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Abstract: Oil and coconut palm trees are important crops in many tropical countries, which are either
planted as plantations or scattered in the landscape. Monitoring in terms of counting provides useful
information for various stakeholders. Most of the existing monitoring methods are based on spectral
profiles or simple neural networks and either fall short in terms of accuracy or speed. We use a
neural network of the U-Net type in order to detect oil and coconut palms on very high resolution
satellite images. The method is applied to two different study areas: (1) large monoculture oil palm
plantations in Jambi, Indonesia, and (2) coconut palms in the Bengaluru Metropolitan Region in India.
The results show that the proposed method reaches a performance comparable to state of the art
approaches, while being about one order of magnitude faster. We reach a maximum throughput of
235 ha/s with a spatial image resolution of 40 cm. The proposed method proves to be reliable even
under difficult conditions, such as shadows or urban areas, and can easily be transferred from one
region to another. The method detected palms with accuracies between 89% and 92%.
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1. Introduction

The global market for palm oil is expanding, driven by an increasing demand from industry where
palm oil is used for various products [1]. For many tropical countries, such as Indonesia, oil palms are a
significant source of revenues. As oil palms offer more rapid and higher profits than other types of land
use, many governments in the tropics support the expansion of oil palm plantations for the sake of the
national economic development. While the international demand for oil palm is high, environmental
and ecological concerns are calling for palm oil management and production schemes that make palm
oil production less environmental detrimental and overall more sustainable. Besides palm oil, there is
a globally growing demand for coconut products, in particular for coconut oil, with India being the
leading country for coconut production and productivity [2,3]. The main difference to oil palms is
that coconut palms have more diverse uses and are planted not only on large plantations but also as a
home garden crop. Thus, coconut palms are also used by small scale industries. The occurrence of
coconut palms is therefore much more scattered and large area monitoring is challenging.

Recent advances in deep learning had a high impact on remote sensing in general [4,5] and,
more specifically, on land cover classification [6–8]. Deep learning offers the possibility to automatically
identify the positions of individual palm trees in large areas in a reasonable time [9]. Such detailed
data may be of major interest for various stakeholders: plantation managers can better monitor the
development of their plantations and adjust their management processes [10]. Government institutions
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would be able to monitor unauthorized expansion of oil palm plantations or adherence to agreements
on sustainable palm oil production. But also the general public, NGOs, and research institutions may
be interested in such information e.g. for evaluating environmental impacts [11,12].

Detection of oil palms on satellite images has been subject to earlier studies that focused on
productivity, determination of the age of palm trees, and the mapping of oil palms from Landsat and
PALSAR [13–15]. The following studies explicitly dealt with detecting individual palms: Srestasathiern
and Rakwatin [16] used Quickbird and WorldView-2 images with 60 cm spatial resolution and four
spectral bands (R, G, B, NIR) in Thailand. They derived palm positions from a selected vegetation index,
by using a data transform and maximum extraction. Using this approach they reached an F1-Score
between 89.7% and 99.3%. However, it is important to remark that they applied their algorithm to
plantations where individual palms were well separated without overlapping crowns, and where the
plantation borders had previously been delineated.

Li et al. [9,17] and Cheang et al. [18] both used similar approaches: they trained a convolutional
neural network (CNN) classifier. The network receives a small image patch with (or without) a palm
in its center as an input and calculates a probability for this patch containing a palm. The small
input window is moved over the whole image, and at each position the corresponding probability is
recorded. By that method, a “palm probability map” was created. Using non-maximum suppression,
the palm positions were determined. This approach yielded very good results. However, Cheang et
al. claim to reach an accuracy of 94.5% on images with overlapping crowns, but without providing
an overview of their test dataset, nor their definition of accuracy or precise network performance.
Li et al. [9,17] train their CNN on several thousand image patches of 17× 17 pixels with a resolution of
60 cm, of which 5000 image patches contained a palm. They reached F1-Scores between 96.1% and
98.8% in [9] and between 92.2% and 97.1% in [17]. In both publications Li et al. use manually selected
image sections for training and validation.

