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Abstract: Modernization of agricultural land use across Europe is responsible for a substantial
decline of linear vegetation elements such as tree lines, hedgerows, riparian vegetation, and green
lanes. These linear objects have an important function for biodiversity, e.g., as ecological corridors
and local habitats for many animal and plant species. Knowledge on their spatial distribution is
therefore essential to support conservation strategies and regional planning in rural landscapes
but detailed inventories of such linear objects are often lacking. Here, we propose a method to
detect linear vegetation elements in agricultural landscapes using classification and segmentation
of high-resolution Light Detection and Ranging (LiDAR) point data. To quantify the 3D structure
of vegetation, we applied point cloud analysis to identify point-based and neighborhood-based
features. As a preprocessing step, we removed planar surfaces such as grassland, bare soil, and water
bodies from the point cloud using a feature that describes to what extent the points are scattered
in the local neighborhood. We then applied a random forest classifier to separate the remaining
points into vegetation and other. Subsequently, a rectangularity-based region growing algorithm
allowed to segment the vegetation points into 2D rectangular objects, which were then classified into
linear objects based on their elongatedness. We evaluated the accuracy of the linear objects against a
manually delineated validation set. The results showed high user’s (0.80), producer’s (0.85), and total
accuracies (0.90). These findings are a promising step towards testing our method in other regions
and for upscaling it to broad spatial extents. This would allow producing detailed inventories of
linear vegetation elements at regional and continental scales in support of biodiversity conservation
and regional planning in agricultural and other rural landscapes.

Keywords: rural landscapes; classification; LiDAR; linear vegetation; object recognition; point cloud;
rectangularity; segmentation

1. Introduction

The European landscape has dramatically changed during the Holocene as a result of human
impact and climatic change [1,2]. Especially since the industrial revolution, landscapes have been
deforested and reshaped into rural and agricultural landscapes. These are dominated by a mosaic of
grasslands, forests, and urban areas, separated or connected by linear landscape elements such as roads,
ditches, tree lines, vegetated lynchets, and hedgerows [3–5]. The distribution, abundance and richness
of species in these landscapes is related to the amount, height, length, and quality of linear vegetation
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elements [6–8]. The same holds true for the dispersal of seeds and the flow of matter, nutrients, and
water [1,9]. Additionally, linear infrastructures such as roads and railways form barriers which lead to
habitat fragmentation. In contrast, green lanes, which are flanked by hedges and/or tree lines may
form connecting corridors. Hence, linear vegetation elements are of key importance for biodiversity in
agricultural landscapes. Nowadays there is also awareness that historic agricultural practices are part
of the cultural heritage [10,11] and need to be conserved. However, the occurrence of green lanes and
hedgerows has strongly diminished in many countries [12,13]. This is mostly a consequence of larger
agricultural fields, monocultures and a reduction in non-crop features which reduces the complexity
and diversity of landscape structure [8]. Detailed knowledge of the spatial occurrence, current status,
frequency and ecological functions of linear vegetation elements in a landscape is therefore of key
importance for biodiversity conservation and regional planning.

The mapping of linear vegetation elements has traditionally been done with visual interpretations
of aerial photographs in combination with intensive field campaigns [14]. However, this approach
is time-consuming and has limited transferability to large areas. New methods have, therefore, been
developed that use raster images to map linear vegetation elements by using their spectral properties
in visible or infrared wavelengths, e.g., from the French SPOT satellite system, the ASTER imaging
instrument and Landsat imagery [15–17]. This allows an automated and hierarchical feature extraction
from very high-resolution imagery [14]. Despite these developments, comprehensive high-resolution
inventories of linear vegetation elements such as hedgerows and tree lines are lacking at regional and
continental scales. The lack of such high-resolution measurements of 3D ecosystem structures across
broad spatial extents hampers major advancements in animal ecology and biodiversity science, e.g.,
for predicting animal species distribution in agricultural landscapes [18]. On a European scale, density
maps of linear vegetation elements (and ditches) have been produced at 1 km2 resolution through
spatial modeling of 200,000 ground observations [5]. However, these maps strongly depend on spatial
interpolation methods as well as regional environmental and socio-economic variation and therefore
contain a considerable amount of uncertainty in the exact spatial distribution of linear vegetation
elements in the landscape. High-resolution measurements of 2D and 3D ecosystem structures derived
from cross-national remote sensing datasets are therefore needed to identify and map linear vegetation
elements across broad spatial extents [18].

