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Abstract: Areal changes of high-altitude inland lakes on the Qaidam Basin (QB) of the Tibetan
Plateau are reliable indicators of climate change and anthropogenic disturbance. Due to the physical
difficulties to access, our knowledge of the spatial patterns and processes of climatic and human
impacts on the Basin has been limited. Focusing on lake area changes, this study used long-term
Landsat images to map the patterns of lakes and glaciers in 1977, 1990, 2000, and 2015, and to
monitor the spatially explicit changes of lakes between 1977 and 2015. Results revealed that the total
number of lakes (area > 0.5 km2) increased by 18, while their total area expanded by 29.8%, from
1761.5 ± 88.1 km2 to 2285.9 ± 91.4 km2. Meanwhile, glaciers have decreased in area by 259.16 km2 in
the past four decades. The structural equation model (SEM) was applied to examine the integrative
effects of natural and anthropogenic factors on lake area. Precipitation change exhibited the most
significant influence on lake area in the QB from 1977 to 2000, while human activities also played an
important role in the expansion of lakes in the QB in the period 2000–2015. In particular, extensive
exploitation of salt lakes as mining resources resulted in severe changes in lake area and landscape.
The continuously expanding salt lakes inundated the road infrastructure nearby, posing great threats
to road safety. This study shed new light on the impacts of recent environmental changes and human
interventions on lakes in the Qaidam Basin, which could assist policy-making for protecting the lakes
and for strengthening the ecological improvement of this vast, arid basin.

Keywords: lake expansion; glacier retreat; climate change; human activities; the Qaidam Basin;
remote sensing

1. Introduction

Lakes distributed worldwide can act as indicators of global climate change in many different
geographic conditions and climatic regions [1]. The Tibetan Plateau (TP) in central Asia, with an
average elevation higher than 4000 m, boasts the highest concentration of high-altitude inland lakes
in the world and holds the most extensive store of ice except the Arctic and Antarctic [2,3]. The
high-altitude lakes and alpine glaciers thus serve as essential water resources and are sensitive to
climate changes and human activities [1,4]. Considerable evidences have shown that the TP has been
experiencing significant climate change (e.g., warming, glacier retreat, and permafrost melting) [5–8],
and the high-altitude lakes respond rapidly to these changes [9]. Over the past 40 years, climate
change has been an important factor in the evolution of high-altitude lakes [10] as the water cycle in
drainage basins has been changed with respect to rainfall, evaporation, and meltwater from glacier
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and snow [11]. Therefore, long-term monitoring and mapping lakes and glaciers can provide reliable
guidance of climate change, and further facilitate our understanding of water resource changes and
eco-environmental effects on the Tibetan Plateau [12].

Due to the limited accessibility of the TP, remote sensing becomes the most feasible method
for monitoring and analyzing long-term time series of lake extent changes [13–15]. Optical remote
sensing is a commonly used dataset for dynamic monitoring of changes in water surface areas [16].
The Landsat series have provided a nearly continuous, medium-resolution data record of the Earth’s
surface from the early 1970s to the present [17]. The open resource of the full historical Landsat archive
and the launch of Landsat-8 have secured the capability of lake monitoring on the TP with a reliable
temporal resolution for the past, present, and future [18]. With Landsat image series, numerous studies
have been conducted to investigate the distribution and spatial-temporal changes of high-altitude lakes
within the entire TP [2,6,14] and its sub-basins such as the Himalaya [15,19], Pumqu River Basin [20],
Namco Basin [21], and Yamzhog Yumco Basin [22]. These investigations revealed that lakes on the
TP showed a strong spatiotemporal variability from the 1970s to the present. Some lake groups in
the central TP showed a more rapid growth rate than those in the rest of the TP [2]. The glacial lakes
in the Himalaya showed a continuous increase in lake area over the past decades [15]. Some lakes
in the Qiangtang Plateau experienced shrinkage from the early 1970s to the late 1990s, then a rapid
expansion after 2000 [23]. However, most of the lakes in the southern and eastern TP have shrunk
remarkably during the past decades [24].

The Qaidam Basin (QB) on the northern edge of the TP, known as the “Treasure Bowl”, is one
of the largest hyper-arid intermontane basins on the Earth [23]. Ringed by mountains, this basin
was uplifted by the formation of the TP to over 2600 m above sea level, lower than the rest of the
plateau stretching far to the south, west, and east [24]. The basin is rich in salt lake resources, including
lithium, salt, potash, magnesium, and minerals from ores such as zinc, gold, oil, and gas [25], and
has therefore been recognized as a treasure house for China’s industry and economy. The unique
topography, climate, and mining activities have led to a fragile ecological environment of the lakes in
the QB [26]. In the past, research has mainly focused on the popular regions of the TP with abundant
lakes and the influences of dramatic climate changes. Very limited studies have been conducted in the
QB to make a systematic investigation of its current status of the lakes. Assisted with Landsat images
and meteorological data, this study aims to examine the area change of lakes as a response of this
basin to the changing climate and human intervention from 1977 to 2015. With improved spatial and
temporal details, the findings in this study could serve as the base information for long-term ecological
monitoring and environmental policy-making for the Qaidam Basin.

2. Materials and Methods

2.1. Study Area

The Qaidam Basin (87◦49′–99◦20′ E, 35◦0′–37◦41′ N) is located at the northeast of the Tibet Plateau,
covering approximately 275,000 km2, with the elevation ranging from 2600 m to 6500 m above sea
level [27]. The QB is the largest sedimentary basin in the TP, the third largest inland basin of China,
and the highest desert on the Earth [28]. It is delineated by the Qilian orogenic belt to the northeast,
the East Kunlun–Qiman Tagh orogenic belt to the south–southwest, and the Altyn Tagh Fault to
the northwest (Figure 1). A typical plateau continental climate prevails the basin with the mean
annual air temperature below 5 ◦C. Its mean annual precipitation is less than 200 mm but the mean
annual evaporation capacity is 2000–3000 mm [29]. The particular geographical location and climatic
characteristics make the QB a poorly gauged, hyper-arid basin. Under the threat of global warming, it
has become a vulnerable and sensitive region responding to climate change.
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Figure 1. The geographical situation of the Qaidam Basin (QB) in northern Tibetan Plateau, China. 

