.76 km2. The XDG is separated from the DDG by a nunatak.
The elevation of the DDG ranges from 5275 to 5926 m above the sea level, and the mean annual
precipitation ranges from 200 to 500 mm, while the air temperature at the equilibrium-line altitude is
around −10 ◦C [37].

Remote Sens. 2019, 11 FOR PEER REVIEW  3 

 

Scans (TOPS) imaging mode provides us with the up-to-date C-band SAR images in the very short 
revisit time (12 days), thus providing a large amount of continuous data records [36]. In this study, 
we attempted to shed light on the interferometric coherence characteristics of glacier zone and access 
the glacier boundaries of the DaDongkemadi Glacier (DDG) in the central QTP of China based on 
multi-temporal SAR interferometric coherence analysis with Sentinel-1A SAR acquisitions. We 
utilized 45 Sentinel-1A C-band SAR images collected during October of 2014 through January of 
2018 to generate the time series of InSAR pairs and coherence maps. Furthermore, we conducted the 
correlation analysis between the air temperature and precipitation records and the generated 
coherence values to investigate influence of air temperature and precipitation on interferometric 
coherence characteristics of the glacier zone. 

2. Study Area and Datasets Used  

2.1. Study Area 

As shown in Figure 1, the Dongkemadi Glacier (DG) is located on the northern slope of the 
Tanggula mountain range which runs from west to east in the central QTP of China. As illustrated in 
the lower-left inset of Figure 2, this glacier is divided into two branches, i.e., DaDongkemadi Glacier 
(DDG) with a length of 5.4 km and an area of 14.63 km2, and XiaoDongkemadi Glacier (XDG) with a 
length of 2.8 km and a smaller area of 1.76 km2. The XDG is separated from the DDG by a nunatak. 
The elevation of the DDG ranges from 5275 to 5926 m above the sea level, and the mean annual 
precipitation ranges from 200 to 500 mm, while the air temperature at the equilibrium-line altitude is 
around −10 °C [37].  

 
Figure 1. The study area and the coverage of the Sentinel-1A SAR images collected along the 
ascending and descending orbits. The red pentangle shows the location of the Dongkemadi Glacier 
(DG). The inset in the upper-left corner shows the relative geographical location of the study area 
(marked by the dashed rectangle) in the Qinghai-Tibetan Plateau (QTP). 

Figure 1. The study area and the coverage of the Sentinel-1A SAR images collected along the ascending
and descending orbits. The red pentangle shows the location of the Dongkemadi Glacier (DG). The inset
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dashed rectangle) in the Qinghai-Tibetan Plateau (QTP).
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Figure 2. The exemplified patches (i.e., sampling areas) of wet snow, ice, river outwash and soil land
around the DaDongkemadi Glacier (DDG), which are selected according to Huang et al. [20] and will
be used in later analysis (see Section 4). The background is the geocoded synthetic aperture radar
(SAR) amplitude image averaged from 45 scenes collected by Sentinel-1A (see Section 2.2). The inset
in the lower-left corner shows the optical image collected by Sentinel-2B for use of later analysis (see
Section 4). The four filled red, green, magenta and blue rectangles correspond to wet snow (W1–W4),
ice (I1–I4), river outwash (R1–R4) and soil land (S1–S4), respectively.

The DDG is of typical cold continental type, and there are warm and cold seasons in the glacier
zone. The cold season with low temperature and small precipitation is between October and May,
while the warm season with relatively higher temperature and larger precipitation spans from June
to September [38]. Additionally, there is no obvious surface debris cover in the ablation areas and
avalanche in the accumulation areas of the DDG [39].

The land cover classification around the DDG has been carried out in the previous study [20].
The target decomposition module was used to generate features from the C-band Radarsat-2 fine
quad-polarization SAR images, and then the Support Vector Machines (SVMs) method was used to
classify the land cover. According to the classification results of this polarization SAR experiment,
the DDG zone is primarily divided into four classes: wet snow, ice, river outwash and soil land.
By following the work by Huang et al. [20], Figure 2 shows the exemplified patches (i.e., sampling
areas) for the four classes, which are superimposed onto the geocoded SAR amplitude image averaged
from 45 scenes collected by Sentinel-1A (see Section 2.2). It should be noted that all the selected patches
have the same area of 200 m by 100 m and will be used in later analysis (see Section 4). As shown
in Figure 2, the wet snow class marked by filled red rectangles (W1−W4) is at the relatively highest
elevation of glaciation area (accumulation areas of the DDG), while the ice class marked by filled green
rectangles (I1−I4) distributes below the snowline (ablation areas of the DDG). As for the surrounding
ground, the Dongkemadi river basin is composed of soil land marked by filled blue rectangles (S1−S4),
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while the river outwash class marked by filled magenta rectangles (R1−R4) distributes around the
DDG terminus and covers a relatively smaller area.

2.2. SAR Datasets and Auxiliary Data Used in the Study

Sentinel-1A is a European imaging-radar satellite launched on 3 April 2014 and carries a C-band
SAR system operating in the Terrain Observation by Progressive Scans (TOPS) mode. A Sentinel-1A
Interferometric Wide (IW) swath SAR image captured by the TOPS observation mode contains three
sub-swaths with a total swath width of 250 km and a spatial resolution of 14 m in azimuth and 2.3 m in
slant range. For tracking the DDG boundaries, we utilized the 45 VV-polarized Sentinel-1A TOPS IW
SLC SAR images (with 24-day interval, see Table 1) collected during 15 October 2014 through 15 January
2018, which have already been focused and converted to the Single Look Complex (SLC) format.

Table 1. The Sentinel-1A C-band SAR datasets used in this study.