An exciting development for quantifying 3D ecosystem structures is the increasing availability of
high-resolution remote sensing data derived from Light Detection and Ranging (LiDAR) [19]. LiDAR
data have important properties which are useful for the detection, delineation and 3D characterization
of vegetation, such as their physical attributes x, y, z, laser return intensity, and multiple return
information [20,21]. Vegetation partly reflects the LiDAR signal and usually generates multiple returns,
including a first return at the top of the canopy and a last return on the underlying terrain surface.
This provides valuable information for separating vegetation from non-vegetation [19]. Moreover,
the intensity values describe the strength of the returning light, which depends on the type of surface
on which it is reflected and therefore provides information on the surface composition [22]. The shape
and internal structure of vegetation can be analyzed by classifying information from the different
return values and a variety of features, which can be calculated from the point cloud [19,23]. Some
applications of using airborne LiDAR data to quantify linear elements in agricultural landscapes
already exist, e.g., the extraction of ditches in a Mediterranean vineyard landscape [3]. The increasing
availability of nation-wide and freely accessible LiDAR data from airborne laser scanning in several
European countries provides exciting new avenues for characterizing 3D vegetation structures in
agricultural landscapes [18].

Here, we present a transparent and accurate method for classifying linear vegetation elements in
an agricultural landscape using LiDAR point clouds derived from airborne laser scanning. In this paper,
we focus on linear vegetation elements that are predominantly woody, i.e., composed of shrubs and
trees. We refer to them as tall vegetation without defining a strict height in the point cloud. We develop
the method using free and open source data and analysis tools and apply it for characterizing different
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linear vegetation elements in a rural landscape of the Netherlands composed of agricultural fields,
grasslands, bare soil, roads, and buildings (Figure 1). Our method provides a promising first step for
upscaling the detection of linear vegetation objects in agricultural landscapes to broad spatial extents.
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Figure 1. Location of the rural landscape in the central part of the Netherlands. The true color aerial
photograph [24] shows various objects identified as agricultural fields, grasslands, bare soil, and
infrastructure such as paved and unpaved roads and farmhouses. The numbered photos show a
selection of the variety of linear landscape elements such as (1) green lanes (2) planted tall tree lines
along ditches, (3) low and high shrubs/copse, (4) hedges and (5) rows of fruit trees and willows.

2. Data and study area

2.1. LiDAR and Orthophoto Data

Raw LiDAR point cloud data were retrieved from “Publieke Dienstverlening op de Kaart” [24],
an open geo-information service of the Dutch government. The data are part of the ‘Actueel
Hoogtebestand Nederland 3’ (AHN3) dataset, which was collected between 2014 and 2019. The density
of the LiDAR data is around 10 pulses/m2 and includes multiple discrete return values (which can
result into effective point densities between 10 and 20 points/m2) as well as intensity data. The dataset
is collected in the first quarter of each year when deciduous vegetation is leafless [25]. Nevertheless,
the return signal is sufficiently strong to retrieve a useful scan of the vegetation cover. Freely available
very high resolution (VHR) true color orthophotos [24] with a resolution of 25 cm were consulted for
location purposes.

2.2. Study Area

The study area is located in a rural landscape in the center of the Netherlands (Figure 1). The area
is about 1.6 km from east to west and 1.2 km from north to south, spanning an area of almost 2 million
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square meters. The area contains numerous linear vegetation elements of varying geometry, ranging
from completely straight to curved, isolated or connected to other linear or nonlinear objects. Examples
of vegetation and non-vegetation elements are planted forest patches, hedges, green lanes, isolated
farms, ditches, a river, dykes and a road network (Figure 1). This landscape heterogeneity within a
small area ensured that both the classification of vegetation and the segmentation of linear objects can
be efficiently trained and tested.