2.2. Datasets 

For lake extent mapping in the basin, a total of 66 Landsat top-of-atmosphere (TOA) reflectance 
images acquired by Multispectral Scanner (MSS), Thematic Mapper (TM), Thematic Mapper Plus 
(ETM+), and Landsat Operational Land Imager (OLI) were downloaded, at decadal intervals, from 
the United States Geological Survey (USGS) Data Clearinghouse (Earth Explorer) and China 
Geospatial Data Cloud (http://www.giscloud.cn/). The year 1977 is the earliest time from which we 
can acquire abundant high-quality images covering the whole study area and 2015 was the latest year 
when we started with this research. The years of 1990 and 2000 were chosen for decadal analysis. To 
cover the entire lakes in the QB, 18 Landsat MSS images in 1977, and 17, 15, and 16 Landsat 
TM/ETM+/OLI images in 1990, 2000, and 2015 were acquired, respectively. Most images were 
acquired in September to October, when Tibetan lakes reach the maximum extent with the least ice 
cover [23]. For a specific tile, when the image in one specific year was not available due to cloud 
cover, those in adjacent years (within ±1 year) were selected as substitutes. Only images with 100% 
cloud-free cover in areas of lakes were selected. Glaciers are often considered the primary water 
source for high-altitude lakes on the TP [23]. Therefore we also interpreted glacier changes in the 
basin.  

For glacial mapping, 36 Landsat MSS images and 43, 42, and 40 Landsat TM/ETM+/OLI images 
were acquired for the years 1970, 1990, 2000, and around 2015, respectively. Similarly, images 
acquired in the time from July to October are used to eliminate the interference of seasonal snow and 
mountain shadows on glacier identification. In addition, Shuttle Radar Topography Mission Digital 
Elevation Model (SRTM DEM) with a 1-arc second (30 m) resolution obtained from USGS 
(https://www.usgs.gov/) was employed in topographic analysis. 

Image preprocessing was performed before interpretation. The 79-m MSS images were a match 
the rest of Landsat images. Resampling from lower resolution images to higher resolution images 
carried no substantial impact on the analyzing process but uniformed the spatial resolution [30]. All 
Landsat images were geo-rectified using the 1:50,000 topographic maps. An average root mean 
square error (RMSE) of less than 0.5 pixels was obtained for all co-registered images. The FLAASH 
module in ENVI 4.8 was applied to perform atmospheric correction of all Landsat images. The 
parameters of average elevation, scene center coordinates sensor type, flight date and time, 
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2.2. Datasets

For lake extent mapping in the basin, a total of 66 Landsat top-of-atmosphere (TOA) reflectance
images acquired by Multispectral Scanner (MSS), Thematic Mapper (TM), Thematic Mapper Plus
(ETM+), and Landsat Operational Land Imager (OLI) were downloaded, at decadal intervals, from the
United States Geological Survey (USGS) Data Clearinghouse (Earth Explorer) and China Geospatial
Data Cloud (http://www.giscloud.cn/). The year 1977 is the earliest time from which we can acquire
abundant high-quality images covering the whole study area and 2015 was the latest year when we
started with this research. The years of 1990 and 2000 were chosen for decadal analysis. To cover the
entire lakes in the QB, 18 Landsat MSS images in 1977, and 17, 15, and 16 Landsat TM/ETM+/OLI
images in 1990, 2000, and 2015 were acquired, respectively. Most images were acquired in September
to October, when Tibetan lakes reach the maximum extent with the least ice cover [23]. For a specific
tile, when the image in one specific year was not available due to cloud cover, those in adjacent years
(within ±1 year) were selected as substitutes. Only images with 100% cloud-free cover in areas of lakes
were selected. Glaciers are often considered the primary water source for high-altitude lakes on the
TP [23]. Therefore we also interpreted glacier changes in the basin.

For glacial mapping, 36 Landsat MSS images and 43, 42, and 40 Landsat TM/ETM+/OLI images
were acquired for the years 1970, 1990, 2000, and around 2015, respectively. Similarly, images acquired
in the time from July to October are used to eliminate the interference of seasonal snow and mountain
shadows on glacier identification. In addition, Shuttle Radar Topography Mission Digital Elevation Model
(SRTM DEM) with a 1-arc second (30 m) resolution obtained from USGS (https://www.usgs.gov/) was
employed in topographic analysis.

Image preprocessing was performed before interpretation. The 79-m MSS images were a match
the rest of Landsat images. Resampling from lower resolution images to higher resolution images
carried no substantial impact on the analyzing process but uniformed the spatial resolution [30]. All
Landsat images were geo-rectified using the 1:50,000 topographic maps. An average root mean square
error (RMSE) of less than 0.5 pixels was obtained for all co-registered images. The FLAASH module
in ENVI 4.8 was applied to perform atmospheric correction of all Landsat images. The parameters
of average elevation, scene center coordinates sensor type, flight date and time, atmospheric model,
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and information about aerosol distribution, visibility and water vapor conditions were used for
atmospheric correction.

Meteorological data from 14 meteorological stations located within and around the QB (marked
in Figure 1) were acquired from the China Meteorological Data Sharing Service System (http://cdc.
cma.gov.cn/index.jsp). Spatial patterns of mean annual air temperature (MAAT) and mean annual
precipitation (MAP) were extracted from meteorological records with the Anusplin software [31] in
light of the elevation differences. The programs SPLINA and LAPGRD were used to interpolate the
MAAT and MAP. Daily climatic records, including mean wind speed, maximum and minimum air
temperature, relative humidity, and sunshine hours for the 14 meteorological stations were acquired.
Potential evapotranspiration (PET) was estimated using these daily data and the Food and Agriculture
Organization (FAO) Penman–Monteith method [32]. The estimated datasets were summed to annual
products and were further interpolated to raster-based data formats covering the whole study area by
means of an ordinary Kriging method in the ArcMap 10.2 software.

