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Abstract: The common mode error (CME) and optimal noise model are the two most important factors
affecting the accuracy of time series in regional Global Navigation Satellite System (GNSS) networks.
Removing the CME and selecting the optimal noise model can effectively improve the accuracy of
GNSS coordinate time series. The CME, a major source of error, is related to the spatiotemporal
distribution; hence, its detrimental effects on time series can be effectively reduced through spatial
filtering. Independent component analysis (ICA) is used to filter the time series recorded by 79 GPS
stations in Antarctica from 2010 to 2018. After removing stations exhibiting strong local effects using
their spatial responses, the filtering results of residual time series derived from principal component
analysis (PCA) and ICA are compared and analyzed. The Akaike information criterion (AIC) is then
used to determine the optimal noise model of the GPS time series before and after ICA /PCA filtering.
The results show that ICA is superior to PCA regarding both the filter results and the consistency of
the optimal noise model. In terms of the filtering results, ICA can extract multisource error signals.
After ICA filtering, the root mean square (RMS) values of the residual time series are reduced by
14.45%, 8.97%, and 13.27% in the east (E), north (N), and vertical (U) components, respectively, and the
associated speed uncertainties are reduced by 13.50%, 8.06% and 11.82%, respectively. Furthermore,
different GNSS time series in Antarctica have different optimal noise models with different noise
characteristics in different components. The main noise models are the white noise plus flicker noise
(WN+FN) and white noise plus power law noise (WN+PN) models. Additionally, the spectrum index
of most PN is close to that of FN. Finally, there are more stations with consistent optimal noise models
after ICA filtering than there are after PCA filtering.

Keywords: GPS; ICA; common mode error; Antarctica; noise model

1. Introduction

The Global Navigation Satellite System (GNSS) velocity field, which boasts a high accuracy,
constitutes an effective approach for studying regional crustal displacements; in addition, GNSS
velocity solutions can validate and constrain glacial isostatic adjustment (GIA) models, which are
always used as important corrections for the movements of tectonic plates, variations in the geoid,
and changes in the sea level [1-6]. Studying the regional crustal displacement in Antarctica has
important value as a reference for the formation and evolution of global plate tectonics in addition
to creating and maintaining reference frames and monitoring the dynamics of ice and snow in
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polar regions [7-15]. With the accumulation of GNSS data and the improvements in their precision,
high-accuracy GNSS data have become more accessible for the study of tectonic deformation in
Antarctica. GNSS coordinate time series contain both temporal and spatial correlations; the temporal
correlations of GNSS coordinates can be calculated and determined using maximum likelihood
estimation, and spatially correlated coordinates can be considerably reduced using a postprocessing
approach, where the spatial correlations in GNSS time series are related to the spatial scale of the
network. At the global scale, the predominant source of error is the reference frame, which can be
reduced by a 7-parameter or 14-parameter similarity transformation [16,17]; in contrast, for a regional
network, the common mode error (CME) constitutes the greatest source of error [18].

Stacking was first introduced by [18] to remove the CME to facilitate the investigation of coseismic
and postseismic displacements in southern California with GPS time series. Subsequently, the lengths
of time series and their baselines were adopted as weights when applying stacking filtering to regional
GNSS networks [19]. Furthermore, the correlations among stations were used as weights when
filtering continental-scale GPS networks [20-22]. To obtain more reliable CME estimates and to explore
the physical mechanism of the CME, principal component analysis (PCA) and the Karhunen-Loeve
expansion (KLE) were used to analyze 5-year GPS time series in southern California [23]. More
recently, PCA, KLE, and stacking filters were employed to remove the CME from 11 GPS station
time series and compared the filtering results [15]. PCA were used to filtered out the CME and
evaluated its effects on the periodic signals and noise for China continuous GPS stations [24]. PCA
and some modified PCA methods have been widely used in the spatiotemporal filtering of GPS
time-series [25-27]. However, stacking filters assume that the CME has a uniform spatial distribution
and thus cannot be applied to larger networks. In comparison, PCA is more rigorous in theory, but it is
based on second-order statistics (the variance and covariance), and thus, it cannot take full advantage
of higher-order statistics; in addition, the CME derived from PCA contains colored noise, which does
not follow a normal distribution. Notably, the objective of PCA decomposition is to maximize the
variance of each component; however, this could lead to the clustering of different physical modes
within a single extracted “mathematical” mode. Recently, ICA has been used in the processing of
geodetic data sets for a wide range of purposes, for example, the separation of global time-variable
gravity signals [28-30], InNSAR data analysis [31] and GPS time series analysis [32-35].

Alternatively, independent component analysis (ICA) were adopted for an investigation using
259 GPS stations in China [22,35], while [36] applied ICA to GPS vertical coordinate time series
in Antarctica from 2010 to 2014 to explore the physical mechanism of regional filters while taking
nontectonic deformation into account. Compared with PCA, ICA utilizes higher-order statistics to help
differentiate statistically independent non-Gaussian signals. Therefore, considering the shortcomings
of stacking and PCA filters, we use ICA to extract the CME of GNSS time series from Antarctica and
analyze the applicability of both PCA and ICA from three perspectives, namely, the extraction of
multisource errors, the consistency in the spatial distribution and the quality of the filtering results.

The precision of GNSS coordinate time series is influenced by not only the CME but also the noise
model. Previous researchers have shown that GNSS time series contain not only white noise (WN)
but also colored noise, e.g., flicker noise (FN) and random walk noise (RW) [37,38]. If the effects of
colored noise are ignored, the velocity uncertainty can be overestimated by a factor of 4 or even one
order of magnitude higher than the signal amplitude, leading to an incorrect physical interpretation.
The maximum likelihood estimation was used to analyze the noise components of 414 GPS station time
series derived from 9 different global GPS solutions and showed that the optimal noise model was
WN+EN [39]. The noise models were computed for GPS time series in California and southern Nevada
and implied that the optimal noise model for 50%~60% of the stations was either FN or RW, that for
25%~30% of the stations was either FN+RW or power law noise (PN), and that for 15% of the stations
was either bandpass plus PN (BPPL) or first-order Gauss-Markov (FOGM) plus RW [40]. 12 GPS
stations were examined in Hong Kong and stated that the optimal noise model of the corresponding
GPS time series after PCA filtering was variable WN (VM) plus EN [41]. The variations in the noise at
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12 GPS stations were analyzed after removing the surface mass load in China and indicated that the
optimal model for 64% of the stations was FN+WN, that for 21% of the stations was BPPL+WN, that
for 9% of the stations was PL+WN, and that for only 3% of the stations was either FOGM+RW+WN or
FN+RW [42]. The magnitudes of WN and WN+FN+RW were estimated in Antarctica peninsula using
8 GPS stations before and after PCA filtering [43].