Acquisition
Date

Orbit
Number

Frame
Number

Orbit
Type

Acquisition
Date

Orbit
Number

Frame
Number

Orbit
Type

20141015 143 105 A 20160525 150 482 D
20141108 143 105 A 20160606 143 104 A
20141202 143 105 A 20160630 143 104 A
20141226 143 105 A 20160724 143 104 A
20150119 143 105 A 20160817 143 104 A
20150212 143 105 A 20160910 143 104 A
20150308 143 105 A 20161004 143 104 A
20150401 143 105 A 20161028 143 104 A
20150425 143 105 A 20161121 143 104 A
20150507 150 482 D 20161215 143 104 A
20150531 150 482 D 20170108 143 104 A
20150612 143 105 A 20170201 143 104 A
20150706 143 105 A 20170414 150 481 D
20150730 143 105 A 20170508 150 481 D
20150823 143 105 A 20170601 150 481 D
20150916 143 105 A 20170824 150 481 D
20151127 143 104 A 20170917 150 481 D
20151221 143 104 A 20171011 150 480 D
20160114 143 104 A 20171104 150 480 D
20160207 143 104 A 20171128 150 480 D
20160302 143 104 A 20171222 150 480 D
20160326 143 104 A 20180115 150 480 D
20160501 150 482 D

“A” and “D” represent the ascending and descending orbit, respectively. The acquisition date of any SAR image is
denoted in the form of “yyyymmdd”, e.g., reading 20141015 as 15 October 2014.

As shown in Table 1, the Sentinel-1A datasets consist of 31 and 14 C-band SLC SAR images
collected along the ascending and descending orbit, respectively. As shown in Figure 1, the images
collected along the ascending orbit 143 correspond to two different frames (i.e., frames 104 and 105),
while those collected along the descending orbit 150 correspond to three different frames (i.e., frames
480, 481 and 482). The radar off-nadir angle for all the Sentinel-1A SAR images are around 33.8◦, while
the heading angles (measured anticlockwise from the north) for the ascending and descending orbits
are approximately 347◦ and 193◦, respectively.

Besides Sentinel-1A SAR datasets, the Digital Elevation Model (DEM) data of the study area and
the Precision Orbit Data (POD) of the Sentinel-1A acquisitions were also required and used for the
interferometric processing. The relevant DEM data generated through the Shuttle Radar Topography
Mission (SRTM) was downloaded from the database provided by the United States Geological Survey
(USGS) and was used to simulate and remove the topographic effects from the InSAR pairs (see
Section 3). The SRTM DEM data was sampled over a grid of 1 arc sec by 1 arc sec (approximately
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30 m by 30 m) and had a relative height error of less than 10 m and the geo-location error of less than
15 m [40]. The POD data was downloaded from the Sentinel-1 Quality Control Subsystem Website and
was used to refine the baselines for the interferometric processing (see Section 3).

For validation purpose, we also downloaded the optical image collected over the DDG by the
Sentinel-2B satellite on 27 September 2017 from the database provided by the European Space Agency
(ESA). The optical image was captured by the Multispectral Imager (MSI) sensor with 13 spectral
bands and processed to form the Level-1C (L1C) product after geometric and radiometric corrections.
It should be noted that the four bands (i.e., Band 2, Band 3, Band 4 and Band 8) of the 13-band MSI data
have a same and higher resolution of 10 m. We selected the Band 2, Band 3 and Band 4 to form the true
color image (see the inset in the lower-left corner of Figure 2). It should be pointed out that it is not
easy to obtain the high quality of optical images without influence of cloud coverage and the MSI L1C
image collected over the DDG on 27 September 2017 had a relatively slight cloud cover of 8.67%. For
purpose of correlation analysis, we also downloaded the monthly air temperature and precipitation
data corresponding to the DDG from the database provided by the China Meteorological Data Service
Center (CMDC). As the meteorological data after December of 2016 is not available from this database,
we can only obtain the monthly air temperature and precipitation data recorded during October of
2014 through December of 2016, which cannot fully cover the time span of all the Sentinel-1A SAR
acquisitions collected during 15 October 2014 through 15 January 2018.

3. Method for Identifying the Alpine Glacier by Multi-Temporal Coherence Estimation with
Sentinel-1A InSAR

This section will concentrate on the description of the method for identifying the alpine glacier
by multi-temporal coherence estimation with Sentinel-1A InSAR. In Section 3.1, we will describe the
primary procedures for interferometric processing with use of the Sentinel-1A SAR images as listed
in Table 1. In Section 3.2, we analyze the major factors of coherence reduction (i.e., interferometric
decorrelation) in the alpine glacier zone. In Section 3.3, we describe the method for differentiating
the glaciation areas from the surrounding parts and tracking the glacier boundaries based on the
multi-temporal coherence comparison and analysis.

3.1. Interferometric Processing with Use of Sentinel-1A SAR Images

Prior to identifying the alpine glaciation areas and further detecting the glacier boundaries, it is
necessary to perform the interferometric processing with the use of Sentinel-1A SAR SLC images,
thus obtaining the multi-temporal InSAR pairs and the coherence maps. To form an interferometric
combination for investigating the DDG, we selected any two Sentinel-1A SAR images (see Table 1)
collected with the same orbit/frame number and in the shortest time interval (i.e., 24 days), thus
obtaining 36 InSAR pairs (27 for ascending and 9 for descending) as listed in Table 2.

It should be noted that the temporal baseline (i.e., time interval) of any interferometric pair is
24 days, and the spatial (i.e., perpendicular) baseline lengths of all the interferometric pairs range
between −179 and 128 m. For each InSAR pair, the primary processing steps include co-registrating
the slave onto master image, removing the flat-earth and topographic phases, generating the
differential InSAR pair and the coherence map, as well as geocoding the interferometric products.
We utilized the GAMMA software to process the Sentinel-1A TOPS SAR SLC images [41] for the
interferometric analysis.
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Table 2. The information of 36 InSAR pairs formed using the 45 Sentinel-1A SAR images.