A stratified random sampling strategy was used to obtain reference samples. For the periods of
2000 and 2015, we collected reference data from high-resolution images available on Google Earth. For
the periods of 1970 and 1990, we selected samples from historic topographic maps. As the focus of this
study is the spatial-temporal dynamics of lakes and glaciers, the reference samples consisted of lake,
glacier, and others (e.g. land). Detailed information of reference samples is given in Table 1.

Table 1. Detail information of reference data.

Year Total Samples Lake Glacier Others

1977 635 276 177 182
1990 654 289 168 197
2000 621 284 161 176
2015 671 318 150 203

2.3. Methods

2.3.1. Extracting Lake Extents

In this study, we focused on lakes with an area larger than 0.5 km2, since the European Water
Framework Directive imposed a minimum size of 0.5 km2 to be defined as a lake [33]. Lake extents of
the QB in 1977, 1990, 2000, and 2015 were extracted using the object-oriented classification method
in the eCognition software version 8.64 (Definiens Imaging, Munich, Germany). The first step of the
object-oriented method was segmentation, which is the process of segmenting a multi-band image
into groups of homogeneous pixels in order to minimize the variability in the object [30]. In this step,
three parameters need to be determined: scale, shape, and compactness. The Landsat TM/ETM+ and
OLI images have the same spatial resolution, but different spectral and radiometric resolutions result
in diverse segmentation scales. In this study, the segmentation scales of 10 (MSS), 30 (TM/ETM+),
and 60 (OLI) were found to be the most appropriate for the characteristics of the lakes. The shape
parameter was set to 0.1 to maximize the impact of spectral information. The compactness was set to
0.8 to control the final shape of the image object.

The second step of the approach was to classify lake objects from the segmented image in
eCognition. Unlike other land cover types, water absorbs much more light in the NIR band than in the
visible band. The normalized difference water index (NDWI) was adopted to derive the water extent,
which has been successfully employed in water feature extraction from remote sensing data [34–36]. It
is calculated as in Reference [37]:

NDWI =
BandNIR − BandGreen
BandNIR + BandGreen

(1)

http://cdc.cma.gov.cn/index.jsp
http://cdc.cma.gov.cn/index.jsp
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where BandNIR and BandGreen are an image’s spectral bands in near infrared and green regions. For
the Landsat images we used, the MSS band 1 (0.50–0.60 µm), TM band 2 (0.52–0.60 µm), ETM+ band 2
(0.52–0.60 µm), and OLI band 3 (0.53–0.59 µm) are green bands, whilst MSS band 3 (0.70–0.80 µm), TM
band 4 (0.76–0.90 µm), ETM+ band 4 (0.77–0.90 µm), and OLI band 5 (0.85–0.88 µm) are NIR bands.

The NDWI index was built in eCognition and an optimal threshold was determined to delineate
water surfaces from other land covers by adjusting the range of NDWI manually. With this threshold,
objects of water bodies and land covers were classified based on the fuzzy membership function in
eCognition [38]. By defining the length/width index and rectangular fit index [39] built in the software,
rivers and artificial ponds were removed.

Finally, the extracted water surfaces were visually interpreted to manually modify the
misclassified objects and exclude reservoirs using the database from the China National Land Cover
Dataset [40]. Each lake was also inspected according to Landsat images and high-resolution images
such as Google Earth images, when available.

2.3.2. Extracting Glaciers

In order to investigate the responses of lakes to glacier retreat, we mapped the glacier distribution
in the QB. Snow/ice generally has high reflection in the green band whilst is low in the shortwave
infrared (SWIR). The normalized difference snow index (NDSI) [41], known for its ability to
differentiate snow/ice from other image features, was used for recognizing glaciers:

NDSI =
BandGreen − BandSWIR
BandGreen + BandSWIR

(2)

The object-oriented image segmentation method used in Section 2.3.1 was also applied to extract
glacier areas based on multi-temporal Landsat images. A NDSI histogram was generated for each
image and an optimal threshold value was determined to delineate snow/ice boundaries. Glaciers
in the QB are mainly located in the highest area with the altitude more than 4000 m, and partial
glaciers were not detectable due to the shadows of mountains. Mountain shadows of each image
can be identified by topographic models with SRTM DEM and some parts of the glaciers in shadow
regions can be identified.

Seasonal snow has similar spectral characteristics to glaciers, which is a complicating factor in
glacier inventory from satellite images. The ice/snow boundaries extracted from multi-temporal
images of each period were intersected to remove the interferences of snow and get the minimum
ideal glacier extents [42]. To reduce the effects of mountain shadows on glaciers, in each period, the
following processes were performed to obtain the total glacier area via spatial overlay analysis:

• The sum mountain shadow area MS was determined by the union of the mountain shadows in
multi-temporal images with varying sun angles.

MS =
N
∩

i=1
M(i) (3)

where N is the number of the multi-temporal images, M(i) represents the area of mountain
shadows in image i, i ∈ [1,N].

• The glacier area Gm(i) located in mountain shadows of image i is calculated by:

Gm(i) = Gt(i) ∩MS (4)

where Gt(i) is the glacier extent in temporal i image.
• The glaciers in the total mountain shadows Gm can be delineated by:

Gm =
N
∩

i=1
[Gm(i) ∪M(i)] (5)
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The total glacier area G(i) in image i and the minimum glacier area GS of the multi-temporal
glacier boundaries were calculated as follows:

G(i) = Gt(i) ∪ Gm (6)

N
∩

i=1
G(i) (7)

Again, visual interpretation was performed to edit glacier boundaries if needed.