In their study, Li et al. [9] compare their deep learning based method with earlier methods, based on
local maximum filtering [19] or template matching [20]. They show that the CNN classifier outperforms
the conventional methods by 3 to 7 percentage points in terms of the F1-Score. These conventional methods,
and those based on spectral profiles [16,21], require prior knowledge about the plantation borders, which
makes them inadequate for large area plantation detection problems. In non-plantation areas, which also
appear in our dataset, spectral methods deliver many false positives; the outcome of such a comparison
would clearly be in favor of deep learning based models, which do not require the delineation of plantation
borders in advance. An example can be found in [16] (Figures 5 and 6). Another alternative to deep
learning approaches would be tree crown detection based on height profiles [22]. This method, however, is
not applicable to the data used in this paper, as no height information is available.

The increase in performance and the possibility to apply the models to any land cover type give
reason why further research in direction of deep learning for the task of palm detection is beneficial.
The major weakness of the moving window classifier used by the aforementioned approaches lies in
its low computational performance. Li et al. [9,17], for example, use a step width of three pixels for
their moving window, which results in a large number of windows that need to be cropped to feed the
classifier. The number of these patches behaves like A/∆2, where A is the image area and ∆ is the step
width. With this method, the resolution of the palm probability map is directly tied to the step width.
Computation time therefore increases quadratically with the output resolution.

In this study we present a method for palm tree detection, which is based on the U-Net
architecture [23]. The proposed method is faster and more accurate than the state of the art approach
reported in [17]. In addition to that, we show that our method generalizes well across different datasets.
To prove this, we transfer a neural network trained on oil palm plantations in Indonesia to an urbanized
region in India with scattered occurrence of coconut palms. Both regions do drastically differ with
respect to their spatial pattern of oil palm occurrence and atmospheric conditions.
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2. Study Areas and Materials

2.1. Jambi, Indonesia

The first study area is located 44 km south-west of Jambi City, Indonesia, and covers an area
of about 348 km2. It is part of a larger study area of a collaborative research project in the area
(CRC990—EEForTS) [24].

In particular, the flat lowland regions of Jambi have seen a dramatic increase in oil palm plantation
area over the past decades, which mainly consists of very intensively managed large plantations but
also smallholder plantations [25]. In the northern part of the study area, there are mainly smallholder
oil palm plantations, with relatively small and loosely grouped patches of remnant forests and villages
in between. In the South, large commercial oil palm plantations prevail with several hundreds of
thousand of oil palms. There is a big gap in the vegetation cover in the south of the area depicted in the
image at the top left of Figure 1, where all palms have been cleared and, in some parts of this gap area,
young palms have been re-planted. This is a normal cycle in oil palm management: Old plantations
that have passed their stage of high productivity are being removed and replaced by young plants.
Accordingly, in larger areas—and also in our dataset—we find palm trees of different age classes and
development stages. Younger palms are clearly separated as solitary plants and their crowns are still
small. Young palm trees do not yet have the characteristic “star”—shaped arrangement of the leaves
when seen from above. As they get older, the palm trees close the gaps between the plants, until the
crowns touch and start overlapping.

Figure 1. The first study site is located 44 km south-west of Jambi City, Indonesia.

2.2. Bengaluru, India

Bengaluru, the capital of the Indian State of Karnataka, is located around 12◦58′ N, 77◦35′ E
and lies on Southern India’s Deccan plateau at about 920 m above MSL [26]. Founded about in the
year 890, Bengaluru is a rapidly growing megapolis with concomitant increases in population (e.g.,
from 6,537,124 in 2001 to 9,621,551 in 2011) [27]. Before this expansion, Bengaluru was considered
the “Garden city” of India, widely known for its beautiful roadside large canopied flowering trees as
well as for two large historic parks and botanical gardens [28,29]. Bengaluru is today India’s second
fastest growing economy [30]: such economic development triggers a significant influx of population
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into Bengaluru, which in turn triggers construction activities. The very rapid urban expansion into
transition and rural areas has already caused significant losses of tree and vegetation cover in the
Bengaluru Metropolitan Region [28,31].

In the framework of a larger Indian-German collaborative research project (FOR2432), a
50 km × 5 km research transect was defined in the northern part of Bengaluru (Figure 2). This
transect contains different land-use categories and extends over rural, transition, and urban domains.
Contrary to the large monoculture palm oil plantations in Jambi, Bengaluru has coconut palms that
are scattered with varying density over the entire study area, where the background also contains
buildings, roads, green spaces, or other features.
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R
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T
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U
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Research transect

India

Figure 2. The research transect is located in the northern part of Bengaluru and, as the left map shows,
lies partly in the administrative regions “Urban Bengaluru” and partly in “Rural Bengaluru”. Our own
breakdown into the three domains “rural”, “transition”, and “urban” follows the percentage of built-up
area and is illustrated by differently colored frames around the transect sections (yellow for “rural”,
green for “transition”, and red for “urban”). The transect is enlarged here as a false color composite.