No. InSAR Pair B⊥
Orbit
Type No. InSAR Pair B⊥

Orbit
Type

1 20141015-20141108 37 A 19 20160501-20160525 30 D
2 20141108-20141202 −20 A 20 20160606-20160630 −67 A
3 20141202-20141226 −33 A 21 20160630-20160724 48 A
4 20141226-20150119 83 A 22 20160724-20160817 6 A
5 20150119-20150212 108 A 23 20160817-20160910 −57 A
6 20150212-20150308 −179 A 24 20160910-20161004 70 A
7 20150308-20150401 126 A 25 20161004-20161028 3 A
8 20150401-20150425 −76 A 26 20161028-20161121 −88 A
9 20150507-20150531 84 D 27 20161121-20161215 128 A

10 20150612-20150706 56 A 28 20161215-20170108 −18 A
11 20150706-20150730 26 A 29 20170108-20170201 −58 A
12 20150730-20150823 −118 A 30 20170414-20170508 73 D
13 20150823-20150916 119 A 31 20170508-20170601 −151 D
14 20151127-20151221 −19 A 32 20170824-20170917 27 D
15 20151221-20160114 −12 A 33 20171011-20171104 75 D
16 20160114-20160207 26 A 34 20171104-20171128 −81 D
17 20160207-20160302 −114 A 35 20171128-20171222 −19 D
18 20160302-20160326 24 A 36 20171222-20180115 106 D

B⊥ represents the perpendicular baseline.

It should be emphasized that the Sentinel-1A TOPS interferometry requires a highly stringent
co-registration step, especially in the azimuth direction. This is because the steep azimuth spectrum
ramp exists in each burst [42,43]. We applied the intensity matching method and the spectral diversity
method to refine the offsets between the resampled slave and master SLC images, thus assuring the
phase continuity between the consecutive TOPS-burst edges. The required co-registration accuracy
(i.e., no more than 1/1000 of a pixel in the azimuth direction) can be achieved in this way [42,43].

The raw interferogram can be derived by a pixel-by-pixel conjugate multiplication between the
master and resampled slave SLC image. We then used the POD data to refine the spatial baseline
and remove the flat-earth phases, as well as the SRTM DEM data to remove the topographic phases
from the raw interferogram, thus yielding the differential interferogram. After this, adapting spectral
filtering was performed to compensate for the decorrelation caused by flat-earth and topographic
phases on the basis of interferometric fringes [44,45]. The maximum likelihood estimation of the
coherence (γ̂) with flat-earth and topographic phase compensated for each pixel at coordinate 〈i, j〉 can
be calculated using the following equation [45], thus generating the coherence map:

γ̂i,j =
|∑W M〈i,j〉·S∗〈i,j〉·e

−jϕ〈i,j〉 |√
∑W |M〈i,j〉|

2·∑W |S〈i,j〉|
2

, (1)

where M and S denote the master and resampled slave image, respectively; W denotes a sliding
window (9 by 9 pixels used in this study); ∗ denotes the complex conjugate operator; e−jϕ〈i,j〉 is related
to phase factor for compensating the flat-earth and topographic phases; and γ̂ ranges from 0 to 1.
If γ̂ reaches 0, the radar signals between two acquisitions are completely decorrelated; if γ̂ reaches 1,
the interferometric phase is least affected by noise.

In support of the comparison between the results derived from the Sentinel-1A SAR datasets
and those derived from the Sentinel-2B optical image (see Section 4), we geocoded the interferometric
products into the Universal Transverse Mercator Projection (UTM) coordinate. The geocoding process
is performed with use of a lookup table derived from the SRTM DEM data and the parameter file of
the relevant SLC image. It should be noted that both the multi-looking and filtering operations were
applied to enhance the signal-to-noise ratio (SNR) of the interferometric products. The multi-looking
parameters were set to 5 and 1 for azimuth and slant range direction, respectively, thus matching with
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the spatial resolution of Sentinel-2B optical image. The filtering window size was set to 9 by 9 pixels
for azimuth and slant range direction, respectively.

3.2. Analysis of Interferometric Decorrelation

Reduction in the interferometric coherence is subject to several sources: spatial (i.e., baseline)
and temporal decorrelation, thermal noise, image misregistration, doppler centroid discrepancy as
well as volume scattering decorrelation [46]. Loss of coherence related to co-registration and Doppler
centroid discrepancy can be compensated by the accurate image registration approach as mentioned
in Section 3.1 [42,47]. The effect of thermal noise can also be minimized, as the SNR can be quantified
for a SAR system [48]. The volume scattering component is determined by the penetrating ability of
radar wave and also the scattering feature of participation media [49]. As the alpine glacier is generally
characterized with compacting ice layer [37] and undermines the penetration of short-wavelength
(e.g., C band) radar signal, the volume scattering appears to have a limited impact on interferometric
decorrelation for the DDG study area. Therefore, the major factors affecting the interferometric
coherence of the alpine glacier zone are the spatial and temporal baseline, thus representing the
interferometric coherence level (γglacier) at a pixel as follows:

γglacier = γspatialγtemporal (2)

where γspatial and γtemporal denotes the coherence values due to the spatial and temporal baseline,
respectively. γspatial can be further expressed by [47]:

γspatial = 1− c
λsBω

·B⊥·|cot(θ0 − α)| (3)

where λ and s are the radar wavelength and slant range, respectively; Bω and θ0 are the radar
signal frequency bandwidth and the nominal radar incidence angle (33.8◦ for the Sentinel-1A case),
respectively; B⊥ and α are the perpendicular baseline and the local terrain slope, respectively. It can be
observed from Equation (3) that the spatial coherence is determined by the perpendicular baseline and
the local terrain slope, as λ, s, Bω and θ0 are the constants for a SAR system.