2.3.3. Area Change Analysis

Lake and glacier area changes were analyzed in total area change (∆A in unit of km2), percentage
of area change (AP in %), and an annual change rate (AR in km2 a−1):

∆A = A1 − A0 (8)

AP =
∆A
A0
× 100 (9)

AR =
∆A
∆T

. (10)

where A0 and A1 are the areas of lakes or glaciers between any two consecutive stages; AP represents
the lake or glacier area change ratio; AR represents the annual change; and ∆T is the time in years.

2.3.4. Correlation Analysis

To investigate the potential influences on lake variations, we applied structural equation modeling
(SEM) for correlation analysis between lake area changes and environmental variables (climate and
glacier). SEM is a multivariate technique that combines aspects of multiple regression and factor
analysis to estimate a series of interrelated dependence relationships simultaneously [43].

SEM was applied based on the buffer areas of the extracted lakes in the QB. Different from
traditional exploratory factor analysis, SEM utilizes a hypothesized structural model and absolute fit
indices to determine how well the model fits the sample data [44]. The hypothesized model formulated
in the statistical software AMOS 22.0 [45] is shown in Figure 2. The independent variables were MAAT
change, MAP change, PET change, and glacier area change, and the dependent variable was lake area
change. Associated with each dependent variable is an error term (residual variances) described by e1,
e2, and e3. The single-headed arrows between variables represent the structural relationship between
two variables. After the model runs, regression coefficients will be marked along the single-headed
arrows indicating a hypothesized impact of one variable on another.
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After the estimates were obtained, the most widely reported fit indices were used to test the
fitness of the design model. Here we listed the absolute fit indices used in this study and recommended
values which indicate a good fit (Table 2).

Table 2. The commonly used absolute fit indices.

Measure Name Description Values References

χ2/df Chi-Square/degree of freedom
Assess overall fit and the discrepancy
between the sample and fitted
covariance matrices.

Less than 3,
p-value > 0.05 Carmines and McIver (1981) [46]

GFI Goodness of Fit
A measure of fit between the
hypothesized model and the observed
covariance matrix.

0.90 and Above Tabachnick and Fidell (2007) [47]

NFI Normed fit index and
non-normed fit index

The discrepancy between the
chi-squared value of the hypothesized
model and the chi-squared value of
the null model

0.90 and Above Bentler and Bonnet (1980) [48]

CFI Comparative Fit Index Examining the discrepancy between
the data and the hypothesized model 0.90 and Above Schermelleh (2003) [49]

RMSEA Root Mean Square Error of
Approximation

Analyzing the discrepancy between
the hypothesized model, with
optimally chosen parameter estimates,
and the data

Less than 0.08 Hu and Bentler (1999) [50]

SRMR Standardized Root Mean
Square Residual

The square root of the discrepancy
between the sample covariance matrix
and the model covariance matrix

Less than 0.08 Kline, (2011) [51]

3. Results and Discussion

3.1. Accuracy Assessment

As shown in Table 3, accuracies of the classified lakes and glaciers in 1977, 1990, 2000, and 2015
were calculated using ground reference samples. The lake and glacier maps in these periods all had
decent accuracies, with overall accuracies of 86–93%. Errors were mainly caused by misclassification
between lakes and cloud shadows and between glaciers and mountain shadows. The results of the
accuracy assessment show that the extraction results of lakes and glaciers are consistent with the
ground truth.

Table 3. Results of accuracy assessment of lake and glacier mapping in 1977, 1990, 2000, and 2015.

Date Categories User’s Accuracy Producer’s Accuracy Overall Accuracy

1977
lake 0.91 ± 0.04 0.89 ± 0.03 0.90 ± 0.02

glacier 0.86 ± 0.03 0.83 ± 0.04 0.86 ± 0.04

1990
lake 0.89 ± 0.05 0.92 ± 0.01 0.91 ± 0.03

glacier 0.87 ± 0.02 0.89 ± 0.05 0.88 ± 0.05

2000
lake 0.92 ± 0.03 0.94 ± 0.04 0.93 ± 0.03

glacier 0.89 ± 0.05 0.88 ± 0.02 0.87 ± 0.05

2015
lake 0.95 ± 0.03 0.94 ± 0.05 0.94 ± 0.05

glacier 0.89 ± 0.02 0.91 ± 0.04 0.90 ± 0.04

Note: The value after the symbol “±” represents the margin of error at confidence level 95%.

3.2. Distribution of Lakes in 2015 and the 40-year Lake Changes on the Qaidam Basin

Figure 3 demonstrates the lake distributions in 2015 all over the Qaidam Basin. A total of 68 lakes
were extracted from satellite images in 2015 with a total area of 2285.9 km2. Most of the big lakes were
concentrated in the central region with a lower elevation. A small number of lakes were located along
the East Kunlun–Qiman Tagh Mountain to the south–southwest of the study region. From 1977 to 2015,
both the number of lakes and the total lake area in the QB were substantially increased (Figure 4). The
total number of lakes increased by 18 from the original 50, while their total area increased by 29.8%,
from 1761.5 ± 88.1 km2 to 2285.9 ± 91.4 km2. Both the number and area of lakes of the QB increased in
the period of 1977–1990, while apparently, they reduced during the period 1990–2000. However, the
lakes expanded the most significantly during 2000–2015.
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Figure 3. Spatial distribution of lakes in the Qaidam Basin (QB) in 2015. Only lakes with known names
are labeled and the lakes with larger bold fonts have an area larger than 100 km2. The river dataset was
derived from Geographic Information System (GIS) Basic Data of China (http://www.ngcc.cn/).
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Figure 4. Changes in lake area and number in the four stages between 1977 and 2015. The error bars
represent the confidence level of 95%.