For regions with a vast spatial area and complex terrain such as Antarctica, the system errors,
random errors and local terrain effects differ substantially among the stations in a network; the same is
true for the optimal noise model, and thus, it is not sufficient to reasonably and effectively model all
GNSSS station time series with only one noise model. In this paper, we focus on the need to specify the
optimal noise models for the GNSS stations in Antarctica. To this end, five noise models are adopted:
WN+PN, WN+RW, WN+FN, WN+FN+RW, and WN+RW plus generalized Gauss-Markov (GGM).

Recently, the atmospheric load and nontide effects were computed in the CME of 53 stations from
2010 to 2014 and computed the amplitude and velocity at GPS stations with the WN+PL model before
and after filtering GPS data from Antarctica [36]. First, considering the technological developments
in the accumulation and accuracy of GNSS data, we perform factor analysis on GNSS time series to
further explore the validity of removing the CME, investigate the applicability of a regional filter by
means of ICA in Antarctica, and ascertain the optimal noise model and model variety before and after
filtering the GNSS time series. Second, we briefly introduce ICA to filter the time series derived from
79 GPS stations in Antarctica from 2010 to 2018 and then compare and analyze the filtering results
derived from PCA and ICA from 3 perspectives: the extraction of multisource errors in the signals,
the consistency of the spatial distribution and the filter performance. Finally, the Akaike information
criterion (AIC, [44,45]) is used to determine the optimal noise model for GPS time series before and
after ICA /PCA filtering.

The remainder of this paper is organized as follows. Section 2 briefly reviews the theoretical
background of the AIC and the stacking, PCA, and ICA techniques, data interpolation and factor
analysis methods. Section 3 discusses the results of the PCA, ICA filters and the results of the optimal
noise model. The comparison between the ICA-extracted CME and PCA-extracted CME and the noise
results after applying PCA and ICA are presented in Section 4. The conclusion of our findings is
presented at the end.

2. Materials and Methods

2.1. PCA

As presented by the authors of [23], daily stations within regional GNSS networks coordinate time
series with n stations and m days. Accordingly, the matrix X(m X n) is constructed (m > n), where
each column contains the detrended and demeaned coordinate values for a single geodetic component
(north, east, vertical) from a single station in the network, and the rows contain geodetic component
values for all stations at a given epoch. The covariance matrix B used in our presentation is defined as:

1 m

bij = —— Y X(tg, x;) X (ty, x;j). 1)
k=1

B(n x n) is a symmetric matrix, and we decompose B as:
B=VAVT 2)

where A has k nonzero diagonal eigenvalues (n >= k), VT isan (n x n) matrix with orthonormal rows,
and we chose the orthonormal function basis V to expand the data matrix X:

X(ti,Xj) = l;lak(ti)VK(Xj), (3)
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ak(ti) = X(ti, Xj)VK (Xj), (4)

o

Il
—_

J

where a(t) is the kth component of the matrix X representing the time variation and v (x) is the spatial
response of ay(t). If the eigenvalues are sorted in descending order, the first few PCs are the CME,
whereas the higher-order PCs are related to local or individual site effects [23]. Hence, we can define
the CME of PCA as follows:

P
CMEpca(ti, xj) = Y ax(t;)or(x;), ®)
k=1
where p is the number of PCs used to compute CME.

22.ICA

As presented by the authors of [35], if we assume that there exist N underlying sources s, and X is
the station time-series (collected from # sites is a linear mixture of s), the instantaneous mixing model
can be used, where any time delays that might occur in the mixing are neglected. Atepoch t,t =1, 2,
..., m, we can write the mixing model as:

xt = As; + ey, 6)

where x4, s¢, and e; are the observation vector, source signal, and systematic error or random noise
at epoch £, respectively. A is the mixing matrix, and the element a;; is the contribution of the j-th
source signal to the i-th observation (1 <i <n,1 <j < N), which is also called the spatial response.
Considering all epochs m, the matrix form of Equation (6) is:

X =AS+e, ()

with X =[x1,x2,...,xm],S=[s1,s2,...,sm],and e=[el, €2, ... , em]. Because the statistic characteristic
of e is usually unknown, PCA is commonly used as a preprocessing step known as whitening. Then,
Equation (7) becomes a noise-free model [46]. The goal of ICA is to find the unmixing matrix W that
maximizes the non-Gaussianity of each source. The mixing matrix W is the inverse matrix of A and
can be used to recover the original signal:

W=A"! (8)

Because the CME is a spatially correlated error, the ICA approach is used to extract the CME:
R v —
CMEjca = )_ AjS; )
jeR

where S is the ICA subset with common spatial characteristics and A j is the spatial response of S;.

2.3. Akaike Information Criterion

The qualities of the selected noise models in describing the noise in the data are evaluated
using the AIC [44], which uses the log-likelihood as the starting point but adds penalties for adding
parameters to avoid overfitting. The definition of the log-likelihood is as follows:

In(L) = —%[Nln (27)+Indet () +1"C"] (10)
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where N is the actual number of observations (gaps do not count) and r is the residual vector of time
series. The covariance matrix C is decomposed as:

C = ¢°C, (11)

where C is the sum of various noise models and o is the standard deviation of the driving WN process,
where o is estimated from the residuals:

o= rT(;'\I_lr (12)
Then, the AIC can be defined as follows:
IC =2k +2In(L) (13)
Because detcA = cN det A, the following formulation for the likelihood is implemented:
In(L) = —% [NIn(27) + Indet (C) + 2Nin(o) + NJ. (14)

The number of parameters k is the sum of the parameters in the design matrix and the noise
models with the variance of the driving WN process. The preferred model is the one with the minimum
AIC value.