It can be seen from Table 2 that B⊥ of each InSAR pair is relatively short and its absolute value is
less than 200 m (i.e., the shortest is 3 m and the longest is 179 m). To analyze the variation of the spatial
coherence with changes of the local terrain slope, we calculated the spatial coherence values using
Equation (3) for the two spatial-baseline cases, i.e., setting B⊥ as 50 m and 200 m. Figure 3 shows the
variation of the spatial coherence calculated for the two spatial-baseline cases, which is represented as
a function of the local terrain slope (the red solid curve for the case of B⊥ = 50 m, while the blue solid
curve for the case of B⊥ = 200 m). It is clear that if the spatial coherence value is demanded to maintain
at 0.7, the local terrain slope should decrease from 32.73◦ to 29.31◦ when the spatial baseline increases
from 50 to 200 m. The zero coherence (i.e., completely decorrelated) occurs within a zone where the
local terrain slope is close to the nominal radar incidence angle. The longer the spatial baseline is,
the wider this zone will become. In summary, the spatial coherence decreases with increasing the
perpendicular baseline, and the areas with the local terrain slope of approaching the nominal radar
incidence angle may cause the most significant loss of interferometric coherence.

To evaluate the decorrelation caused by the spatial baseline in the DDG zone, we calculated the
spatial coherence values using Equation (3) for the two cases of perpendicular baselines, i.e., B⊥ = 50 m
and 100 m. As the input parameter and for better understanding, Figure 4a,b show the slope- and
orientation-angle map calculated from the SRTM DEM data for the DDG study area, respectively.
In support of the analysis of glacier movement, the orientation-angle (defined as the angle between
the north and the projection of terrain slope to the horizontal surface) map for the DDG zone clearly
demonstrates the direction of ice flow and will be used in later analysis (see Section 4). Figure 4c,d
show the spatial coherence maps calculated using Equation (3) for the two spatial baseline cases, i.e.,
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B⊥ = 50 m and 200 m, respectively. It can be observed from Figure 4a,b that the DDG is surrounded by
mountains with slope angle approaching to the nominal radar incidence angle of Sentinel-1A SAR
system. Low spatial coherence is observed in the mountainous regions, and the spatial decorrelation is
significantly more obvious for the case of B⊥ = 200 m. Comparatively, the DDG surface is characterized
by fairly flat terrain. Therefore, it can be seen from Figure 4c,d that the spatial component has almost no
effect on coherence loss over the DDG surface, i.e., the coherence values within the DDG zone is close
to 1. Such analysis shows that it is necessary to compensate for local slope on coherence estimation
(see Equation (1)), as the topographic decorrelation is clearly identified in the mountainous regions.
After the removal of topographic effects, it is regarded that the temporal component is the dominant
factor affecting the coherence property in the DDG zone. Temporal component is mainly influenced
by the change of physical characteristics of ground surface during SAR image acquisitions, which
is indeed the basic idea for extracting the glacier-covered boundaries by multi-temporal coherence
estimation with Sentinel-1A InSAR.
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Variations in surface backscattering were due to the change in surface parameters, e.g., snow/ice
geometry (e.g., layer thickness and steepness) and snow/ice properties (e.g., snow wetness and
density) [50]. Air temperature and precipitation change the scattering ground surface and resulted in
a reduced InSAR coherence [30]. We performed the correlation analysis between the meteorological
observations and the interferometric coherence values to investigate the effects of air temperature and
precipitation variations on the interferometric coherence characteristics of the four classes (i.e., wet
snow, ice, soil land and river outwash). The detailed procedures are described in Section 4.3. Analysis
of the contribution of changes in the snow/ice geometry and properties to the temporal decorrelation
will be done in the further work.
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Topography Mission (SRTM) Digital Elevation Model (DEM) data for the DDG study area, respectively.
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i.e., B⊥ = 50 m and 200 m, respectively.

3.3. Extracting the Glacier-Covered Areas and Their Boundaries with Multi-Temporal Coherence Analysis

As described in Section 2.1, the DDG zone is composed of wet snow in the accumulation areas
and ice in the ablation areas, while its surrounding areas are primarily covered by river outwash
and soil land [20]. For glacier identification purpose, it is critical to differentiate snow/ice from
outwash/soil with use of the multi-temporal interferometric coherence analysis. Generally, the DDG
surface is characterized by a lower level of coherence due to frequent glacier melting/freezing and
movement, while its surrounding parts present a higher level of coherence due to their relatively stable
backscattering properties. The degree of coherence between two SAR images collected at different
dates contains valuable information about the backscattering characteristics of the imaged targets.
Therefore, it is possible to identify the glaciation areas and further track the glacier boundaries based
on analysis of variation of the multi-temporal coherence maps.

Figure 5 shows the data handling for detecting the glacier-covered areas and extracting the
glacier boundaries depending on multi-temporal coherence estimation. The glacier identification and
boundary extraction are performed by analyzing the multi-temporal coherence changes of the alpine
glacier zone and its surrounding parts. As shown in Figure 2, we selected the exemplified patches



Remote Sens. 2019, 11, 392 11 of 25

for the four classes around the DDG, i.e., wet snow, ice, river outwash and soil land, according to the
previous work by [20], thus performing the statistical analysis of temporal changes of interferometric
coherence values for each class. First, we calculated both the mean and standard deviation of coherence
values related to every InSAR pair on a class-by-class basis, thus obtaining the time series of coherence
values in the statistical sense. The more detailed procedures for statistical calculation and analysis will
be presented in Section 4. Such spatiotemporal statistical results can be used to identify which time
spans are the most suitable for differentiating among snow, ice, soil land and river outwash, and to
determine the appropriate threshold for extracting the DDG boundaries. Second, the coherence maps
associated with the selected time spans were used to distinguish the snow- and ice-covered areas from
soil land and river outwash, thus obtaining the glacier-covered areas by using the threshold-based
segmentation method [51]. Finally, the edge detection method was applied to the results derived by
segmentation for automatically extracting the DDG boundaries. The vector editing should be manually
performed to eliminate the false boundaries caused by the noises in InSAR observations. Manual
corrections are necessary for retaining the completely formed boundary line surrounded the glaciation
area and removing the invalid cluttered edges in the surface of the glacier.
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4. Results and Discussions

4.1. Results of Multi-Temporal Coherence Maps and Their Spatiotemporal Analysis

Figure 6 shows the results of 36 multi-temporal coherence maps (with a pixel spacing of 6 m)
corresponding to the 36 Sentinel-1A InSAR pairs as listed in Table 2, which were generated through
the interferometric processing procedures as described in Section 3.1. The scale bar at the bottom
of Figure 6 indicates the distance range of 5 km, while the color bar indicates the coherence level
ranging from 0 to 1. With the multi-temporal coherence maps spanning between 15 October 2014
and 15 January 2018, we can see that the interferometric coherence values in the study area vary
in time and space. Serious decorrelation can be observed in the glacier-covered areas of the DDG,
while an obviously higher coherence level can be observed in the surrounding parts of the DDG. The
spatiotemporal variation of coherence values and the significant difference of coherence level between
the glacier-covered surface and the surrounding parts enable the identification of the glacier-covered
areas of the DDG.