To further analyze the changes, all lakes were graded into five categories based on their area:
0.5–1 km2, 1–10 km2, 10–50 km2, 50–100 km2, and larger than 100 km2. The detailed lake changes in
each category are shown in Table 4. Lakes ranging from 1–10 km2 had the most substantial number
(18) in 1977, accounting for 33% of the total lake number. However, the total area of these lakes took
only 4.0% of the lake surface area in the QB, while the sum area of only 10 lakes (the area larger than
50 km2) accounted for 78.1% of the total lake area. During the period 1977 to 1990, the significant
expansion of small and medium-sized (10 km2–50 km2) lakes resulted in an increase of the overall lake
area in the QB. All the categories of lakes shrank in the period from 1990 to 2000, especially those lake
areas ranging in 50 km2–100 km2. On the contrary, all five categories of lakes expanded in the period
of 2000 to 2015. The large size lakes (area >100 km2) had the most intense changes in area, resulting in
a sharp increase during this decade.

Spatial heterogeneity of lake area changes was also investigated across the QB. Figure 5 reveals
that the lakes in the central region have experienced the largest variations, both in area change and
area change rate. From 1977 to 1990 (Figure 5a), a total of 13 new lakes emerged mainly in the high

http://www.ngcc.cn/
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elevation glacier area located in the western and eastern study regions, whilst two lakes vanished.
Most of the expanded lakes were distributed in the northern and central parts of the QB. However, the
shrunken lakes were mainly distributed in the central and southern QB. From 1990 to 2000 (Figure 5b),
among the lakes that dramatically shrank, about 15 lakes in the central or eastern QB disappeared with
an area of 78.41 km2. The characteristic of lake shrinkage was quite significant in the study area during
the second period (Figure 5b). Figure 5c shows that, after the year 2000, the majority of existed lakes
more or less expanded, and 20 small lakes newly emerged in the marginal area with higher elevation.
It is noteworthy that the lake areas grew the most significantly in the period 2000 to 2015 compared
to the other periods. The dramatic expansion and shrinkage of lakes occurred simultaneously in the
central region of the QB.

Table 4. The number, area, and changes of lakes in different sizes in the four stages between 1977
and 2015.

Area Classes (km2) 0.5–1 1–10 10–50 50–100 >100 Total

Number of lakes

1977 10 18 12 4 6 50
1990 13 23 15 4 7 62
2000 7 24 15 3 7 56
2015 13 28 13 6 8 68

Change in number (%)

1976–1990 30.0 27.8 25.0 0.0 16.7 24.0
1990–2000 −46.2 4.3 0.0 −25.0 0.0 −9.7
2000–2015 85.7 16.7 −13.3 100.0 14.3 21.4
1976–2015 30.0 55.6 8.3 50.0 33.3 36.0

Lake area (km2)

1976 6.5 ± 0.3 63.9 ± 3.2 314.3 ± 15.7 354.4 ± 17.7 1022.4 ± 51.1 1761.5 ± 88.1
1990 9.0 ± 0.4 88.3 ± 3.5 429.0 ± 17.2 257.3 ± 10.3 1106.6 ± 44.3 1890.2 ± 75.6
2000 2.8 ± 0.1 71.4 ± 3.6 386.6 ± 19.3 174.4 ± 8.7 1020.4 ± 51.0 1655.5 ± 82.8
2015 9.0 ± 0.4 73.8 ± 3.0 481.8 ± 19.3 279.9 ± 11.2 1441.3 ± 57.7 2285.9 ± 91.4

Change in area (%)

1976–1990 38.5 38.2 36.5 −27.4 8.2 7.3
1990–2000 −68.9 −19.1 −9.9 −32.2 −7.8 −12.4
2000–2015 221.4 3.4 24.6 60.5 41.2 38.1
1976–2015 38.5 15.5 53.3 −21.0 41.0 29.8
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3.3. Climate Changes and Glaciers in the QB

From 1977 to 2015, a noticeable increase in MAAT and MAP and a decline in PET demonstrated a
progressively warmer and wetter climate throughout the QB (Figure 6). Over the past decades, the
MAAT in the QB has been increasing, with an average rate of 0.65 ◦C per decade (Figure 6a). The
average MAP of the QB was 116.19 mm, and the annual precipitation tendency rate was 10.03 mm per



Remote Sens. 2019, 11, 343 10 of 21

decade (Figure 6b). The mean annual potential evapotranspiration decreased in fluctuation with an
average rate of 23.06 mm/10 yr (Figure 6c).
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Figure 6. Annual variations in climatic factors. (a–c) represent annual changes in mean annual air
temperature (MAAT), mean annual precipitation (MAP), and potential evapotranspiration (PET) in the
Qaidam Basin (QB) between 1977 and 2015, respectively. (d–f) represent the annual changes in MAAT
and (g–i) represent the annual changes in MAP and PET during the periods 1977–1990, 1990–2000, and
2000–2015, respectively.

During 1977 to 1990, the MAAT exhibited increases of between 0.02 and 0.12 ◦C/yr. across the
QB, with an average rate of 0.04 ◦C/yr (Figure 6d). An evident decline in PET and a visible increase in
MAP resulted in a warmer and wetter climate in the QB during this period (Figure 6g). From 1990 to
2000, the MAAT increased considerably, with an average rate of 0.094 ◦C/yr, much higher than that of
the first period (Figure 6e). However, the MAP declined slightly at an average rate of 1.18 mm/yr in
the meantime (Figure 6h). These changes indicated that the study region experienced a relatively more
arid and hotter climate during this decade. In the later 2000–2015 period, the increase rate of MAAT
was less than that in the previous two periods (Figure 6f). MAP increased remarkably during this time
and was far higher than that of the second period (Figure 6i). It is noteworthy that PET rose slightly
between 2000 and 2015 instead of the continuous decline in the other two periods.