2.4. Data Interpolation

The GPS time series are downloaded from the Nevada Geodetic Laboratory (http://geodesy.unr.
edu/NGLStationPages/GlobalStationList). Based on the distribution and integrity of the GPS time
series, we select 80 GPS stations in Antarctica with a time span from 2010.02.08 to 2018.06.23. Stations
PAL2/PALV/PALM are located at the same site, as are stations ROBI/ROBN. Figure 1 shows the
locations of the 80 GNSS stations in Antarctica.

65 64" =62 60" 54"

90’

® IGS
A POLENET
% Others —180°

Figure 1. The distribution of Global Positioning System (GPS) stations in Antarctica.

We removed abnormal data from the raw time series with the third quartile criterion, which
is based on the value of sigma to find and remove the data larger than the third quartile. For each
coordinate time series, we estimated a constant offset and a trend in addition to annual and semiannual
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terms. Then, we subtracted these terms from the coordinate time series to form the residual time series.
In this work, before performing PCA and ICA, we used the regularized expectation-maximization
(RegEM) algorithm to interpolate missing values [47,48]. RegEM, which neither depends on the data
model nor introduces a priori information, relies on the self-characteristics of the data to compute the
missing values while taking the physical background of the time series and the correlation among the
GNSS time series into account. The average proportion of missing data in our time series is 25.54%.
Figure 2 shows the results of RegEM interpolation for station CAPF; the black dots represent the raw
residual time series, and the blue lines are the data interpolated by RegEM.

20 ¢ q

' 1 L L I 1 L L

2010 2011 212 2013 204 2015 2016 2017 2018 2019
20+ 1
20 ¢ 4

'l 1 L L I ' L L

ZD.‘ID 201 2012 2013 2014 2015 2016 2017 2018 20;19
40 T T T T T 1 T T
20
]
20}k

4oL . . L L . . L L J
2010 2011 2012 213 24 215 2016 2017 2M8 2019

N/mm

Wmm

Figure 2. The RegEM interpolation results of CAPF stations. (The black dots represent the raw residual
time series and the blue lines are the data interpolated by RegEM).

2.5. Factor Analysis

We first used the Kaiser-Meyer-Olkin (KMO) test [49,50] to validate the applicability of PCA and
ICA for the GNSS data. The KMO test can provide measures of both the simple correlation coefficient
and the partial correlation coefficient to validate the applicability of factor analysis for data. As the
quadratic sum of the simple correlation coefficient and partial correlation coefficient grows larger, the
KMO becomes closer to 1, indicating that the correlation is stronger, which means that the data can
be used for factor analysis; otherwise, if the correlation is weak, the data cannot be used for factor
analysis. The results showed that the KMO measures for the GNSS residual time series are 0.931, 0.941,
and 0.963 in the east (E), north (N), and vertical (U) components, respectively. Furthermore, Bartlett’s
test can be used to test the statistical significance of the first PC [35,51]. Bartlett’s test statistics are less
than 0.01 for the data herein, indicating that the GNSS residual time series are correlated, and thus, the
data can be used for factor analysis.

We perform singular value decomposition for the covariance of the E, N, and U residual time series;
the eigenvalue spectra and percentage of the cumulative variance are displayed in Figures 3 and 4,
respectively. From Figure 3, we can see that the eigenvalues of the E and N components are
approximately equivalent, and they are less than that of the U component. Figure 4 shows that
the first three eigenvalues collectively account for 46.96%, 51.68%, and 50.19% of the total variance of
the E, N, and U components, respectively, and the first eigenvalues contribute 20.18%, 26.14%, and
28.01%, respectively, indicating that the signals on the E, N, and U components are described mainly
by PC1. To confirm how many PCs are statistically significant, we perform parallel analysis (PA),
a Monte Carlo-based simulation method that compares the observed eigenvalues with those obtained
from simulated datasets. Here, a PC is retained if the associated eigenvalue is larger than 99% of the
distribution of eigenvalues derived from random data [51]. Figure 5 is the PA test results of the east
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(E) components (N, U are analogous), the lateral axis is the component number, and the vertical axis
is the eigenvalues of principal components, from which we can see that the first 10 eigenvalues are
statistically significant for the E, N, and U components. However, because the magnitudes of the PCs
after PC3 are too small, their effects can be neglected, and thus, we analyze only the first three PCs.
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Figure 3. The eigenvalue spectrum of the east (E), north (N) and vertical (U) components derived from
the PCA method.
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Figure 4. Percentage of cumulative variance.
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Figure 5. The parallel analysis (PA) test results of east (E) components.



Remote Sens. 2019, 11, 386 8 of 23

3. Results
3.1. Reginal Filer Results

3.1.1. PCA Results

Based on the discussion provided in Section 2.1, the PCA filter is applied to the E, N, and U
components, from which we find that station ROBI has a spatial response that is different from those
of the other stations, while station ROBN (located almost at the same location as station ROBI) has
a spatial response that is identical to those of the other stations. Hence, we suppose that station
ROBI is abnormal and consequently remove it. Then, the remaining 79 stations are filtered by PCA.
Figures 6-8 show the first three PCs for the E, N, U components, respectively. In these figures, upward
arrows represent positive spatial responses (SRs) to the scaled PCs, while downward arrows represent
negative SRs to the scaled PCs, where the legends represent a 100% SR.