For comparison and statistical analysis, 16 exemplified patches (i.e., sampling areas) with the same
area of 200 m by 100 m (as depicted in Figure 2), were selected to analyze the spatiotemporal variation
of coherence values, i.e., four patches (W1–W4) for the wet snow class, four patches (I1–I4) for the ice
class, four patches (S1–S4) for the soil land and four patches (R1–R4) for the river outwash around the
terminus of the DDG. This selection was performed by following the work by Huang et al. [20]. With
the use of each coherence map, as shown in Figure 6, we calculated the mean of all the coherence values
in each selected patch corresponding to the wet snow, ice, soil land and river outwash, respectively.
Figure 7a–d show the coherence mean time series calculated with the 36 InSAR pairs for all the
exemplified patches related to the wet snow, ice, soil land and river outwash, respectively. Figure 7a
shows the four curves of the coherence mean time series for four patches (W1−W4), respectively, of
the wet snow class, while (b), (c) and (d) show those for the ice class (I1–I4), the soil land class (S1–S4)
and the river outwash class (R1–R4), respectively. To evaluate the distribution of coherence values
in every InSAR pair, we also calculated the total mean and the standard deviation (SD) of coherence
values for each class with use of each coherence map as shown in Figure 6, thus obtaining 36 total
means and SDs for each class. Figure 8a–d show the total-mean histograms for the wet snow, ice, soil
land and river outwash, respectively, while Figure 8e–h show the histograms of SDs for the wet snow,
ice, soil land and river outwash, respectively.

The numerical analysis with Figure 8 indicates that the coherence mean of the wet snow class
ranges between 0.3 and 0.6 (see Figure 8a, mainly distributing around 0.5), and the relevant SD
of coherence values varies from 0 to 0.15 (see Figure 8e, mainly distributing between 0 and 0.1).
The coherence mean of the ice class ranges between 0.3 and 0.7 (see Figure 8b, mainly distributing
between 0.4 and 0.6), and the relevant SD of coherence values varies from 0 to 0.2 (see Figure 8f). For
the soil land class, the coherence mean ranges between 0.5 and 1.0 (see Figures 7c and 8c, mainly
distributing around 1), and the relevant SD of coherence values varies from 0 to 0.25 (see Figure 8g,
mainly distributing around 0). For the river outwash class, the coherence mean ranges between 0.6
and 1.0 (see Figure 8d, mainly distributing over 0.8), and the relevant SD of coherence values varies
from 0 to 0.2 (see Figure 8h, mainly distributing around 0.15).

The comparison analysis indicates that the wet snow and ice classes present a relatively low
level of coherence (about 0.5), while the soil land and river outwash classes present a higher level of
coherence (0.8–1.0). Generally, the soil land class possesses the highest coherence level and is followed
by the river outwash class, while the wet snow and ice classes possess a lower level of coherence
than the river outwash. The ice and river outwash classes present a more obvious fluctuation of
coherence level than the wet snow and soil land classes, as the relevant SD values are noticeably higher
(i.e., the values of SD for ice and river outwash are 0–0.2 and about 0.15, while 0–0.1 and around 0 for
wet snow and soil land separately). The significant differentiation in coherence among the four classes
can be applied to distinguish among the wet snow, ice, soil land and river outwash.
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The further inspection with Figure 6 indicates that the snow- and ice-covered areas with low
coherence can be most easily identified from the coherence maps spanning between 12 June and
16 September in 2015, between 30 June and 10 September in 2016 as well as between 24 August
and 17 September in 2017. This can be most likely explained by the melting activities occur in the
glacier ablation period between June and September of every year [37,38], thus resulting in more
significant decorrelation in the glaciation areas due to the melting-induced surface changes than that
in the surrounding parts. Moreover, the further inspection with Figure 7a–d also indicates that the
interferometric coherence values of each class change more or less with seasonal transition. The most
apparently seasonal fluctuation of coherence values can be observed for the river outwash class around
the terminus of DDG and the ice class. It means that it is not easy to distinguish the river outwash
class from the ice class. However, the careful analysis with Figure 7a–d shows that the coherence maps
derived around December of each year can be applied to easily distinguish the river outwash class from
the ice class. Such suitable coherence maps are indicated by the vertical dotted lines in Figure 7a–d.
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It can be observed that the coherence values related to the InSAR pairs around the end of 2014, 2015,
2016 and 2017 are clearly less than 0.7 for the wet snow and ice classes, while those for the soil land and
river outwash classes are clearly greater than 0.7. Based on the numerical analysis and observation, we
set the coherence threshold as 0.7 for distinguishing among wet snow, ice, soil land and river outwash,
which is indicated by the horizontal dotted line in Figure 7a–d. If the coherence value was smaller than
the threshold of 0.7, the corresponding pixel may be identified as a glacier-covered point, otherwise
identified as a non-glaciation point.Remote Sens. 2019, 11 FOR PEER REVIEW  14 
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Figure 7. The coherence mean time series calculated with the 36 InSAR pairs for all the exemplified
patches related to the wet snow, ice, soil land and river outwash, respectively. (a) shows the four
curves of the coherence mean time series for four patches (W1−W4), respectively, of the wet snow
class, while (b–d) show those for the ice class (I1−I4), the soil land class (S1−S4) and the river outwash
class (R1−R4), respectively.
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Figure 8. (a–d) show the total-mean histograms for the wet snow, ice, soil land and river outwash,
respectively, while (e–h) show the histograms of standard deviations for the wet snow, ice, soil land
and river outwash, respectively.