2.3. Remote Sensing Imagery

The imagery used for the study area of Jambi was acquired on 2 July 2017 by Digital Globe’s
WorldView-2 satellite. Apart from large plantations, the images in this dataset contain clouds, shadows,
forest, and buildings. The Bengaluru dataset was acquired on 16 November 2016 by WorldView-3 under
cloud-free conditions. WorldView-2 has eight multispectral (MS) bands with a nominal resolution of
1.84 m and one panchromatic band with 0.46 m resolution. The difference to WorldView-3, which also
has eight bands, is the nominal resolution which is 1.24 m for MS bands and 0.31 m for the panchromatic
band. The resolution for WorldView-2 resulting from pansharpening the data is 0.4 m per pixel and
for the WorldView-3 imagery we retrieved a resolution of 0.3 m. For pansharpening we used the
algorithm implemented in PCI Geomatica 2018 with standard settings. None of the images underwent
atmospheric correction, as we want to assess the robustness of our model with respect to dealing with
new, raw data.
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2.4. Training Data

For generating the training data we first manually digitized the palm tree crown centers. Around
these center points, all pixels within a radius of 2 m are then marked as “palm”—this is the ground
truth mask. Within the study area in Jambi, we randomly sampled 160 quadratic one hectare plots,
wherein a total of 10,679 palms were marked. In addition to that, we marked 4600 non-palm points,
which are later used for the training of the classifier (Section 3.5). The training data was collected on
the entire dataset, as we are interested in evaluating the accuracy of our model on a large scale.

The Bengaluru training dataset is structured differently: here we selected nine different areas of
interest of varying sizes (between 1 and 60 ha). These tiles were selected with the aim of including
as many different contexts as possible (urban/transition/rural). Within those tiles we marked 1124
coconut palms for training and 1418 for testing. During the entire labeling process, different band
combinations with different contrasts were used in order to ensure high precision.

3. Methods

3.1. U-Net Architecture

Our approach for localizing palm trees uses the so-called U-Net [23], which is a deep neural network
that generates semantic segmentations. It receives an image patch and produces a probability map
(segmentation) for predefined classes, here palm and background. The term segmentation here refers to
the probability map, not to a grouping of pixels as it is often done in remote sensing. The segmentation
map has the same lateral dimension as the input (e.g., 112 × 112 pixels). Each pixel of the segmentation
map quantifies the probability that this pixel belongs to a palm tree. As the prediction quality in the
segmentation map deteriorates close to the border, the output is here cropped by 16 pixels from each
edge. In contrast to this architecture, the classifiers used in earlier work (e.g., [17]) output a single number
per input image patch, which quantifies the probability that the patch contains a palm.

We use two U-Nets (A and B), which differ in certain parameters. U-Net A (Figure 3) is based on [7],
which is a complex architecture with proven performance in other tasks. We ported the implementation
of Iglovikov et al. [7] to Keras [32] with TensorFlow [33] as back end and made slight modifications to
it. The U-Net A comprises five stages. At each stage two 3 × 3 convolution operations are applied,
each followed by batch normalization and the ReLU activation. The downsampling between the stages
is performed by 2 × 2 pooling operations and—in contrast to the original implementation—we use
nearest neighbor upsampling in the expanding part of the network, instead of transposed convolutions.
The second adaptation we made is that batch normalization is only used in the contracting part of the
network. With these changes we were able to increase the speed of the network without decreasing
the accuracy. The last convolution has a kernel size of one and is followed by a softmax activation, in
order to map the intermediate feature maps to the final probability maps. U-Net A has approximately
7.8 million parameters.

As palm trees have a simple “star”-shape when seen from above, we hypothesized that it is
possible to detect them using a simpler model. The rationale behind these simplifications is that
we want to achieve a higher throughput. We experimented with different numbers of stages and
convolutions, arriving at U-Net B (Figure 4). U-Net B involves four stages with only one convolution
per stage. These convolutions also feature less filters than in U-Net A. In this manner, we reduced
the number of parameters in U-Net B to 260,000. Our implementation of the AlexNet described by
Li et al. [17] has approximately 790,000 parameters. The number of parameters in the U-Nets does not
depend on the input image size. On the contrary, for AlexNet, it does. This is why the U-Net can in
principle be fed with images of arbitrary size.