Figure 6 shows the SRs of the first three PCs to the E component. Evidently, the spatial responses
of PC1, PC2, and PC3 are neither completely random nor identical, but they exhibit obvious spatially
uniform localized patterns or strong spatial coherence across the network. The SRs of PC1 are negative
in the Ross Sea and East Antarctica and positive elsewhere, whereas the SRs of PC2 are negative in
East Antarctica and Queen Maud Land and positive elsewhere, and the SRs of PC3 are negative on the
Ronne Ice Shelf and in Dronning Maud Land and positive elsewhere.

Figure 7 shows the SRs of the first three PCs to the N component. The first two components also
exhibit an obvious spatially uniform localized pattern. The SRs of PC1 are negative in the Ross Sea and
East Antarctica, while those in the other regions are positive, whereas the SRs of PC2 are negative on
the Ronne Ice Shelf and in Dronning Maud Land and positive elsewhere. By contrast, the SRs of PC3
exhibit spatially uniform localized patterns in some areas, but their patterns are not entirely uniform.
Based on the results shown in Figure 7, we suppose that unmodeled signals, local effects, and noises
among other factors not considered herein are present in the higher-order PCs.
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Figure 6. First three PCs for E components using PCA (the upward arrows are positive spatial response
(SR), the downward are negative SR).
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Figure 8. First three PCs for U components using the PCA method (the upward arrows are positive SR,
the downward are negative SR).

Figure 8 shows the SRs of the first three PCs to the U component. The SRs of PC1 exhibit relatively
uniform patterns, while the SRs of PC2 are positive in the Antarctica Peninsula (which may be affected
by the collapse of the Larsen B Ice Shelf) and negative elsewhere. Meanwhile, the SRs of PC3 exhibit
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similarly negative patterns in the Antarctica peninsula and in the regions around the Ronne Ice Shelf
and Amundsen Coast.

The SRs of PC3 are influenced mainly by local effects based on the results shown in Figures 6 and §,
which demonstrate that the SRs of PC3 exhibit obvious regional spatial patterns in the E and U
components; we suppose that these patterns are most likely attributable to the melting of ice and
snow in West Antarctica. We treat the mode as the common mode if most sites (more than 50%) have
significant normalized responses (larger than 25%) and if the eigenvalues of this mode exceed 1% of
the summation of all eigenvalues [23]. According to this criterion, we choose the first three PCs of the
E and U components and the first two PCs of the N component as the CME. For all stations excluded
from the PCA because of long gaps in the data and strong local effects (e.g., the SRs of PC2 and PC3 in
the E component at station PECE and in the E and U components at station OHI3), we use the average
SRs for their CME corrections.

3.1.2. ICA Results

As with the abovementioned PCA, we again removed station ROBI and treated the residual time
series as approximate whitening; then, we applied an ICA filter to the 79 GPS stations. Figures 9-11
show the results of the E, N, and U components, respectively, using the ICA method.
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Figure 9. The results of east (E), IC8, IC12, IC19, IC40, and IC68 components using the ICA method
(the upward arrows are a positive spatial response, the downward are a negative spatial response).
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Figure 11. The results of vertical (U), IC11, IC49, IC53, IC59, IC63, IC71, IC72, IC73, IC76, and IC77
components using the ICA method (the upward arrows are a positive spatial response, the downward
are a negative spatial response).

Calculations and subsequent analysis reveal that IC8, IC12, IC19, IC40, and IC68 of the E
component, IC38, IC76, and IC77 of the N component and IC11, IC49, IC53, IC59, IC63, IC71, IC72,
IC73,1C76, and IC77 of the U component have almost uniform spatial patterns, while the SRs of the
other ICs have no obvious spatially uniform localized pattern or strong spatial coherence. The SRs of
these ICs with uniform spatial patterns represent the corresponding uniform spatial patterns of the
CME in the E, N, and U components. Based on these results, we calculate the CME for the E, N, and
U components.

Regarding the E component, Figure 9 shows that the SRs of IC8 and IC40 are similar to those
of PC1 derived from the PCA filter, but their magnitudes are larger than that of PC1. We infer that
PC1 contains a mixture of multisource error signals and that these signals may cancel one another out.
Analogously, from Figures 10 and 11, we find that the SRs of IC76 and IC38 are similar to those of PC1
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and PC2, respectively, in the N component; in addition, the SRs of IC11, IC49, and IC59 are similar
to that of PC1 in the U component, and the SR of IC72 is similar to that of PC2. Compared with that
derived from PCA, the CME derived from ICA exhibits more obvious spatial diversity and spatially
uniform localized characteristics, which means that ICA can extract multisource error signals both
effectively and successfully. However, the responses of some stations with small SRs revealed by the
PCA and ICA filters contrast with those of nearby stations; we infer that these differences are caused
by spatial noise derived from PCA- and ICA-modeled errors or by local effects.

Figure 12 shows the spectral analysis results of the temporal variations in the E, N, and U
components derived from the ICA results. We find that low-frequency signals are evident in all three
components. It is worth noting that the time series are of insufficient length to detect the lowest
frequencies of IC40 in the E component and of IC76 in the U component. Based on the spectral analysis
results, we extracted the periods of the first 11 peaks for ICs used to compute CME in the E, N, U
components, which are listed in Table 1. The results show that seven signals with periods of 250,
214.3,142.9,115.4, 111.1, 76.9, and 52.6 days are shown in all three components. Nevertheless, the
geophysical mechanism underlying this phenomenon requires further investigation.

—IC8 —IC12 IC19 ——IC40 EC68|

Amplitude/mm

[—Ic38 —ic76 —1C77|

Amplitude/mm

01 ]iﬂllli
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Figure 12. Results of spectral analysis of temporal variations: east (top), north (middle), and

vertical (bottom).

We also extracted the CME derived from the ICA results with the criterion employed in the
PCA, that is, we treated the mode as the common mode if most sites (more than 50%) have significant
normalized responses (larger than 25%) and if the eigenvalues of this mode exceed 1% of the summation
of all eigenvalues [23]. According to this criterion, the following ICs were chosen to compute the
CME using the ICA method: IC8, IC12, IC19, IC40, and IC68 for the E component, IC38, IC76, and
IC77 for the N component, and IC11, IC49, IC53, IC59, IC63, IC71, IC72, IC73, IC76, and IC77 for the

U component.
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Table 1. The periods of the first 11 peaks for ICs used to computed CME in the E, N, U components (days).