4.2. The Extracted DDG Boundaries and Discussions

According to the analysis presented in Section 4.1, the glacier-covered areas can be most easily
identified using the coherence maps spanning between June and September of each year, and the
coherence maps derived around December of each year are the most suitable for distinguishing the
river outwash from the ice around the DDG terminus. To verify the effectiveness of glacier-boundary
extraction by multi-temporal coherence estimation, we generated and tracked the DDG boundaries
between June and September and around December of each year with the method as described in
Section 3.3 and the numerical analysis presented in 4.1, thus obtaining the one, four, four and two
maps of the DDG boundaries for 2014, 2015, 2016 and 2017, respectively. For comparison purpose,
we also generated the DDG boundaries with the use of the Sentinel-2B optical image collected on 27
September 2017 by visual interpretation and manual editing. Figure 9a shows the DDG boundaries
extracted with use of the optical image, while Figure 9b shows those extracted by the threshold-based
segmentation (0.7 used for this study, see Section 4.1) and edge detection procedures (see Section 3.3)
with the use of the Sentinel-1A coherence map related to December in 2014. Figure 10 shows the four
maps of the DDG boundaries extracted with use of the Sentinel-1A coherence maps spanning between
June and September (i.e., in the glacier ablation period) and around December in 2015, while Figure 11
shows the four maps of the DDG boundaries derived in this way for 2016. Figure 12 shows the two
maps of the DDG boundaries with use of the coherence maps related to September and December
in 2017.

To check the consistency, we first calculated the total area (SOI) within the DDG boundaries
derived with the optical image (see Figure 9a) and that (Si) derived with each of the selected coherence
maps (see Figure 9b, Figure 10a–d, Figures 11a–d and 12a,b), and thus obtaining the Jaccard similarity
coefficient (i.e., (Si ∩ SOI)/(Si ∪ SOI), where i = 1, 2, . . . , 11). Table 3 lists the Jaccard similarity
coefficients of the total area within the DDG boundaries derived for the coherence maps selected
around July, August, September and December with respect to the optical image. The mean value of
Jaccard similarity coefficient for July, August, September and December are also shown in Table 3.
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up to 0.9010 (see Table 3). As mentioned earlier, this is because that the melting activities occurred 
in the glacier ablation period between June and September of each year [37], thus resulting in more 
significant decorrelation in the glaciation areas, which benefits the identification of the 
glacier-covered areas. The high values of Jaccard similarity coefficient verifies that the proposed 
method with use of Sentinel-1A interferometric coherence maps is effective for tracking the alpine 
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(0.9322) can be achieved for the coherence map corresponding to the InSAR pair of 20170824–
20170917, as boundaries are extracted using optical and SAR images collected around the similar 

Figure 9. (a) shows the DDG boundaries (solid blue curves) extracted using the Sentinel-2B optical
image collected on 27 September 2017 by visual interpretation. (b) shows the DDG boundaries (solid
red curves) extracted using the Sentinel-1A coherence map related to December of 2014. Five transect
lines (solid red lines) in (a) are marked for use of later analysis. The solid blue curves in (a) are
superimposed onto (b) for a visual check.

Table 3. The Jaccard similarity coefficient of the total area within the DDG boundaries derived for the
Sentinel-1A coherence maps selected around July, August, September and December with respect to
the Sentinel-2B optical image.

Year July August September December

2014 / / / 0.8545
2015 0.9019 0.8854 0.8811 0.8741
2016 0.8977 0.9027 0.9060 0.8844
2017 / / 0.9322 0.9317

Mean 0.8998 0.8941 0.9064 0.8862

A careful inspection with Figure 10a–c, Figures 11a–c and 12a indicates that the DDG boundaries
extracted with the coherence maps spanning between June and September are in good agreement with
those extracted with the optical image (i.e., the values of Jaccard similarity coefficient are between
0.8811 and 0.9322, see Table 3). By comparing them with the optical-image result, the mean values of the
Jaccard similarity coefficient for the total areas within the DDG boundaries derived from the coherence
maps selected around July, August and September reached up to 0.9010 (see Table 3). As mentioned
earlier, this is because that the melting activities occurred in the glacier ablation period between June
and September of each year [37], thus resulting in more significant decorrelation in the glaciation areas,
which benefits the identification of the glacier-covered areas. The high values of Jaccard similarity
coefficient verifies that the proposed method with use of Sentinel-1A interferometric coherence maps
is effective for tracking the alpine glacier zones and boundaries. It should be noted that the highest
Jaccard similarity coefficient (0.9322) can be achieved for the coherence map corresponding to the
InSAR pair of 20170824–20170917, as boundaries are extracted using optical and SAR images collected
around the similar dates. However, it cannot be ignored that the river-outwash areas around the
DDG terminus may be incorrectly identified as the glacier area with use of Sentinel-1A interferometric
coherence maps spanning between June and September.

A closer inspection with Figures 9b, 10d, 11d and 12b indicates that the DDG boundaries extracted
with the coherence maps around December are in relatively less agreement with those extracted with
the optical image (i.e., the Jaccard correlation coefficients are between 0.8545 and 0.9317, see Table 3). By
comparing them with the optical-image result, the averaged Jaccard similarity coefficients for the total
areas within the DDG boundaries derived from the coherence maps selected around December reached
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up to 0.8862. It can be observed that the primary uncertainties are found in the accumulation areas
(i.e., the northwest part of Figures 9–12). Glaciers flow downhill with the force of gravity. As clearly
depicted in Figure 4b, the ice stream converges in the central region and finally moves forward to
the DDG terminus. Compared with the accumulation areas, the glacier movements occurred much
more frequently in the ablation areas with tributaries along different directions. Therefore, it can be
seen that some accumulation areas had a higher level of interferometric coherence around December,
while the ablation areas still possessed a lower level of interferometric coherence. This means that
distinguishing the wet-snow areas from the surrounding soil-land areas with the coherence maps
around December is a challenging task. However, it can be observed that the boundaries extracted
around the river outwash at the DDG terminus using the coherence maps around December are in
good agreement with those extracted using the optical image. This demonstrates that the Sentinel-1A
interferometric coherence maps around December is very useful for distinguishing the river-outwash
areas from the glacier-covered areas, although the Sentinel-1A coherence maps spanning between June
and September are more useful for distinguishing the solid-land areas from the glacier-covered areas.
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Figure 10. (a–d) show the four maps of the DDG boundaries (solid red curves) extracted using the
Sentinel-1A coherence maps spanning between July and September (i.e., in the glacier ablation period)
and around December in 2015. The DDG boundaries (solid blue curves) derived from the Sentinel-2B
optical image are superimposed for a visual check.