Glaciers of the QB are mainly located in the high alpine region along the southwestern and
northeastern borders of the basin (Figure 7). The glaciers are sensitive to climate change and have
experienced extremely intense glacial retreat. Over nearly 40 years, the area of glaciers decreased from
1772.2 ± 88.6 km2 in 1977 to 1684.6 ± 67.4 km2 in 1990, 1613.0 ± 64.52 km2 in 2000, and further to
1513.04 ± 45.4 km2 in 2015 (Figure 8). The mean rate of glacier melt during the several decades was
4.6 ± 0.2 km2/yr. The results indicated that glaciers in the study area have been facing a constant loss
issue under the threat of global warming.
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3.4. Environmental impacts on Lake Area Changes

The selected indices to evaluate for overall fitness of the SEM are shown in Table 5. In the case
of 1977 to 2000, χ2/df = 1.53 (smaller than three as suggested), GFI = 0.989, NFI = 0.951, CFI = 0.962
(greater than 0.90 as recommended), and RMSEA = 0.071 (less than 0.08 as suggested) showed a
satisfactory fit between the structural model and the data. In the long period from 1977 to 2015,
however, the SEM did not statically fit the input data. It is suggested that climate variables were the
main contributors to the lake variations during 1977 to 2000, but not after 2000. Other impacts beyond
the climate influence thus need to be examined.

Table 5. The indices for overall fitness of the structural equation model (SEM) in 1977–2000
and 1977–2015.

Year λ2/df GFI NFI CFI RMSEA SRMR

1977–2000 1.530 0.989 0.951 0.962 0.071 0.050
1977–2015 7.299 0.869 0.765 0.899 1.191 0.091
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The estimated correlation among all independent and dependent variables during the period
1977 to 2000 is shown in Figure 9. Lake area change showed positive correlations with MAP and
MAAT change, while negative ones showed positive correlations with PET and glacier change. Not all
relationships were statistically significant. The MAP change exhibited the most significant influence
(p < 0.01) on lake area change, with a correlation coefficient of 0.53. In addition, consistent with the
precipitation change trend, most lakes without human intervention in the QB experienced a change
process of expansion–shrinkage–expansion in the past 40 years (Figure 10a–c). In contrast to the strong
impact of MAP change on lake variations, PET (p < 0.1) played a relatively weaker role in influencing
the changes of lake area in the QB. Given the limited number of lakes spatially associated with glaciers,
lake area change was not significantly correlative with glacier area changes (p > 0.1). Though MAAT
barely had a direct relationship with lake area change (p>0.1), it had negative correlations with PET
change (p < 0.1) and glacier area (p < 0.1), then further affected lake area variations indirectly.
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Although the contribution of glacial melt water to lake area change was not obvious at the basin
level, a small number of lakes linked to glaciers still expanded constantly due to glacier melt water
supply. The glacier lake (shown in Figure 10d), located in the south of the Bukadaban Glacier, expanded
from 6.74 km2 in 1977 to 9.97 km2 in 2015 with an increase of 47.9%. The glacier lakes supplied by
Dunde Glacier melt water also had a remarkable expansion in the past decades (Figure 10e). A group of
emerged lakes could be recognized in the most recent images, some of which were larger than 0.5 km2

and expected to continually expand (Figure 10f). Therefore, climate factors such as precipitation,
temperature, evapotranspiration change, as well as glacier melting were considered as the potential
drivers for lake area changes over the past decades in the QB, especially from 1977 to 2000.
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3.5. Human Impacts on Lake Area Changes

China reserves the second highest lithium resources in the world, 80% of which is salt lake brine
and is mainly located in the Tibetan Plateau [52]. After 2000, salts from the salt lakes in the QB began
to be dramatically mined and industrialized. The salt lakes have been extensively exploited during the
past decade, resulting in immediate and severe change to lake areas, lake function, and landscape [53].
Along with the synergistic effect of climate change and human interventions, lakes in the QB have
been significantly changed in the period from 2000 to 2015 (as shown in Figure 4).

More specifically, Figure 11 demonstrates the expansion of lakes exposed to extensive exploitation
of lithium resources. Previous studies have demonstrated that salt lake exploitations may lead to
significant expansions of salt lakes, especially for the large salt lakes [54,55]. Building dams shifted
the water from one place to another, turning a small lake into a dry salt lake while a larger lake newly
formed. The Riegler River is the largest river in the QB, which flowed into the East Taijinar Lake and
West Taijinar Lake in the last century. Since 2003, three enterprises engaging in salt lake exploitation
have settled in and built two dams to stop the river flowing into the two lakes. The upstream has
been forced to redistribute into the Ya Lake, Ku Shui Lake, and farther downstream to the Yi Ping Li
Lake [55]. East Taijinar Lake and West Taijinar Lake (Figure 11a) were changed into dry salt lakes,
while Yi Ping Lake (Figure 11b) became the largest lake (290.2 km2) in the QB in 2015. The Ya Lake
(Figure 11d) and Ku Shui Lake (Figure 11c) expanded by 156.86 km2 and 38.58 km2, respectively, from
2000 to 2015. A similar process occurred at Qarhan Lake (Figure 11h), which is the largest salt lake area
in China (covering 5800 km2) [52]. The lake is a playa with water only occasionally, which contains
nine smaller but more permanent shallow salt lakes, including Dabsun Lake, South Hodgson Lake,
and North Hodgson Lake [53]. From 2000 to 2015, Dabsun Lake (Figure 11h) and South Hodgson
Lake (Figure 11f) expanded by 188.85 km2 and 30.37 km2, respectively, while North Hodgson Lake
(Figure 11g) was turned into a dry lake due to the influence of dams constructed by state owned
enterprises such as the Qinghai Salt Lake Industry Group Company Limited [55]. Sometimes, dams
also led to lake expansion by preventing lake water discharge. Extensive salt lake exploitations have
spawned a host of complex resource use conflicts and environmental issues in the salt lake regions.
Due to the vulnerabilities of the lake environment in the QB as well as human intervention, the
environmental processes of the lakes have been greatly influenced.
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4. Discussion