1 2 3 4 5 6 7 8 9 10

E
IC8 789 1000.0 600.0  333.3 88.2 111.1 69.8 120.0 103.4  200.0
IC12 1000 250.0 3333 500.0 2143 150.0 12.4 83.3 68.2 14.3
IC19 88.2 500.0 250.0 1500.0 484 120.0 40.5 750.0 150.0 61.2
1C40 142.9 120.0 56.6 93.8 68.2 375.0 85.7 78.9 21.0 500.0
1C68 333.3 1000.0 1154  428.6 76.9 52.6 125.0 56.6 1364  150.0

N
1C38 57.7 272.7 1429 68.2 125.0 750.0 85.7 103.4 51.7 115.4
1C76 3000 1000.0 250.0  428.6 150.0  214.3 187.5  300.0 136.4 53.6
1C77 1500 300.0 375.0 30.0 1364  600.0 111.1 52.6 90.9 76.9

U

IC11 272.7 88.2 230.8 166.7 13.2 5.4 187.5 789 103.4 24.0
1C49 333.3 1500.0 230.8 750.0 93.8 500.0 63.8 81.1 75.0 66.7
1C53 750 428.6 30000 125.0 85.7 76.9 38.0 69.8 107.1 43.5
1C59 166.7  250.0  200.0 1304  375.0 600.0 1000.0 6.3 90.9 85.7
1C63 3000 600.0 1000.0  85.7 300.0 1429 66.7 157.9 55.6 52.6
IC71 1000 300.0 63.8 1154  500.0 714 55 54 187.5 60.0
1C72 1500 250.0 500.0 3333  750.0 130.4 46.2 423 51.7 200.0
IC73 333.3  428.6 120.0 2727 61.2 51.7 214.3 96.8 166.7 53

IC76 90.9 300.0 1579  3000.0 53 75.0 230.8 24.6 500.0 96.8
1C77 1000  3000.0 375.0 49.2 250.0  600.0 125.0 8.6 111.1 83.3

3.2. Noise Analysis

The noise model is one of the most important factors affecting the precision of GNSS coordinate
time series. Previous researchers have shown that GNSS time series contain not only WN but also FN
and RW. In GNSS time series, the velocity uncertainty is usually influenced prominently by ignoring
the effects of colored noise, which leads to incorrect physical interpretations. For regions with a
vast spatial area and complex terrain such as Antarctica, the system errors, random errors and local
effects as well as the optimal noise model will be quite different among the stations in a network.
Consequently, the use of only one noise model is insufficient to reasonably and effectively model all
GNSS station time series. To determine the optimal noise model for Antarctica, we use a combination of
5 noise models supplied by Hector [44] to analyze the 79 GNSS station time series: WN+PN, WN+RW,
WN+FN, WN+FN+RW, and WN+RW+GGM. Then, we determine the optimal noise model for all
stations based on the AIC. Figures 13-15 show the percentage of stations optimal noise model for
the time series before and after using the PCA and the ICA filter in the E, N, and U components,
respectively; we found that there are more stations with consistent optimal noise models after ICA
filtering than there are after PCA filtering. The numbers of stations after applying the ICA filter were 5,
69, and 63 in the E, N, and U components, respectively, while the numbers of stations after applying
the PCA filter are 41, 49, and 62, respectively. Table 2 lists the statistic of sites optimal models. From
Figures 13 and 14 and Table 2, we can conclude that the optimal noise models of the raw residual time
series are mainly WN+PN, WN+FN, and WN+RW+GGM. After applying the PCA and ICA filters,
the number of stations for which the WN+FN model is the optimal model reduces, and the number
of stations for which the WN+RW+GGM model is the optimal model increases, indicating that the
PCA and ICA filters may change the model characteristics of some station time series. Figure 15 and
Table 2 show that the optimal model (the WN+PN model) for the raw residual series and for the time
series after applying the PCA and ICA filters in the U component accounts for 61%, 70%, and 75% of
all stations, respectively. After applying the PCA and ICA filters, the number of stations for which
the WN+PN model is the optimal model increases, while that for which the WN+FN model is the
optimal model decreases. Furthermore, we calculate the PN spectral index and find that most of the
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PN spectral index approximates the FN, which indicates that the essence of PN is similar to that of FN
in Antarctica.

Ewn_pn MErw_fn_wn Bwn_rw_ggm mwn_rw Bwn_fn

Figure 13. The optimal noise model results of time series before (left) and after the PCA (middle),
ICA (right) filtering in the E components.

mwn_pn mrw_fn_wn ®mwn_rw_ggm mwn_rw mEwn_fn

Figure 14. The optimal noise model results of time series before (left) and after the PCA (middle),
ICA (right) filtering in the N components.

mwn_pn Erw_fn_wn mwn_rw_ggm mwn_rw mBwn_fn

Figure 15. The optimal noise model results of time series before (left) and after the PCA (middle),
ICA (right) filter in the U components.
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Table 2. The statistic of sites optimal models.