As a remark, it is possible to detect the annual variation of the DDG terminus using the time
series of Sentinel-1A interferometric coherence maps. To analyze the retreating or advancing of the
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DDG, we determined the locational changes of the DDG terminus along the five transect lines (i.e., the
solid red lines shown in Figure 9a) by using the maps of DDG boundaries extracted from the coherence
maps (Figures 9b, 10d, 11d and 12b) around December of each year. For each transect line, we first
determined the coordinates at the crossing point (CP) between the transect line and the DDG-terminus
boundary by using Figures 9b, 10d, 11d and 12b, respectively, thus obtaining four sets of coordinates
at the CP for 2014, 2015, 2016 and 2017. We then calculated the retreating/advancing distance along
each transect line for 2015, 2016 and 2017, respectively, with reference to the DDG-terminus boundary
of 2014, thus obtaining the averaged retreating/advancing distance related to the five transect lines for
2015, 2016 and 2017, respectively.
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Figure 11. (a–d) show the four maps of the DDG boundaries (solid red curves) extracted using the
Sentinel-1A coherence maps spanning between June and September (i.e., in the glacier ablation period)
and around December in 2016. The DDG boundaries (solid blue curves) derived from the Sentinel-2B
optical image are superimposed for a visual check.

The statistical calculation indicates that the overall retreating trend occurred between 2014 and
2017, and the averaged retreating distance is 15.1, 28.5 and 42.3 m for 2015, 2016 and 2017, respectively,
with reference to the DDG-terminus boundary of 2014. However, it should be pointed out that residual
topographic errors may remain in steep slope areas that surrounded the DDG (as shown in Figure 4a).
Furthermore, the accuracies in the observed locational changes of the DDG terminus could be governed
by the spatial resolution (about 10 m) of Sentinel-1A SAR images. It means that the uncertainties
may present in the observed locational changes of the DDG terminus. The application of the higher
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spatial resolution of SAR images (e.g., 1–2 m for the X-band TerraSAR-X images) will help improve the
accuracies in determining the locational changes of the DDG terminus. The use of a more accurate DEM
will help minimize the effect of residual topography, thus differentiating the loss of coherence caused
by steep topography rather than glaciation area with unstable backscatter properties. Furthermore,
it should be noted that other observations (e.g., in-suit glacier terminus measurements or glacier
delineation results using optical imagery) are necessary to enable the objectivity in the interpretation
of evidence on glacier shrinkage. This leaves space for future work.
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Figure 12. (a,b) show the two maps of DDG boundaries (solid red curves) extracted using the
Sentinel-1A coherence maps around September and December in 2017, respectively. The DDG
boundaries (solid blue curves) derived from the Sentinel-2B optical image are superimposed for
a visual check.

4.3. Correlation Analysis with the Meteorological Data

Figure 13 shows the monthly air temperature (in Celsius degree) and precipitation (in mm) data
recorded during October of 2014 through December of 2016 around the DDG, which is provided by
the CMDC. As mentioned in Section 2.2, the time period covered by the meteorological data cannot
fully cover the time span of all the Sentinel-1A SAR acquisitions collected during 15 October 2014
through 15 January 2018. It can be seen from Figure 13 that the precipitation around the DDG exhibits
obvious seasonality characteristics, i.e., heavy rainfall occurring in the warm season and light rainfall
occurring in cold season, while the air temperature (with missing data for few months) around the
DDG was generally below zero in most months.