3. Method

The workflow for the classification of linear vegetation objects (Figure 2) consisted of three main
routines: 1. Feature extraction, 2. Vegetation classification, and 3. Linear object segmentation. In the
first routine we computed features and added these as attributes to each point in the point cloud.
In the second routine we trimmed unnecessary data points to improve computational efficiency and
we applied a supervised classification machine learning algorithm [26] to classify the vegetation points
in the point cloud using features based on echo, local geometric and local eigenvalue information of
the point cloud (Table 1). In the third routine two preprocessing steps were applied, after which a
rectangularity-based region growing algorithm was used to segment the classified vegetation points
into rectangular objects, and an elongatedness criterion was applied to identify linear vegetation
objects. The accuracy of the vegetation classification and linear object segmentation was tested against
manually annotated datasets.
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Figure 2. Workflow detailing three routines for the identification of linear vegetation objects, 1. Feature
extraction 2. Vegetation classification, and 3. Linear object segmentation. The computational steps are
represented as rectangles and datasets as grey parallelograms.

All data were analyzed using free and open source software. The scripting was performed in
Python (3.6.5) using the NumPy (1.14.2) [27], SciPy (1.1.0) [28], pandas (0.22.0) [29], scikit-learn
(0.19.1) [30], and CGAL (4.12) [31] libraries. PDAL (1.7.2) [32] was used for preprocessing and
downsampling data. CloudCompare (v2.10alpha) [33] was used for visualizing the point cloud
and for the manual classification. The full code is available via GitHub: https://github.com/chrislcs/
linear-vegetation-elements/tree/master/Code.

https://github.com/chrislcs/linear-vegetation-elements/tree/master/Code
https://github.com/chrislcs/linear-vegetation-elements/tree/master/Code
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3.1. Feature Extraction

The relevance of the various input features has been extensively studied, especially to separate
urban objects from vegetation [34–37]. After reviewing the relevant literature, we selected and
computed fourteen features (Table 1), which were used for vegetation classification in the second
routine of the workflow. These features represent both point-based and neighborhood-based features
and reflect information from echo and local neighborhoods (geometric and eigenvalue based),
respectively. The qualities of these features are considered to be efficient for discriminating vegetation
objects from point clouds [34]. The features were computed for the total extent of the study area
(Figure 1), and added as attributes to form a point cloud dataset with features.

Table 1. Overview of point-based and neighborhood-based features used in the vegetation classification.
The point-based features are based only on return number information stored with each point (i.e., echo
information) whereas neighborhood-based features are based on the local geometry and eigenvalue
characteristics derived from the x, y and z coordinates of the point cloud.

Feature Group Feature Symbol Formula Reference

Point
Echo Number of returns Rt - -

Normalized return
number Rn R/Rt [35]

Neighborhood

Geometric Height difference ∆z max
j:Ni

(
qZj

)
−min

j:Ni

(
qZj

)
[23]

Height standard
deviation σz

√
1
k

k
∑

j=1

(
qzj − qz

)2
[23]

Local radius rl max
j:Ni

(∣∣∣pi − qj

∣∣∣) [23]

Local point density D
k

4
3 πr3

li
[23]

Eigenvalue Normal vector Z Nz [38]
Linearity Lλ

λ1−λ2
λ1

[39]
Planarity Pλ

λ2−λ3
λ1

[39]
Scatter Sλ

λ3
λ1

[39]
Omnivariance Oλ

3
√

λ1λ2λ3 [39]
Eigentropy Eλ −λ1 ln(λ1)− λ2 ln(λ2)− λ3 ln(λ3) [39]

Sum of eigenvalues ∑λ λ1 + λ2 + λ3 [36]
Curvature Cλ

λ3
λ1+λ2+λ3

[38]

3.1.1. Point-Based Features

The point-based features represent information from each single point (Table 1). The point cloud
P is a set of points {p1, p2, . . . , pn}

(
∈ R3), where each point pi has x, y and z coordinates. In addition,

an intensity value (I), a return number (R), and a number of returns (Rt) of the returned signal are
stored. We used Rt as well as the normalized return number Rn as echo-based features (Table 1).
The Rn highlights vegetation, since vegetation can be characterized by multiple returns [35]. Since the
available LiDAR data were available without the information such as flying height, plane trajectory
data and sensor-related parameters, required to do a radiometric correction of the intensity data, we
omitted this feature for the classification [40].