4.1. Uncertainties

Our analysis focused on areal changes of high-altitude inland lakes in the Qaidam Basin over
40 years. It is very important to keep spatial coherence of classification maps interpreted from
multi-temporal images. However, unbiased maps of lakes and glaciers are not available due to the
uncertainties from the sensors. Different data sources are the primary factor causing inconsistent
results, especially between the coarse resolution images and the medium–high satellite images. For
example, the value and range ability in the lake area of QB based on MODIS data sets [56] were
different from that in this study (Table 4) and other studies [55]. It seems that the lake extents derived
from coarse resolution images showed stronger inter-annual variability due to the misclassification
of mixed pixels [23]. The most significant limitation comes from the different spatial resolutions of
remotely sensed data acquired in different stages, which leads to the spatial inconsistency of initial
classification results. The patches derived from MSS images contained many mixed pixels, resulting in
a lower mapping accuracies and a higher uncertainty of the lake and glacier extent in 1977 (Table 3).
With the limited resolution of MSS images in 1977, the smallest unit of objects identified from the
image segmentation was determined as 0.036 km2, indicating that the lakes smaller than 0.036 km2

failed to be captured in 1977. However, we focused on the lakes larger than 0.05 km2, meaning that the
coarser spatial resolution has no substantial influence on the statistical analysis of lake number.

Landsat images are constantly improving due to new generations of satellites being launched with
enhanced sensors [34]. The improvements are mainly manifested in the richness of spectral, spatial and
radiometric resolution [57]. Plenty of studies have reported result comparisons of different Landsat
images in land cover classification [58]. Landsat TM images were proved to be superior to Landsat MSS
images and Landsat ETM+ images were superior to Landsat TM. Recent studies indicated Landsat OLI
performed better than all the previous version of Landsat images. The findings in these studies were
quite consistent with our results (Table 3). In addition, minor differences in wavelength exist between
the same bands from different Landsat sensors, which might result in inconsistent threshold values of
NDWI in different time periods and might further impact on the lake extraction results in this study.

In this study, a more accurate approach, the object-based information analysis (OBIA), was used to
perform lake and glacier extractions, resulting in satisfactory overall accuracies of lake mapping over
90%. However, classification errors still existed, since the semi-automatic method NDWI demanded to
empirically set a threshold to segment water body and lake shore, which could induce more or less
mis-estimation. In addition, topographical shadows, snow cover, and clouds in high-altitude regions
also had influences on glacier mapping accuracy. The extracted water surfaces and glaciers were
visually interpreted to manually modify the misclassified objects, and the accuracy greatly depended
on personal experience.

4.2. Comparison between This Study and Previous Studies on the TP

Previous studies indicated that lake changes across the whole plateau were characterized by strong
spatiotemporal heterogeneity [59]. Considerable meteorological analysis concluded that water vapor
exchange between the TP and the Asian monsoon area might have been weakened by the declines in
wind speed on the TP over the past decades, resulting in less precipitation in the monsoon-influenced
southern and eastern TP [60]. By contrast, more convective precipitation generated by the warmer
and moister conditions, the decreased evaporation due to solar dimming, and enhanced glacier
melting have contributed to the expansion of lakes in the central TP [2,10]. The QB located at the
northern margin of the TP is mainly influenced by the westerly flow. Some studies indicated that the
westerly has transported more water vapor to northwest China since 1980, resulting in precipitation
increase [61], which in turn led to the dramatic growing in lake area during the period 1977–1990,
while the decreased precipitation is a key factor that should be responsible for lake shrinkage in the
QB in 1990–2000 (Figure 6, Table 4). Results in this study indicated that precipitation change had a
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significant positive influence on lake area change, and only several lakes linked to glaciers expanded
constantly due to glacier melt water supply. It can be concluded that the amount of precipitation plays
a dominant role in lake changes in the basins without a large fraction of glaciers. Moreover, this study
revealed that, different from other alpine areas in the plateau, the QB has been extensively exploited
for salt lake resources since 2000, resulting in severe areal changes of lakes (Figure 11).

We further compared our results with other publicly released data sets, i.e., the Global Lakes and
Wetlands Database (GLWD) [62] and regional data sets created by Wan [63] and Duan [55] (Table 6).
The GLWD was developed based on multi-data sources gathered latest to 2001. All GLWD lakes
graded in level 1 (>10 km2) and level 2 (1–10 km2) were extracted using the QB boundary. There are
44 lakes with an aggregated area of 1699.2 km2 for the GLWD, which is very close to the result in
this study (Table 4). It is reasonable for the inconformity between the two data sets, since multi-data
sources ranging from 1991 to 2001 were used to extract lakes for the GLWD. We overlaid the vector
files of the GLWD and the data sets produced in this study with the 2000 Landsat images. We found
that some lakes of the GLWD lakes were not shown in the images from 2000, and some small lakes
were neglected. We checked the lakes in our datasets individually and cross-referenced to the GLWD
data. Despite all small issues discussed above, we believe that both the data sets developed in this
study and the GLWD show reliable quality.

Table 6. Area comparison of lakes in the QB between the results in this study and reference atasets.

Year Lake Number Lake Area (km2)
Reference

Dataset Lake Number Lake Area

1977 50 1761.5 Wan (1960s) [63] 39 1200.7
Duan (1977) [55] 45 1793.1

1990 62 1890.2 Duan (1990) [55] 46 1979.7

2000 56 1655.54
Global Lakes and

Wetlands Databases
(GLWD) (2000) [62]

44 1699.2

Wan (2005) [63] 34 1217.0
Duan (2000) [55] 47 1665.4

2015 68 2285.9 Wan (2014) [63] 34 1242.4
Duan (2015) [55] 57 2058.6

A long-term data set of lakes over the TP region was created by Wan et al. [63] using remote
sensing imagery. The data set provides certain useful information for revealing lake changes in the TP
region. A total of 32 lakes, included in both of the two datasets, was selected and used for comparison.
Figure 12 shows the area of the target lakes in 2014 (Wan et al., in blue) and 2015 (this study, in red),
respectively. Note that for the area of each selected lake, the 2014 (Wan) data and the 2015 data are
consistent (R2 = 0.9987). However, there were only 32 lakes with an aggregated area of 1242.4 km2

in the data set of Wan’s (2014), which was much lower than that in this study (2015, Table 4). The
comparison was performed once again by overlaying the two datasets. Despite the 13 lakes smaller
than 1 km2 were ignored, nearly 20 lakes mainly located in the central basin were overlooked in
Wan’s study, including 3 famous lakes larger than 100 km2 (Yi Ping Li Lake, 290.2 km2; Dubsun Lake,
244.0 km2; Ya Lake, 170.3 km2). Our study not only confirmed the findings by Wan et al. (2014), but
corrected its missing information in terms of lake analysis.