As Li et al. [17] use a resolution that differs from ours, we rescaled the model’s input size and the
step width. Li et al. worked on imagery with 0.6 m resolution. Ours is 0.4 m, therefore we increased
the input size and step width by a factor of 1.5 to 26 and 5, respectively.
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Figure 3. U-Net architecture A. The U-Net has a “contracting” (left) and an “expanding” part (right).
Information from earlier layers is fused with the output of later layers, which improves the accuracy of
the segmentation. The last convolution has a kernel size of one.
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Figure 4. U-Net architecture B. This is a simpler version of U-Net A and is optimized for speed. The last
convolution has a kernel size of one.

The network input, the ground truth masks used for training, the output, and the final result are
shown in Figure 5.
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(a) Input (b) Ground truth (c) Palm probability map (d) Final result

Figure 5. The network directly generates a “palm probability map” (c) from the input image (a), locating
several instances (palms) at once. The output is smaller, because we crop 16 pixels from each edge.
This output is optimized in order to best match the ground truth mask (b). The maxima in the smoothed
probability map correspond to the identified palm positions. The final result is shown in (d) with yellow
dots as true positives.

3.2. Inference

Our approach is comparable to existing ones, in so far as it slides an input window over the area of
interest. The difference is that it uses a much larger window size, as can be seen in Figure 6. At each position,
an entire segmentation map is produced, instead of a single probability. This allows the detection of several
palms at once. Accordingly, the step width can be much larger and far less patches have to be processed.

26x26
Input

Output

(a) Existing method

112x112

80
x8

0

Input

O
ut

pu
t

(b) Our method
Figure 6. In (a) the existing method is shown (e.g., [9]). A classifier window (green) is moved across the
image in steps of a few pixels. At each position (red), the classifier calculates a “palm probability”, from
which a coarse probability map is created. In our method (b), the input window (green) is moved over
the image in larger steps. At each position, the segmentation is calculated. The output window (blue) is
slightly smaller than the input, because it is cropped due to the lower prediction quality at the borders.
The palm positions can then be inferred from each probability map. The small rectangle at the bottom of
(b) has the size of the classifier input in [9], scaled up to match our image resolution (26 × 26 pixels).

The network output shown in Figures 5 and 6b is smoothed with a Gaussian filter with a
standard-deviation of 1.2 m, which equals 3 or 4 pixels, depending on the dataset. Then we perform
a local maximum detection. SciPy’s [34] peak local max function with a minimum distance of 1.2 m,
an absolute threshold of 0.15, and a relative threshold of 0.1 is used. The resulting palm positions are
then classified as true positive, false positive, or false negative. Peak positions closer than 3.2 m to a
true position are counted as true positives, while ensuring that each true palm position can count for
only one true positive. Predictions closer than 3.2 m to the global image border were left out of the
accuracy assessment in order to avoid boundary effects. The radius of 3.2 m approximately equals two
thirds of the crown radius of a full grown palm.
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When evaluating the network performance, the inference is done on all images in the test dataset.
The true positives, false positives, and false negatives are summed up across all images, then the
performance metrics are calculated.

3.3. Quality Measures

The following equations were used to determine accuracy, precision, recall, and F1-Score of the
position detection [35]:

Accuracy =
tp

tp + fp + fn
(1)

Precision =
tp

tp + fp
(2)

Recall =
tp

tp + fn
(3)

F1 = 2 · precision · recall
precision + recall

(4)

tp: true positives, tn: true negatives, fp: false positives, fn: false negatives.
A high precision means that each predicted object is a palm, regardless of how many palms were

not detected. In contrast, a high recall means that all palms were found, regardless of how many
objects were wrongly classified as palm. The F1 score is the harmonic average of precision and recall.

3.4. Network Training

We trained the two different U-Net architectures A and B on the WorldView-2 imagery in Jambi
and evaluated their performance. Apart from that, we benchmarked our method against the existing
classifier based on [9,17] with regard to accuracy and computational performance. Then we re-trained
and transferred the networks to the WorldView-3 imagery in Bengaluru and assessed their accuracy
under these new conditions. Lastly, we utilized the full potential of the U-Net and applied it on a
large area. The computer employed was equipped with an Intel Xeon 6136, 96 Gb of memory and two
Nvidia GeForce 1080Ti graphics cards, which were both used.