3.1.2. Neighborhood-Based Features

We computed point-based local-neighborhood features. A neighborhood set Ni of points {q1, q2,
. . . , qk} was defined for each point pi, where q1 = pi, by using the k-nearest neighbors method with
k = 10 points. We used a spherical neighborhood search with a fixed number of points instead of a
fixed radius to calculate the features in Table 1, because of the homogeneous point density across our
study area [23,39]. In this way a k of 10 results in a neighborhood of 10 points, one of which is the
focal point itself. Based on these neighborhoods we then computed four geometric features: Height
difference, height standard deviation, local radius and local point density (Table 1).
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In addition to the geometric features, we calculated eight eigenvalue-based features (Table 1), that
describe the distribution of points of a neighborhood in space [34,41]. We used the local structure tensor
to estimate the surface normal and to define surface variation [39]. The structure tensor describes the
principal directions of the neighborhood of a point by determining the covariance matrix of the x, y
and z coordinates of the set of neighborhood points and by computing and ranking the eigenvalues
(λ1, λ2, λ3, where λ1 > λ2 > λ3) of this covariance matrix. Hence, the magnitude of the eigenvalues of
the matrix describe the spread of points in the direction of the eigenvector. The eigenvector belonging

to the third eigenvalue is equal to the normal vector (
→
N = (Nx, Ny, Nz)) [39]. The points are linearly

distributed if the eigenvalue of the first principle direction is significantly larger than the other two
(λ1 >> λ2 ≈ λ3), and planarly distributed if the eigenvalues of the first two principle directions are
about equal and significantly larger than the third (λ1 ≈ λ2 >> λ3). The points are scattered in all
directions if all eigenvalues are about equal (λ1 ≈ λ2 ≈ λ3). These properties (linearity, planarity, and
scatter), as well as some additional features (omnivariance, eigenentropy, sum of eigenvalues, and
curvature), were quantified using the formulas in Table 1.

3.2. Vegetation Classification

In a first preprocessing step, we removed irrelevant points, i.e., those that do not belong to tall
vegetation (shrubs and trees). Subsequently, we applied a supervised classification in which the two
echo, four geometric, and eight eigenvalue features (Table 1) were used as input for the vegetation
classification after which we calculated metrics to assess the accuracy.

3.2.1. Preprocessing

Points that did not belong to tall vegetation were removed from the dataset to facilitate efficient
processing. This was done by trimming data points that belonged to either non-vegetation, bare
soil or low-stature vegetation (including grasslands and agricultural fields). This simplified the
identification of tall linear vegetation elements composed of shrubs and trees. The removed points
were characterized by a locally planar neighborhood and were selected on the basis of the scatter
feature (Table 1). Points with low scatter values (Sλ < 0.03) were removed. This threshold was very
conservative, but substantially contributed to reduction of the point data size, while still preserving all
points that characterize tall vegetation.

3.2.2. Supervised Classification

For vegetation classification, we used a random forest classifier because it provides a good
trade-off between classification accuracy and computational efficiency [23,42]. The random forest
algorithm creates a collection of decision trees, where each tree is based on a random subset of the
training data [43]. Random forest parameters such as the maximum number of features, minimal
samples per leaf, minimal samples per split, and the ratio between minority and majority samples
were optimized using a grid search [44].

As a result of data trimming, the remaining point cloud contained a lot more vegetation points
than other points. Since imbalanced training data can lead to undesirable classification results [45],
we used a balanced random forest algorithm. In this algorithm, the subsets are created by taking a
bootstrap sample from the minority class and a random sample from the majority class with a sample
size similar to the minority class [46]. By employing enough trees all majority class data are eventually
used, while still maintaining a balance between the two classes. The decision trees were created using
a Classification and Regression Tree (CART) algorithm [47].