In addition, to evaluate our glacier inventory, we compared the glacier areas in this study and
global Randolph Glacier Inventory (RGI) Version 5.0 [64] across the QB, focusing on glaciers > 0.05 km2.
The total area of the QB’s glaciers in 2015 (1513.04 km2) from this study is very close to that of RGI
(1581.4) in the same year, which certainly confirmed the reliability of the glacier classification results in
this study.
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The majority of previous studies concerning lake variations in the QB have been conducted within
a merely short term, using pixel-based classification of coarse resolution imageries. This study showed
more advanced and detailed spatiotemporal analysis compared to previous findings. Duan et al. (2018)
performed a long-term study of lake area change in the QB based on optical satellite imagery analysis.
The findings in Duan’s study also concurred with our results. However, like the majority of previous
studies, Duan’s study only dealt with qualitative analyses of the correlations between climatic change
and lake area variations, and also neglected the influences of glacier retreat on lake areas in the QB.
In this study, we firstly applied SEM for correlation analysis between lake area changes and climate
variables (Table 5, Figure 9). Based on image interpretation and statistical analysis, we concluded that
precipitation played the most significant role on lake area change in the QB, while glacier treating
played a relative weaker one (Figure 9). In addition, our modeling analysis also indicated that human
activities may be the dominant factor resulting in the expansion of lakes in the QB from 2000 to 2015
(Table 5). The results in this study were also consistent with the findings in the study of Jiao’s [65],
which indicated that the water storage in the QB increased during 2002–2013, while our study found
that the lakes expanded significantly during the same time. The sparse population in the QB makes it
impossible for us to obtain the specific domestic information concerning the mining activities. Given
this challenge, we qualitatively explained the findings using a visual presentation. However, some
direct image evidences demonstrated the importance of human activities in shaping the lake changes
in the QB during the last decade (Figure 9).

4.3. Environmental Degradations in Lakes of the QB

Qinghai Province has been keen on industrialization to mitigate its poverty [66]. Given its
remoteness and extreme climate, however, land-use controls and environmental regulations are
poorly implemented over the QB. Extensive exploitation has caused considerable damages to salt lake
environments and potential issues in the QB, such as flood hazards, resource waste, and water pollution.
Enterprises built dams to control water flowing into the lakes instead of natural discharge, which
increases the flood risks [67]. These dams have changed water flow, created new lakes, disturbed local
ecosystems, and significantly impacted downstream, including carrying less silt, which is necessary
for fertile agricultural lands [68]. A recent study indicated that the significant expansion of salt lakes
formed a threat to ecological environments and major engineering facilities in the Hoh Xil region of
the TP [69]. Unregulated emissions of brine have also caused overflows in the downstream region at
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the Qarhan Lake area [55] in the QB. Continuous expansions of salt lakes have also led to damages in
the infrastructures surrounding them. The high salinity lakes, such as Yi Li Ping Lake and Ku Shui
Lake, expanded dramatically in the last period and even inundated the national highway G315 in 2015
(Figure 13). Overflowed salt water eroded the road and threatened road safety. Industrial factories
with large-area salterns, rectangular pools for processing the salts, occupy the land around the salt
lakes (Figure 11a,c–f,h) and discharge effluents into rivers. Industrial pollution under inappropriate
governing has contaminated and degraded salt lakes [25]. Abundant toxic solvents were employed to
separate lithium from naturally crystallized salts, and were known to trigger cancer [70]. The toxicity
of lithium emitted in rivers has been scientifically proven to potentially threaten water quality, health of
residents, and fragile local environments [71]. High-polluting and wanton extractive business activities
without regard to local environment and religious significance have spread anguish and disaster for
the local people in the QB [72]. Lacking the requirements of a scientific outlook on development and
violating the principles for sustainable development, enterprises neglect the environmental costs to
create economic profits, which is seriously degrading environmental conditions and hurting religious
beliefs of the local residents in the QB.Remote Sens. 2019, 11, x FOR PEER REVIEW  18 of 22 
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5. Conclusions

The impacts of climate and human disturbances on lakes on the Qaidam Basin, Tibetan Plateau,
were investigated based on the integration of satellite image series and meteorological records. Over
nearly 40 years, the total area and number of lakes (area > 0.5 km2) increased by 524.4 km2 and 18,
respectively. The SEM analysis revealed that precipitation played the most significant role on lake area
change in the QB. Only a small number of lakes linked to glaciers expanded constantly due to glacier
melt water supply. Without a large fraction of glaciers, as in other parts of the TP, precipitation is the
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dominant environmental influence for lake changes in the basin. With extensive mining exploitation
of salt lakes since 2000, human activities directly contribute to the expansion of lakes during the
period 2000–2015. Continuous expansions of high salinity salt lakes caused the national highway to
be inundated and seriously threatened on the road safety. Therefore, continued scientific research
combined with long-term monitoring will be vital for assessing the future responses of the lakes and the
vulnerable lake environments in the QB. Environmental policies should be implemented to strengthen
ecological improvement and environmental protection, promoting the sustainable development of
regional economy and society in the basin.
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