RAW PCA ICA
Sites
E N U E N U E N U
ABBZ WN+FN WN+PN WN+PN WN+FN WN+PN WN+PN WN+EN WN+PN WN+PN
BACK WN+PN WN+FN WN+FN WN+RW+GGM WN+FN WN+FN WN+EN WN+FN WN+PN
BENN WN+FN WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+PN WN+EN WN+RW+GGM WN+PN
BERP WN+RW+GGM WN+FN WN+PN WN+RW+GGM WN+FN WN+PN WN+RW+FN WN+EFN WN+PN
BRIP WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN
BUMS WN+PN WN+FN WN+FN WN+EFN WN+EFN WN+FN WN+EN WN+PN WN+EN
BURI WN+PN WN+PN WN+PN WN+FN WN+EN WN+PN WN+EN WN+PN WN+PN
CAPF WN+FN WN+FN WN+FN WN+PN WN+EN WN+PN WN+RW+GGM WN+EFN WN+PN
CAS1 WN+FN WN+FN WN+PN WN+EN WN+EN WN+PN WN+EN WN+EN WN+PN
CLRK WN+FN WN+EFN WN+PN WN+RW+GGM WN+EN WN+PN WN+RW+GGM WN+EN WN+PN
COTE WN+PN WN+PN WN+PN WN+EN WN+PN WN+PN WN+EN WN+PN WN+PN
CRAR WN+PN WN+PN WN+RW+GGM WN+PN WN+EN WN+RW+GGM WN+PN WN+PN WN+RW+GGM
CRDI WN+RW+GGM  WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+PN
DAV1 WN+FN WN+FN WN+PN WN+EN WN+EN WN+PN WN+PN WN+EN WN+PN
DAVE WN+FN WN+FN WN+RW+GGM WN+EN WN+EN WN+RW+GGM WN+PN WN+FN WN+RW+GGM
DEVI WN+PN WN+PN WN+PN WN+RW+GGM WN+PN WN+PN WN+EN WN+PN WN+PN
DUM1 WN+RW+GGM  WN+RW+GGM WN+FN WN+RW+GGM  WN+RW+GGM WN+EN WN+RW+GGM  WN+RW+GGM WN+FN
DUPT WN+FN WN+FN WN+PN WN+EN WN+PN WN+PN WN+RW+GGM WN+EN WN+PN
FALL WN+FN WN+PN WN+PN WN+RW+GGM WN+EN WN+PN WN+EN WN+PN WN+PN
FIEO WN+PN WN+PN WN+PN WN+EN WN+EN WN+PN WN+PN WN+PN WN+PN
FLM5 WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN
FONP WN+FN WN+EN WN+FN WN+EN WN+EN WN+PN WN+EN WN+EN WN+PN
FOS1 WN+FN WN+FN WN+PN WN+FN WN+PN WN+PN WN+FN WN+FN WN+PN
FTP4 WN+PN WN+PN WN+PN WN+FN WN+FN WN+PN WN+PN WN+PN WN+PN
GMEZ WN+FN WN+RW+GGM WN+FN WN+RW+GGM  WN+RW+GGM WN+FN WN+RW+GGM  WN+RW+GGM WN+PN
HAAG WN+RW+GGM  WN+RW+GGM WN+FN WN+RW+GGM  WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+PN
HOOZ WN+PN WN+PN WN+PN WN+RW+GGM WN+PN WN+PN WN+FN WN+PN WN+PN
HOWE WN+RW+GGM  WN+RW+GGM WN+FN WN+RW+FN WN+RW+GGM WN+FN WN+RW+GGM  WN+RW+GGM WN+FN
HOWN WN+RW+GGM  WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+PN
HUGO WN+FN WN+PN WN+FN WN+FN WN+FN WN+RW+GGM WN+FN WN+FN WN+PN
IGGY WN+RW+GGM  WN+RW+GGM WN+FN WN+RW WN+RW+GGM WN+FN WN+RW+GGM  WN+RW+GGM WN+FN
INMN WN+RW+GGM WN+RW+FN WN+FN WN+RW+FN WN+RW+GGM WN+FN WN+RW+GGM  WN+RW+GGM WN+FN
JNSN WN+FN WN+RW+GGM WN+FN WN+RW+GGM  WN+RW+GGM WN+FN WN+FN WN+RW+GGM WN+FN
LNTK WN+RW+GGM  WN+RW+GGM WN+FN WN+RW+GGM WN+RW+FN WN+FN WN+RW+GGM  WN+RW+GGM WN+FN
LPLY WN+RW+GGM  WN+RW+GGM WN+FN WN+RW+FN WN+RW+FN WN+FN WN+RW+GGM  WN+RW+GGM WN+FN
LWNO WN+PN WN+PN WN+PN WN+FN WN+FN WN+PN WN+FN WN+PN WN+PN
MACG WN+FN WN+PN WN+PN WN+RW+GGM WN+PN WN+FN WN+RW+GGM WN+PN WN+PN
MAW1 WN+FN WN+PN WN+PN WN+FN WN+PN WN+PN WN+FN WN+FN WN+PN
MBIO WN+FN WN+RW+GGM WN+PN WN+RW+GGM WN+RW+FN WN+PN WN+RW+GGM  WN+RW+GGM WN+PN
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Table 2. Cont.
RAW PCA ICA
Sites
E N U E N U E N U
MCAR WN+RW+GGM WN+FN WN+PN WN+RW+GGM  WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+PN
MCM4 WN+PN WN+PN WN+PN WN+PN WN+FN WN+PN WN+FN WN+PN WN+PN
MCMD WN+PN WN+PN WN+PN WN+FN WN+FEN WN+PN WN+FN WN+PN WN+PN
MINO WN+PN WN+FN WN+PN WN+FN WN+FN WN+PN WN+FN WN+FN WN+PN
MKIB WN+RW+FN WN+RW+GGM WN+PN WN+RW WN+RW+GGM WN+PN WN+RW+FN WN+RW+GGM WN+PN
OHI2 WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+FN WN+PN WN+RW+GGM WN+EN WN+FN
OHI3 WN+EFN WN+FN WN+PN WN+FN WN+FN WN+PN WN+FN WN+FN WN+PN
PAL2 WN+EFN WN+PN WN+EN WN+PN WN+PN WN+PN WN+PN WN+FN WN+PN
PALM WN+PN WN+PN WN+EN WN+PN WN+PN WN+PN WN+PN WN+EN WN+PN
PALV WN+PN WN+FN WN+PN WN+FN WN+PN WN+PN WN+FN WN+EN WN+PN
PATN WN+RW+FN WN+RW+GGM WN+PN WN+RW+FN WN+RW+GGM WN+PN WN+RW+FN WN+RW+GGM WN+PN
PECE WN+RW WN+RW+FN WN+RW+GGM  WN+RW+GGM WN+RW+FN WN+RW WN+RW WN+RW WN+RW+GGM
PHIG WN+EN WN+FN WN+PN WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM WN+EN WN+PN
PIRT WN+PN WN+FN WN+PN WN+PN WN+PN WN+PN WN+PN WN+RW+GGM WN+PN
PRPT WN+PN WN+FN WN+FN WN+PN WN+PN WN+PN WN+PN WN+EN WN+PN
RAMG WN+PN WN+PN WN+PN WN+FN WN+PN WN+PN WN+FN WN+PN WN+PN
RMBO WN+FN WN+RW+GGM WN+PN WN+RW+GGM WN+FN WN+PN WN+FN WN+RW+GGM WN+PN
ROB4 WN+PN WN+PN WN+PN WN+FN WN+FN WN+PN WN+FN WN+PN WN+PN
ROBN WN+EFN WN+FN WN+FN WN+FN WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+PN
ROTH WN+RW+GGM WN+FN WN+FN WN+RW+GGM  WN+RW+GGM WN+PN WN+RW+GGM WN+EN WN+PN
SCTB WN+EN WN+FN WN+PN WN+RW+GGM WN+FN WN+EN WN+FN WN+EN WN+PN
SDLY WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN
SPGT WN+FN WN+FN WN+FN WN+EN WN+PN WN+PN WN+FN WN+EN WN+PN
STEW WN+RW+GGM WN+FN WN+PN WN+RW+GGM WN+FN WN+PN WN+RW+FN WN+EN WN+FN
SUGG WN+RW+GGM  WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+EN WN+RW+GGM  WN+RW+GGM WN+FN
SYOG WN+FN WN+PN WN+PN WN+RW+GGM WN+PN WN+PN WN+FN WN+PN WN+PN
THU4 WN+RW+GGM  WN+RW+GGM WN+PN WN+RW+FN WN+RW+FN WN+PN WN+RW+FN WN+RW+GGM WN+PN
TOMO WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM
TRVE WN+RW+GGM WN+FN WN+PN WN+RW+GGM  WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+PN
VESL WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN
VL01 WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN WN+PN
VL12 WN+FN WN+RW+GGM WN+PN WN+RW+GGM  WN+RW+GGM WN+PN WN+FN WN+RW+GGM WN+PN
VL30 WN+RW+GGM  WN+RW+GGM WN+FN WN+RW+GGM  WN+RW+GGM WN+EN WN+RW+GGM  WN+RW+GGM WN+FN
VNAD WN+PN WN+FN WN+FN WN+EN WN+FN WN+PN WN+PN WN+EN WN+PN
WHNO WN+PN WN+PN WN+PN WN+EN WN+PN WN+PN WN+FN WN+PN WN+PN
WHTM WN+RW+GGM WN+RW WN+RW+GGM  WN+RW+GGM WN+RW+FN WN+RW+GGM  WN+RW+GGM WN+RW WN+RW+FN
WILN WN+RW+GGM WN+RW+FN WN+FN WN+RW WN+RW+GGM WN+EN WN+RW+GGM WN+RW+EFN WN+FN
WLCH WN+RW+GGM WN+EN WN+FN WN+RW+GGM  WN+RW+GGM WN+EFN WN+RW+GGM WN+EN WN+FN
WLCT WN+FN WN+EFN WN+PN WN+RW+GGM WN+FN WN+PN WN+FN WN+RW+GGM WN+PN
WWAY WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM  WN+RW+GGM
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4. Discussion