3.2.3. Accuracy Assessment

For the accuracy assessment of the vegetation classification, a manual annotation of the trimmed
point cloud into vegetation (trees and shrubs) and other (buildings, ditches, railroad infrastructure)
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classes was done using an interpretation of both the point cloud and the high-resolution aerial
photos. This resulted in a ground truth dataset of 997085 vegetation points and 56170 other points.
By taking into account the dataset imbalance, we used the receiver operating characteristic (ROC)
curve [48], the Matthews correlation coefficient (MCC) [49] and the geometric mean [50] as accuracy
metrics. These metrics properly evaluate the performance of a classifier, even when dealing with an
imbalanced dataset [51–53]. The area under a ROC curve (AUC) is a measure for the performance of
the classifier [48] (Bradley, 1997). To create a ROC curve, the true positive (TP) rate is plotted against
the false positive (FP) rate at various decision thresholds. The MCC analyzes the correlation between
the observed and the predicted data and is defined as:

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

where TN are the true negatives and FN the false negatives. The geometric mean is defined as:

Geometric mean =

√
TP

TP + FP
× TN

TN + FN
(2)

The MCC, AUC and the geometric mean were obtained using a 10-fold cross validation. This is
done by splitting the data into 10 randomly mutually exclusive subsets and using a subset as testing
data and a classifier trained on the remaining data [51].

3.3. Linear Object Segmentation

For the linear object segmentation, we applied two preprocessing steps, clustered the points,
applied a region growing algorithm, merged nearby and aligned objects, evaluated their elongatedness,
and finally assessed the accuracy (Figure 2).

3.3.1. Preprocessing

Since we use linearity as a purely two-dimensional property (Table 1), we first converted the point
cloud to 2D by removing the z-coordinate of the vegetation points. In a second step, the data were
spatially down-sampled to 1-meter distance between vegetation points using Poisson sampling. This
step preserved precision, but substantially facilitated computational efficiency. After down-sampling,
we clustered the remaining points using a density based spatial clustering of application with noise
(DBSCAN) algorithm [54]. This algorithm generates clusters, based on point density, and removed
outliers. The clustering reduced the amount of possible neighboring points and therefore decreased
the processing time during the next region growing step.

3.3.2. Rectangularity-Based Region Growing

Region growing is an accepted way of decomposing point clouds [55,56] into homogeneous
objects. Normally, regions are grown based on similarity of the attributes of the points. Here, we used
an alternative way and grew regions based on a rectangularity constraint (Figure 3). The rectangularity
of an object is described as the ratio between the area of an object and the area of its minimum oriented
bounding box (MOBB) [57]. The MOBB is computed using rotating calipers [58]. First a convex hull
is constructed using the QuickHull algorithm [59] and then the MOBB can be found by rotating the
system by the angles which are made by the edges of the convex hull and the x-axis. The algorithm
then checks the bounding rectangles of each rotation because the minimum oriented bounding box has
a side collinear with one of the edges of the convex hull [60]. The area of the object can be calculated
by computing the concave hull of the set of points belonging to the object. This hull is constructed by
computing an alpha shape of the set of points [61]. This shape is created by computing a Delaunay
triangulation of the points [62] and by removing the triangles with a circumradius higher than 1/α,
where α is a parameter which influences the number of triangles removed from the triangulation and
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thus the shape and area of the alpha shape. Higher alphas lead to more complex shapes, while lower
ones lead to smoother shapes.

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 15 

 

For each cluster, points with the minimum x-coordinate and its ten closest neighbors were used 

as the starting region. Subsequently, the eight nearest neighbors of each point were considered for 

growth (Figure 3). Points were added as long as the region’s rectangularity did not drop below a 

threshold of 0.55. We determined this threshold value on a subset of the data which showed that the 

best performance of the algorithm was between 0.5 and 0.6, with only marginal differences in 

performance. After a region is grown, the growing procedure was repeated for the next region until 

the entire cluster is segmented into rectangular regions. 

 

Figure 3. Visualization of the region growing process based on rectangularity in three steps. Step a 

shows how a current region (in green) is grown in which the ratio between the concave hull and 

bounding box is above the threshold of 0.55. Step b considers a next point (in red) to be included to 

the region, which is also accepted. Step c considers a next point, which does not meet the 

rectangularity constraint of 0.55 and is not added to that region. 