For correlation analysis, we first calculated the total mean of coherence values in the four
exemplified patches of each class (i.e., wet snow, ice, solid land and river outwash, see Figure 2)
using the coherence maps (see Figure 6) spanning between October of 2014 and December of 2016,
thus obtaining 27 coherence means for each class. Furthermore, the coherence mean of each class can
be represented as a linear function of precipitation (or air temperature), whose parameters can be
determined by the data fitting method. The correlation coefficient (r) between the coherence mean of
each class and precipitation (or air temperature) can be calculated accordingly. Figure 14a–d shows
the resultant correlation relationship between the coherence mean and the precipitation for the four
classes, i.e., wet snow, ice, soil land and river outwash, respectively, while Figure 15a–d shows those
between the coherence mean and the air temperature for the four classes. Both the linear equation and
the correlation coefficient are provided in Figures 14 and 15, in which the data points are denoted by
the dots, while the data-fitted linear equation is represented by the solid line.
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Figure 13. The monthly air temperature and precipitation data recorded during October of 2014
through December of 2016 around the DDG. The precipitation is denoted by the blue bar, while air
temperature (with missing data for few months) is denoted by the red dotted curve.
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Figure 14. (a–d) show the resultant correlation relationship between the coherence mean and the
precipitation for the four classes, i.e., wet snow, ice, soil land and river outwash, respectively. Both the
linear equation and the correlation coefficient are provided and marked for each class. The data points
are denoted by the dots, while the data-fitted linear equation is represented by the solid line.
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For the wet snow class, the correlation coefficients with respect to precipitation and air temperature
are 0.0011 and −0.1850 (see Figures 14a and 15a), respectively, while those for the solid land class
are −0.0932 and −0.1311 (see Figures 14c and 15c), respectively. For the ice class, the correlation
coefficients with respect to precipitation and air temperature are −0.7639 and −0.7231 (see Figures 14b
and 15b), respectively, while those for the river outwash class are−0.4153 and−0.5368 (see Figures 14d
and 15d), respectively. The different correlation coefficients among the four classes indicate that the
different classes of ground targets have different sensitivity to both precipitation and air temperature.
The negative correlation indicates that the Sentinel-1A C-band interferometric coherence may be
generally decreased with increasing of precipitation or air temperature. It is clear that the ice and
the river outwash in terms of interferometric coherence are highly sensitive to both precipitation and
air temperature with higher linear correlation coefficients, while the solid land and the wet snow are
almost completely insensitive to both precipitation and air temperature, with relatively low correlation
coefficients. This means that both precipitation and air temperature possess the more significant
influence on the coherence levels of the ice and the river outwash classes than the soil land and the wet
snow classes. Accordingly, as described in Section 4.1, the ice and the river outwash classes spread
out over a wider range of interferometric coherence values (i.e., relatively high values of SD ranged
from 0 to 0.2 for ice and around 0.15 for river outwash) than the other two classes (i.e., values of SD are
around 0 for soil land and about 0–0.1 for wet snow).Remote Sens. 2019, 11 FOR PEER REVIEW  22 
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Figure 15. (a–d) show the resultant correlation relationship between the coherence mean and the
temperature for the four classes, i.e., wet snow, ice, soil land and river outwash, respectively. Both the
linear equation and the correlation coefficient are provided and marked for each class. The data points
are denoted by dots, while the data-fitted linear equation is represented by a solid line.
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As a final remark, the C-band interferometric coherence level over the snow- and ice-covered
areas and even the accumulation areas (e.g., the northwest part in Figures 9–12) around December are
generally high due to steadiness of radar backscattering in the situation of low temperature and slow
glacier motion. During the glacial ablation period (i.e., from June to September), the temperature goes
up more or less and accelerates the snow/ice melting, thus resulting in serious decorrelation over the
snow- and ice-covered areas, while the soil land relatively maintain a high level of coherence. However,
for the debris-cover alpine glaciers, the inactive debris distributed along glacier terminus with flat
terrain have relatively stable backscattering characteristic compared to the surrounding ground due
to its slow movement and high rock reflectance, thus weakening the differentiation of the coherence
level between glaciation area and the surrounding stable ground [52]. Moreover, other ancillaries (e.g.,
glacier surface textures and terrain slope) will be supplied to the multi-temporal coherence estimation
in our future study aimed at debris-cover alpine glaciers.

5. Conclusions

Selecting the DDG in the central QTP of China as the study area, this paper proposes a method
for extracting the glacier boundaries with the spatiotemporal analysis of coherence maps derived
by interferometric processing using the time series of 45 Sentinel-1A C-band SAR images collected
during October of 2014 through January of 2018 over the DDG. Based on the spatiotemporal analysis
of the multi-temporal coherence maps, we identified which time spans are the most suitable for
differentiating among wet snow, ice, soil land and river outwash, and determined the appropriate
threshold for identifying the glacier-covered areas around the DDG. The DDG boundaries were
extracted by the threshold-based segmentation and edge detection procedures. For validation purpose,
we compared the DDG boundaries extracted from the selected coherence maps with those extracted
from the Sentinel-2B optical image. In addition, the correlation analysis to evaluate the influence of air
temperature and precipitation on coherence variations was performed by using the air temperature
and precipitation records.

The decorrelation analysis indicates that the interferometric coherence level is primarily degraded
by the temporal surface changes around the DDG, i.e., resulting in temporal decorrelation. The
use of temporal decorrelation is indeed the basic idea for extracting the glacier-covered boundaries
by multi-temporal coherence estimation with Sentinel-1A InSAR. The statistical analysis with the
time series of coherence values in the selected sampling areas indicates that the wet snow and ice
classes present a relatively low level of coherence (about 0.5), while the soil land and river outwash
classes present a higher level of coherence (0.8–1.0). It was found that the coherence maps spanning
between June and September (i.e., the glacier ablation period) were the most suitable for identifying
the snow- and ice-covered areas, while the coherence maps around December were the most suitable
for distinguishing the ice from the river outwash around the terminus of DDG. Based on the numerical
analysis, we set the coherence threshold as 0.7 for distinguishing among wet snow, ice, soil land and
river outwash.

Therefore, the DDG boundaries were generated using the coherence maps spanning between June
and September, as well as around December of each year by the threshold-based segmentation and
edge detection procedures, thus obtaining the one, four, four and two maps of the DDG boundaries
for 2014, 2015, 2016 and 2017, respectively. By comparing with the optical-image result, the mean
values of Jaccard similarity coefficients for the total areas within the DDG boundaries derived from the
coherence maps selected around July, August and September reaches up to 0.9010, thus verifying that
the proposed method in this study is effective for tracking the alpine glacier zones and boundaries.
The further numerical analysis shows the potential of investigating the DDG terminus changes between
2014 and 2017 using interferometric coherence estimation, and the application of the higher spatial
resolution of SAR images (e.g., the X-band TerraSAR-X images) will help improve the accuracies in
tracking the DDG terminus changes, leaving room for future work.
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The correlation analysis indicates that the different classes of ground targets around the DDG have
different sensitivity to both precipitation and air temperature. The ice and the river outwash in terms
of interferometric coherence are highly sensitive to both precipitation and air temperature, while the
soil land and the wet snow are nearly completely insensitive to both precipitation and air temperature.

This study helped close the gaps for fully understanding the temporal changing character of
coherence for the DDG glacier zone and for extracting the glacier-covered boundaries around the DDG
in the QTP of China by multi-temporal coherence estimation with Sentinel-1A InSAR. The proposed
method, applied efficiently in this study, would be useful for accessing the alpine glacier boundaries
on a larger scale of the QTP. Future work should apply the proposed method to access the boundaries
of debris-covered alpine glaciers supplemented by glacier surface textures or topography feature.
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