Based on previous experiments, we reduced the original number of bands in both WorldView
images to four bands (R, G, B, NIR) and added an additional band: the normalized difference vegetation
index (NDVI), so that the network input has five bands in total (R, G, B, NIR, NDVI). Then the images
were normalized by subtracting the dataset mean and dividing by the standard deviation for each
band separately. The NDVI band remained untouched. In order to train the U-Net, it was fed with
randomly cropped image tiles of size 112 × 112 pixels and the corresponding masks in batches of 16
samples. We used random transformations from the Dih4 symmetry group (the symmetry group of
the square; 90 degree rotations and reflections) in order to artificially increase the amount of training
data. This process is called data augmentation. A combined loss function of categorical cross entropy
and the negative logarithm of the intersection over union of mask and prediction was employed,
as described by [7]. We used the Adam optimizer [36] with Nesterov momentum [37].

In order to evaluate the performance of U-Nets A and B on the Jambi dataset, we performed a
10-fold cross validation with a 70–30% split into training and test data. This was necessary because the
prediction metrics heavily depend on the selected training and test images. In each run, the network
was trained for 600 epochs with 35 steps per epoch. One epoch corresponds to feeding images with a
total area equaling the total training area to the network. The initial learning rate was set to 5 × 10−5

and first lowered to 10−5 after 350 epochs, then to 5 × 10−6 after 450 epochs. These parameters
correspond to the best performance obtained from empirical evaluations.
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3.5. Comparison with Existing Methods

To compare the AlexNet architecture described in [17] with our method, we trained it on the
Jambi dataset, again performing a 10-fold cross-validation with exactly the same split into training and
test images. Given the dataset size of 11,600 images, the training split of 70%, and the input image size
of 26 × 26 pixels, we have approximately 5.5 million pixels available for training. Together with data
augmentation, we believe this amount of data is enough to train the 790,000 parameters of AlexNet.
Training was done for 100 epochs using a batch size of 16, with 100 steps per epoch, and the same
augmentation as before. The initial learning rate was set to 3× 10−5 and first lowered to 10−5 after
30 epochs, then to 5× 10−6 after 50 epochs. This learning rate schedule was optimized by trial and
error in order to improve the final network accuracy. We used the categorical cross entropy as loss
function and the same optimizer as for the U-Net. The coarse probability maps, resulting from moving
the classifier over the test images, were upsampled to match a resolution of 0.4 m. Afterwards, palms
were searched with the method described in Section 3.2, the only difference being a threshold value of
0.5 instead of 0.15 for the peak detection. This different threshold was the result of an optimization
using nested intervals.

3.6. Speed Benchmark

For an independent performance validation we benchmark our approach against the the approach
by Li et al. who used the AlexNet model [38]. This study is the only one that provided the required
information about the exact network architecture in our literature revision. All models were tested on
the same hardware with the same environment on an image of 4 km2 or 5000× 5000 pixels. In order
to reduce CPU calculation overhead and improve GPU utilization, we transferred the U-Net weights
gained from training on 112× 112 pixel tiles to a model with the same architecture but 512 pixels
input window size and, therefore, larger output size. In order to test if the increased input window
size affects the model accuracy, we performed an evaluation on a subset of 1700 palms. During the
benchmark, we neglected the time it took to pre-process the images and took the pure inference time
only. The timings were taken after one “warmup” run and averaged over 30 repetitions.

3.7. Transferability of Pre-Trained Network

We applied the U-Nets, which had been pre-trained on oil palms in Jambi, to the coconut palm
trees in Bengaluru. Both datasets differ slightly in their spatial resolution, as well as in the atmospheric
conditions. The environmental contexts in which oil and coconut palms grow, however, are significantly
different (Figure 7), and this is the major challenge for the transferability of the network.