3.3.3. Object Merging 

After region growing, some objects might be isolated or very small, for example as the result of 

minor curves in the linear elements or small interruptions in vegetation. These objects were merged 

if they were within 5 m of another object, faced a similar compass direction, and were aligned. The 

compass direction was determined by computing the angle between the long sides of the minimum 

bounding box and the x-axis. The alignment of objects was checked by comparing the angle of the 

line between the two center points with the compass directions of the objects. Once merged the 

lengths of the objects were combined and the maximum of the two object widths taken as the new 

width. 

3.3.4. Elongatedness 

All objects were assessed for linearity by evaluating their elongatedness, which is defined as the 

ratio between its length and width [63]. We used a minimum elongatedness of 1.5 and a maximum 

width of 60 meters, which was found to be realistic values in this rural landscape. These thresholds 

produced consistent linear vegetation elements while large forest patches were excluded. 

3.3.5. Accuracy Assessment 

The accuracy of the delineated linear objects was assessed by calculating the user’s, producer’s 

and overall accuracy, as well as the harmonic mean of the precision and recall (F1) and MCC scores 

[64]. We manually prepared a dataset of linear and nonlinear vegetation objects by means of a field 

visit in combination with interpretation of high-resolution air-photos. Based on the difference 

Figure 3. Visualization of the region growing process based on rectangularity in three steps. Step
a shows how a current region (in green) is grown in which the ratio between the concave hull and
bounding box is above the threshold of 0.55. Step b considers a next point (in red) to be included to the
region, which is also accepted. Step c considers a next point, which does not meet the rectangularity
constraint of 0.55 and is not added to that region.

For each cluster, points with the minimum x-coordinate and its ten closest neighbors were used
as the starting region. Subsequently, the eight nearest neighbors of each point were considered for
growth (Figure 3). Points were added as long as the region’s rectangularity did not drop below a
threshold of 0.55. We determined this threshold value on a subset of the data which showed that
the best performance of the algorithm was between 0.5 and 0.6, with only marginal differences in
performance. After a region is grown, the growing procedure was repeated for the next region until
the entire cluster is segmented into rectangular regions.

3.3.3. Object Merging

After region growing, some objects might be isolated or very small, for example as the result
of minor curves in the linear elements or small interruptions in vegetation. These objects were
merged if they were within 5 m of another object, faced a similar compass direction, and were aligned.
The compass direction was determined by computing the angle between the long sides of the minimum
bounding box and the x-axis. The alignment of objects was checked by comparing the angle of the line
between the two center points with the compass directions of the objects. Once merged the lengths of
the objects were combined and the maximum of the two object widths taken as the new width.

3.3.4. Elongatedness

All objects were assessed for linearity by evaluating their elongatedness, which is defined as the
ratio between its length and width [63]. We used a minimum elongatedness of 1.5 and a maximum
width of 60 meters, which was found to be realistic values in this rural landscape. These thresholds
produced consistent linear vegetation elements while large forest patches were excluded.

3.3.5. Accuracy Assessment

The accuracy of the delineated linear objects was assessed by calculating the user’s, producer’s
and overall accuracy, as well as the harmonic mean of the precision and recall (F1) and MCC scores [64].
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We manually prepared a dataset of linear and nonlinear vegetation objects by means of a field visit
in combination with interpretation of high-resolution air-photos. Based on the difference between
the automated and manually constructed data a map and confusion matrix detailing the accuracy
were created.

4. Results

4.1. Vegetation Classification

The vegetation classification resulted in a map with three classes (Figure 4). A class with points
that were removed during the preprocessing (grasslands, agricultural fields, bare soil, water bodies),
a class with points that were identified as infrastructure (e.g., building edges, ditches, and railroad
infrastructure) and the relevant points that represent tall vegetation. The accuracy assessment of the
vegetation and other classes have a producer’s accuracy of 0.98 for vegetation and of 0.85 for the other
classes (Table 2). The AUC of 0.98 showed that the vegetation and other class were well separated, and
this was also supported by an MCC value of 0.76 (indicating of a positive correlation between the
predicted and observed classes) and the geometric mean of 0.90.
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Figure 4. Results of the supervised classification. The green class represents the tall vegetation. The two
‘other’ classes contained data points that were classified as grasslands, agricultural fields, bare soil and
water bodies (grey class), or as infrastructure and ditches (blue class).