4.1. Comparison Between the ICA-extracted CME and PCA-extracted CME

Figure 16 reveals the residual time series of station COTE before and after applying the regional
filters using PCA (top) and ICA (bottom); the gray lines represent raw time series and the black lines
are filtered results. The time series of daily east and north positions before and after filtering are shifted
by an offset, for clarity. Clearly, the scattering in the filtered time series is reduced effectively by the
PCA and ICA filters, and the reduction in the magnitude with the PCA filter is larger than that with
the ICA filter (although the other stations have the same results) because the PCA-extracted CME is
based on the maximum variance of the residual time series; thus, the second-order statistics of the
PCA-filtered residual series are less than those of the ICA-filtered residual series. Moreover, PCA
cannot take full advantage of higher-order statistics. During the application of the ICA filter, we use 5,
3, and 10 independent components to calculate the CME for the E, N, and U components, respectively,
thereby introducing higher-order statistics and extracting multisource error signals effectively.
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Figure 16. The residual time series of COTE stations before and after the regional filter using the PCA
and ICA.

Figure 17 shows the root mean square (RMS) values of the residual time series before and after
applying the PCA and ICA filters. The color bar represents the percentage of the RMS reduction, and
the maximum, minimum and mean reductions in the RMS are listed in Table 3. It is worth noting that in
Figure 17, the SRs of the CME derived from PCA have larger differences than those of the CME derived
from ICA at 79 stations, and the ICA-extracted CME exhibits more obvious spatially uniform localized
patterns, indicating that the ICA-extracted CME performs better in Antarctica. Table 3 shows that the
mean reductions in the RMS values are 35.24%, 23.95%, and 30.41% in the E, N, and U components,
respectively, after applying the PCA filter, and the corresponding mean reductions in the RMS values
are 14.45%, 8.97%, and 13.27% after applying the ICA filter. It is worth noting that the PCA-based
reduction in the RMS in the U component at station OHI3 is 81.96%, whereas the same reduction at
station OHI2, which is sited at the same location, is only 27.40%. In addition, the reductions in the RMS
values are only 7.05% and 1.32% at stations OHI2 and OHIS3, respectively, after applying the ICA filter.
Because PCA decomposition is based on second-order statistics, there is a risk of overfiltering with
PCA [35]. We therefore believe that the PCA filter may remove the original signals in the U component
at station OHI3 or that there are some unmodeled errors that PCA cannot remove; hence, we suppose
that the ICA filter performs better than the PCA filter in Antarctica.
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Figure 17. The root mean square(RMS) of residual time series before and after the PCA and ICA
filtering (%); the color bar represents the percentage of RMS reduction.