Therefore, directly applying a model pre-trained on one dataset to another may yield bad results.
Since collecting massive amounts of new training data was unfeasible, we followed a transfer learning
strategy by normalizing the training images. The batch normalization layers in our network learn the
mean and standard deviation of the activations on the training dataset, thus they adapt to the color
spectrum. In contrast to that, the convolutional layers adapt to low level spatial features and their
combination into higher level representations of the data. Since both datasets differ only by 10 cm in
resolution, we assumed that the kernels learned by the convolutional layers are still valid. However,
the color spectrum changed due to the different atmospheric conditions and varying surface materials.
To overcome this, we optimized the batch normalization layers for the new color spectrum, which
speeds up the training process. Subsequently, we performed minimal re-training of the entire network.
The training procedure comprises three steps (see Figure 8): We departed from a network, which had
been pre-trained on the whole WorldView-2 imagery in Jambi for 600 epochs according to the described
scheme. In the first step, the learning rate was set to 10−2 and only the batch normalization layers were
trained for 700 gradient updates (which equates to showing 700 image batches to the network, not to
confuse with epochs). Second, we trained all layers for 700 gradient updates with a learning rate of
10−3. The third step is fine-tuning, which we did for another 700 updates with a learning rate of 10−5.
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The training set contained 1124 palms and the test set 1418. Labeling the 1124 palms in the training
dataset took about one to two hours and was therefore considered as an acceptable amount of work
for transferring the network.

(a) Jambi dataset (b) Bengaluru dataset

Figure 7. Sample images from the two datasets.
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to the color spectrum. In contrast to that, the convolutional layers269

adapt to low level spatial features and their combination into270

higher level representations of the data. Since both dataset differ271

only by 10 cm in resolution, we assumed that the kernels learned272

by the convolutional layers are still valid. However, the color273

spectrum changed due to the different atmospheric conditions and274

varying surface materials. To overcome this, we optimized the batch275

normalization layers for the new color spectrum, which speeds up the training process. Subsequently,276

Figure 8. The transfer procedure comprises three steps: exclusive training of the batch normalization
layers, full network training, and fine-tuning.

4. Results

4.1. Classification Accuracy on the Jambi Dataset

Table 1 gives the results for U-Nets A and B, and the classifier approach [17], trained on the
Jambi dataset.

Table 1. Performance metrics of our model in comparison with state of the art method. The numbers
have been obtained by first averaging over the k-fold runs and then averaging over the last 50 epochs,
after the metrics have converged. Highest numbers are highlighted. The training history is given in the
Appendix A.

Accuracy Precision Recall F1-Score
U-Net A 88.6% 94.4% 93.5% 93.9%
U-Net B 87.9% 93.2% 94.0% 93.6%
AlexNet [17] 75.0% 88.8% 83.0% 85.8%
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The results show that our model outperforms AlexNet. U-Net A scores highest with an accuracy
of 88.6%, closely followed by U-Net B, which scores 87.9%. The AlexNet model used in [17] reaches
75%. Detailed curves for the losses and metrics during the training can be found in the Appendix A.
Figure 9 sheds some light on the performance of U-Net A under difficult conditions:

(a) Palms in the shadow of a cloud. (b) Palms partly under clouds.

Figure 9. The network still detects palms under difficult conditions. True positives are marked yellow
and false negatives blue.

4.2. Benchmark and Large Scale Performance

Table 2 lists the results of the speed benchmark, which was done following the procedure described
in Section 3.6.

Table 2. Results of the speed benchmark. The standard deviations for the timings were 0.08 s for
AlexNet, 0.05 s for U-Net A, and 0.03 s for U-Net B.

Network Input Size [px] Step [px] Time [s] Throughput [ha/s]
AlexNet [17] 26× 26 5 17.7 22.6

U-Net A 112× 112 80 3.3 121.2
U-Net B 112× 112 80 1.8 222.2

U-Net architecture B is fastest, reaching a throughput of 222.2 ha/s, followed by U-Net A with
121.2 ha/s. The AlexNet [17] reaches a throughput of 22.6 ha/s. Therefore U-Net B is one order of
magnitude faster than AlexNet. The speed of the U-Net architecture can be enhanced even more by
feeding it with larger image patches, as described in Section 3.6. When feeding image patches with
a size of 512 by 512 pixels to the network, U-Net A reaches a throughput of 181.8 ha/s and U-Net B
reaches 235.3 ha/s. Increasing the input window size did not affect the accuracy: U-Net A detects
96.1% and U-Net B 92.8% of the 1700 palms the test set created for this task.