Table 2. Confusion matrix of the predicted against the actual classes.

Actual

Vegetation Other User’s Accuracy

Predicted
Vegetation 974,177 8171 0.99

Other 22,908 47,999 0.68

Producer’s accuracy 0.98 0.85 Overall accuracy: 0.97
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4.2. Linear Object Segmentation

The tall vegetation (see Figure 4) was segmented using a rectangularity-based region growing
algorithm. The resulting objects were assessed for linearity and the results were compared with the
manual segmentation (Figure 5). Areas that were correctly classified as linear vegetation elements
(true positives) and areas that were correctly classified as nonlinear vegetation objects (true negatives)
could be identified (Figure 5). Some nonlinear areas were misclassified as linear (false positives), and
some linear regions were classified as nonlinear (false negatives). However, the confusion matrix
(Table 3) shows an overall good accuracy of 0.90, and an F1-score of 0.82 and an MCC of 0.76. Hence,
the majority of linear vegetation elements was successfully segmented, which is supported by user’s
and producer’s accuracies of 0.85 and 0.80, respectively (Table 3). Nonlinear objects were successfully
separated, with user’s and producer’s accuracies of 0.92 and 0.94, respectively.
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Figure 5. Results of vegetation classification. Green areas have been correctly classified as linear
vegetation (light green) and non-linear vegetation (dark green). Red areas have been wrongly classified
as linear vegetation (light red), while dark red areas have been wrongly classified as non-linear
vegetation. Cross plots 1–6 illustrate the variation in linear vegetation elements (in yellow) and terrain
points (in purple), as visible from the LiDAR point cloud.

Table 3. Confusion matrix of the automatically segmented against the manually annotated set of linear
and non-linear vegetation objects (m2).

Actual

Linear Non-Linear Producer’s Accuracy

Predicted
Linear 116,483.76 20,201.53 0.85

Non-linear 28,385.56 336,754.65 0.92

User’s accuracy 0.80 0.94 Overall accuracy: 0.90
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5. Discussion

We designed a method to delineate linear vegetation elements in a rural agricultural area from
airborne laser scanning point clouds. Our intention was to apply already existing codes (which
mainly stem from the classification of complex city scenes) in a new context for the extraction of linear
vegetation elements in rural landscapes. Our findings show that LiDAR features, calculated from
a pre-processed point cloud, are useful to separate tall vegetation from low-stature vegetation and
non-vegetation. Moreover, the subsequent analysis enabled the extraction of linear vegetation elements
by applying a rectangularity-based growing algorithm. This application is novel in this context and
allows mapping and monitoring of hedges, tree rows, and other linear vegetation elements with high
resolution and unprecedented detail. We see great potential to apply this methodology to derive
inventories of linear vegetation elements in rural and agricultural landscapes for subsequent use in
ecological applications, conservation management and regional planning.

5.1. Feature Extraction

To our knowledge, LiDAR-based features have not been applied in this way to identify
linear vegetation objects. Most features have been used to quantify 3D-forest structure or to
separate vegetation and infrastructure in urban environments [65,66]. This is supported by similar
studies [35,36] that emphasized the importance of feature selection for separating vegetation and
infrastructure. We used the 14 features which were reported to be useful for filtering vegetation from
other objects in the landscape [23,34–37]. In the preprocessing phases, we used the planarity and scatter
features to trim unnecessary non-vegetation data before the actual vegetation classification, since
our goal was to only classify tall linear vegetation elements. Approximately 22% of the point cloud,
corresponding mainly to smooth and planar areas such as bare soil, grassland and water bodies, was
removed, which made the processing of the remaining data much more efficient. Some features, such
as the number of returns and point density have clear relations with the vegetation structure, while
others, such as omnivariance and the sum of the eigenvalues, are more difficult to interpret in terms of
linear vegetation structure. Our results suggest that these LiDAR-based features can successfully be
applied to separate (linear) vegetation from other classes.