Table 3. The RMS of residual time series before and after the PCA and ICA filtering.

PCA ICA

Direction Min Max Mean Min Max Mean
(RMS) (RMS) (RMS) (RMS) (RMS) (RMS)

E 2.93% 63.27% 35.24% 0.29% 33.26% 14.45%
N 0.79% 63.47% 23.95% 0.26% 26.42% 8.97%
U 4.45% 81.96% 30.41% 1.32% 24.96% 13.27%

We calculate the velocities and uncertainties in the time series before and after PCA using the
ICA filter (see Table S1). The results show that after applying the PCA filter, 79% (63 stations) of the
horizontal velocities are within +0.2 mm/year, 91% (72 stations) of the vertical velocities are within
+0.4 mm/year, and the associated speed uncertainties are reduced by 33.84%, 22.86%, and 26.59% in
the E, N, and U components, respectively. In contrast, after applying the ICA filter, 98% (78 stations) of
the horizontal velocities are within £0.2 mm/year, 98% (78 stations) of the vertical velocities are within
+0.4 mm/year, and the associated speed uncertainties are reduced by 13.50%, 8.06%, and 11.82% in
the E, N, and U components, respectively.

4.2. Noise Analysis After Applying ICA and PCA

Table 4 lists the mean noise results of 4 optimal models before and after filtering. Table 4 shows
that the application of a regional filter can reduce the magnitudes of PN, FN, and GGM noise, especially
in the U component, by approximately 20%. Upon further analysis, we find that the magnitude of WN
is only 1-2 mm in all noise model combinations and can reach up to 3 mm in the U component at a few
stations. The WN+FN+RW model is the optimal model only for stations MINO and PATN; at these
stations, the magnitude of RW is approximately 10 mm in the E and N components and almost 0 in the
U component. In contrast, the magnitude of RW at the stations with the WN+RW+GGM model as
the optimal model are less than 1 mm in the E and U components and 2-3 mm in the N component.
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The WN and RW magnitudes are basically consistent before and after PCA and ICA filtering, although
the WN magnitude increases after PCA and ICA filtering at a few stations. We suppose that the balance
between colored noise and WN is occasionally altered (some WN may have previously gone into
biasing and thus increasing the amplitude of colored noise) and that WN is now more prominent and
“increases”. We can conclude that the magnitudes of WN in the residual time series are very small in
Antarctica and that regional filters can reduce the magnitudes of PN, FN, and GGM but have little
influence on those of WN and RW.

Table 4. The mean noise results of 4 optimal models before and after filter (mm).

Noise Direction RAW PCA Reduce RAW ICA Reduce

E 4.83 2.62 44.16% 490 3.82 21.69%

1* N 5.49 427 22.03%  5.14 4.46 13.25%
U 16.60 10.55 38.36%  16.43 13.12 20.53%

E 7.24 4.82 33.34%  5.80 525 10.77%

2 N 7.16 526 27.14%  7.16 5.75 19.00%
U 21.27 14.89 30.04%  21.27 16.58 22.09%

E 12.65 11.02 13.91%  13.33 12.83 3.99%

3 N 10.94 9.21 15.67%  11.04 10.71 7.11%
U 21.38 14.77 32.58% 2218 16.61 25.63%

E 5.52 3.69 3598%  6.07 5.08 18.00%

4 N 7.50 6.19 17.47%  6.90 6.23 10.67%
U 21.32 14.06 31.62%  20.63 16.56 19.93%

The raw and PCA /ICA are the mean magnitude of station time series before and after applying the PCA /ICA filter
(the stations with consistent optimal noise models); the number of stations is different before and after applying the
PCA and ICA filter, so there are two RAW. * Noise combination 1 is the PN mean magnitude results of WN+PN,
combination 2 is the FN mean magnitude result of WN+FN+RW, combination 3 is the GGM mean magnitude result
of WN+RW+GGM, and combination 4 is the FN mean magnitude result of WN+FN. WN+RW appears only 1 time
in the N component before and after applying PCA and 1 time in the U component before and after applying ICA;
therefore, we have no statistics for the WN+RW model.

5. Conclusions

The CME and the optimal noise model are two of the most important factors affecting the accuracy
of time series in regional GNSS networks. To obtain high-accuracy coordinate time series, we adopt
factor analysis for the first time to explore the applicability of time series recorded by 79 GNSS stations
in Antarctica from 2010 to 2018 and removed the CME of the residual time series by ICA filtering.
The filtering results derived from PCA and ICA are compared and analyzed, after which the AIC is
used to determine the optimal noise model before and after ICA/PCA filtering. The results show
the following:

1. After PCA filtering, the RMS values of the residual time series are reduced by 35.24%, 23.95% and
30.41% in the E, N, and U components, respectively, and the associated speed uncertainties are
reduced by 33.84%, 22.86%, and 26.59%, respectively. Moreover, 79% of the horizontal velocities
are within £0.2 mm/year, and 91% of the vertical velocities are within +0.4 mm/year. After ICA
filtering, the RMS values of the residual time series are reduced by 14.45%, 8.97%, and 13.27%
in the E, N, U components, respectively, and the associated speed uncertainties are reduced
by 13.50%, 8.06% and 11.82%, respectively. Additionally, 98% (78 stations) of the horizontal
velocities are within +0.2 mm/year, and 98% (78 stations) of the vertical velocities are within
£0.4 mm/year. The PCA-extracted CME shows some variation over Antarctica, while the CME
extracted using ICA has more obvious spatially uniform localized patterns, indicating that the
CME derived from ICA performs better in Antarctica.

2. Different GNSS time series in Antarctica have different optimal noise models with different noise
characteristics in different components. The main noise models are the WN+FN and WN+PN
models. Furthermore, the spectrum index of most PN is similar to that of FN. Regional filters
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can reduce the magnitudes of PN, FN, and GGM but have little influence on those of WN and
RW. Finally, there are more stations with consistent optimal noise models after ICA filtering than
there are after PCA filtering.
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