As we have shown the performance in terms of quality and speed, we unleashed the full potential
of the U-Net and applied it to the entire dataset. In order to do so, we applied U-Net A as a moving
window, as shown in Figure 6. Inference on the whole Jambi dataset of 348 km2 takes 18 min and
yields a number of approximately 2.1 million palms. This is slower than one would expect from the
numbers in Table 2 due to the non-rectangular shape of our dataset and input/output operations.
Figures 10 and 11 show the results. We can observe that the entire southern part of the study area
(at the bottom of Figure 10) is covered with large monoculture plantations. In combination with the
structured plantation pattern, this indicates a corporate land use. On the other hand, plantations in the
northern part are smaller and scattered, therefore most likely owned by smallholders.
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Figure 10. The palm coverage of the Jambi study site. The image displays 2.1 million palms, each one
resolved individually.

Figure 11. Zoom into the study site. The magnification increases from top to bottom. With higher
magnification, the planting patterns become clear.

4.3. Transfer to the Bengaluru Dataset

We transferred both pre-trained U-Net models to the Bengaluru dataset, as described in Section 3.7.
First, we re-trained the batch normalization layers, followed by a fine tuning of the whole network.
Training only the batch normalization layers boosted the accuracy from 12% to 83% for architecture A
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and from 20% to 78% for architecture B. After the subsequent fine-tuning of all layers, architecture A
reaches an accuracy of 84.4% and architecture B reaches 91.8%. The entire re-training procedure took
only about eight minutes. The final results are summarized in Table 3.

Table 3. Performance metrics for the two architectures after training the batch normalization layers
only, and for the full transfer. Here the metrics have been derived from a set of test images and not
from k-fold validation. Highest numbers are highlighted.

Accuracy Precision Recall F1-Score
U-Net A BN only 83.3% 86.9% 95.2% 90.9%
U-Net B BN only 77.8% 83.1% 92.4% 87.5%

U-Net A 84.4% 88.6% 94.7% 91.6%
U-Net B 91.8% 95.0% 96.4% 95.7%

The result of the fine-tuning of U-Net architectures A and B showed that U-Net B performed best
on the WorldView-3 Bengaluru dataset. To assess the validity of the approach, we applied it to the whole
transect; the resulting map shows approximately 106,000 palm trees. In the urban area, coconut palms
are found scattered alongside roads, in parks or gardens, as already found by visual inspection. Further
north, in the transition and rural region, palms mainly grow in plantations with only few solitary palm
trees. The plantations are much smaller than those in Jambi and the planting distance is larger. Figure 12
shows two examples from the Bengaluru study site:

Figure 12. Samples from the Bengaluru study area after transferring U-Net B. True positives are marked
yellow and false positives red.

4.4. Failure Cases

The visual inspection reveals different cases in which the network fails, equally applicable to
both architectures. Figure 13 presents examples for the study area of Jambi and Figure 14 refers to the
Bengaluru study site.

Figure 13a reveals that the network has problems finding young palms in shadows, which is the
most common failure case in the Jambi dataset. Shadow is a common factor that also deteriorates the
performance in other experiments. Under low light conditions, the network generates false positives
in areas with forest and omits some of the adult trees. Nevertheless, visual inspection shows that the
predictions are still quite robust under the influence of shadows (see Figure 9). False positives, such as
shown in Figure 13b, are rare. They mostly occur in forest areas, where the vegetation randomly
resembles a palm, or near bright-dark transitions involving green color. Clouds are tolerable to a
certain degree, as long as the ground is still visible.
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(a) Undetected young palms in shadows (b) Falsely positive marked shrubs

Figure 13. Failure cases in the Jambi study area: True positives are marked in yellow, false positives in
red, and false negatives in blue. Young palms in shadows are rare in the dataset, and therefore hardly
detected. Other failure cases, such as in (b), are challenging to find, as they rarely occur.

(a) Falsely positive marked bright line (b) False negatives

Figure 14. Failure cases in the study area of Bengaluru. True positives are marked yellow, false positives
red, and false negatives blue. In (a) the convolutional filters respond to a bright line. In (b) the network
fails to detect some palm trees probably because of dark green grass in the background.

Figure 14a depicts false positives next to a bright-dark transition in the Bengaluru area, which
shows that this error is not restricted to one dataset. In certain areas with low contrast, such as in
Figure 14b, the network also fails to detect some palms correctly. Another failure case in the Bengaluru
dataset is that young mango trees are also labeled, as they resemble the round, “blob-like” shape of
young palms. Apart from that, the network performance depends on the location: it is worse for mixed
terrain with forest or urban areas and best on plantations, where it labels almost every object correctly.