5.2. Vegetation Classification

Trimming the data proved an efficient step to reduce the computation time needed to classify the
vegetation. This trimming preprocessing step forced the dataset to be imbalanced, which was overcome
by using a balanced random forest classification algorithm [46] and selecting suitable accuracy metrics
to evaluate performance [52,53]. When analyzing the classification statistics it is important to take the
effect of the trimming step into consideration. The removed points (Figure 4) do clearly not belong to
the tall vegetation class. Consequently, the remaining other points share some mutual similarities with
the tall vegetation points and are therefore more difficult to classify correctly. If the trimmed points
would be included in the accuracy assessment, higher accuracy values would be reached, but less
insights would be provided for the classification process. Nevertheless, the majority of points were
correctly classified (Table 2).

5.3. Linear Object Segmentation

Our workflow to identify linear vegetation elements has proven successful in a small test area
of a typical rural area in the Netherlands. Most of the linear vegetation elements were successfully
extracted (Figure 5). In Figure 5 near cross section 1, multiple parallel linear vegetation elements occur,
which were incorrectly classified. The cross section near 5 shows very small errors, which are caused
by small interruptions within the linear vegetation elements. In cross section 6, linear vegetation
elements are adjacent to forest patches, which causes some small errors as well.
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These observations leave some space for improving the workflow, and we suggest to apply and
test the method in some other rural areas, which show different types and spatial configurations of
linear vegetation elements. However, seen in the context of this rural landscape, our method is already
accurate, which opens up possibilities to further refine the method and to apply it to other study areas
or broader spatial extents. For example, pruning activities, a common practice in the Netherlands, may
influence the accuracy of the classifications, because they are difficult to detect in a point cloud dataset.
Multi-temporal point cloud change detection could overcome such problems.

For the extraction of linear vegetation elements on national or continental scales, our method
would need to be upscaled. This requires us to optimize the computational efficiency and speed.
For that, some data requirements and methodological steps are required. LiDAR data need to be
available at large spatial extents (e.g., across single or multiple countries) and, due to variability of e.g.,
point cloud density and collection methods across different countries, preprocessing steps need to be
carefully tested. For example, minimum point density for the calculation of features should be tested,
and further testing is needed to determine the optimal number of points in a neighborhood [23] for
applying our methodology across different point densities. Training data in different environmental
areas need to be collected to ensure sufficiently high classification accuracies.

Another issue is that the computation time needs to be reduced by speeding up all individual
workflow steps. For example, the number of points could be thinned without affecting the quality
needed to extract the features which are necessary for classifying the point cloud. Another possibility
would be to use parallel or cloud computing solutions which have been introduced in ongoing LiDAR
projects [18]. If such steps are taken, the availability of detailed locational information on linear
vegetation elements at national or cross-national scales would advance the analysis, monitoring and
conservation of a wide range of species such as insects, birds etc., that depend on linear vegetation
elements for shelter, food and survival in a fragmented, rural landscape. Initiatives to develop software
for upscaling LiDAR vegetation metrics to national and European scale using efficient software and
cloud computing facilities are in progress [18,67].

6. Conclusions

At present, LiDAR datasets differ in quality, content, and accessibility within and across countries.
Therefore, identifying robust and scalable LiDAR features for object identification should help to
overcome these inconsistencies. The quality of the AHN3 dataset of the Netherlands is high and allows
us to correctly identify linear vegetation objects with our method. In addition, multi-temporal LiDAR
datasets could be analyzed to monitor changes in the spatial distribution and configuration of linear
vegetation objects.

The ecological value of providing such large datasets of linear vegetation objects lies in the
broad extent and fine-scale locational details, which is a powerful quality that can be used in the
(3D) characterization of ecosystem structure. Existing ecosystem and biodiversity assessment projects,
such as the MAES (Mapping and Assessment of Ecosystems and their Services) project [68], the SEBI
(Streamlining European Biodiversity Indicators) project [69], and the high nature value farmland
assessment [70] on a European scale and assessments of Planbureau voor de Leefomgeving (PBL) on a
national level [71], could benefit from the new details.
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