5. Discussion and Conclusions

In this paper we presented a new method for large area oil palm detection on very high resolution
satellite images, which is based on the U-Net. Overall, we reach F1 scores well comparable to
the ones reported earlier [9,17]. On our dataset, the U-Net outperforms previous approaches by
10–13 percentage points in terms of accuracy and by 6–8 on the F1-score. We hypothesize that this
improvement has three reasons: First, the U-Net sees the entirety of the training images during the
training, while the classifiers in [9,17] only see the cutouts around the palm- or non-palms positions.
Therefore, the U-Net effectively sees more training data from the same image source. Second, the U-Net
is able to take larger contexts into account during segmentation. It “sees” not only one palm, but several
palms. This way, it can for example recognize plantation patterns and adjust the segmentation
accordingly. Third, the U-Net is a more powerful network than the AlexNet or LeNet used in [9,17,18]
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since its internal structure suits the given task better, as it directly highlights the patterns it has been
trained for and returns a probability map. Furthermore, U-Net B has 260,000 parameters in comparison
to the 790,000 of our AlexNet implementation, so it is also smaller.

Another important contribution of our approach is the computational efficiency, which comes
from predicting entire segmentation maps instead of single probabilities, as well as from better utilizing
the parallel computing capacity of graphics cards. Our method is able to reduce the computation
time by an order of magnitude compared to the existing method, which enabled us to scan areas
of several hundred square km within a reasonable amount of time and processing effort—without
being restricted to pre-delineated plantations. As our Jambi dataset was collected in a large area,
we were able to prove that the U-Net delivers high accuracy even on large scale. Furthermore, the
U-Net is well-scalable and able to leverage the performance benefits from newer hardware generations,
which would allow to increase the input window size even further.

We showed that it is possible to transfer a pre-trained model from one dataset to another with
a reasonable amount of new training data. From our two models, the simpler one (U-Net B) had a
higher performance on the new dataset (see Table 3). This might be due to the fact that it has less
parameters and is therefore less prone to overfitting (see Figure A2). The high accuracy after training
the batch normalization layers proves that they play a key role in transferring the model. Atmospheric
correction has not been used, as we wanted to assess how well the models generalize to new, raw data.
Further studies have to be conducted in order to find out which role atmospheric correction can play
in the process of palm detection.

Even though the accuracy of the new method is high, there were some failure cases. The results
showed that the models fail when the signal to noise ratio becomes too low, which is the case in dark
shadows or at the edges of clouds. In contrast, we have observed that lighter shadows or clouds had
only little influence on the results, even though further research has to be conducted in order to verify
this capability of our approach. The most common failure, young palms in shadows, has a minor effect
on the overall accuracy, as they are rare in the dataset. This failure case could probably be ameliorated
by acquiring more training data for this specific class. With respect to the high image resolution, we are
confident that the datasets we generated are of high quality. Nevertheless, labeling errors can always
occur and impair both, network training and accuracy assessment.

In spite of the good results obtained with the proposed approach, there is room for improvements
and further work. For instance, it would be interesting to explore the combination of the U-Net
and the networks in [9,17], by applying them to the palm positions predicted by the U-Net. In this
manner, it would be possible to reduce the number of false positives while keeping the computational
efficiency. The combination of U-Net and classifier could also be used to provide an alternative to
existing methods for the classification of diseased trees [39,40].

To conclude, we would like to point out that, thanks to its computational efficiency, our approach
may provide an efficient instrument for precisely monitoring palm trees at the level of entire states or
even countries, which would at this resolution be impractical with other existing methods.
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Appendix A
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Figure A1. Test accuracy, precision, and recall of architecture A on the Jambi dataset. The graphs show
the metrics derived from the predicted positions averaged over all k-fold runs. The curves for U-Net B
look similar.
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Figure A2. Training and test loss for U-Net A and B, averaged over 10 cross-validation runs. U-Net B
has a lower spread between training and test loss, which indicates that it is less prone to overfitting.
This is due to the lower number of parameters (260,000 vs. 7.8 m).
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Figure A3. Test accuracy, precision, and recall for the AlexNet classifier [17], averaged over all k-fold runs.
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