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Abstract: In this paper, the problem of multi-scale geospatial object detection in High Resolution
Remote Sensing Images (HRRSI) is tackled. The different flight heights, shooting angles and sizes of
geographic objects in the HRRSI lead to large scale variance in geographic objects. The inappropriate
anchor size to propose the objects and the indiscriminative ability of features for describing the objects
are the main causes of missing detection and false detection in multi-scale geographic object detection.
To address these challenges, we propose a class-specific anchor based and context-guided multi-class
object detection method with a convolutional neural network (CNN), which can be divided into two
parts: a class-specific anchor based region proposal network (RPN) and a discriminative feature with
a context information classification network. A class-specific anchor block providing better initial
values for RPN is proposed to generate the anchor of the most suitable scale for each category in
order to increase the recall ratio. Meanwhile, we proposed to incorporate the context information into
the original convolutional feature to improve the discriminative ability of the features and increase
classification accuracy. Considering the quality of samples for classification, the soft filter is proposed
to select effective boxes to improve the diversity of the samples for the classifier and avoid missing or
false detection to some extent. We also introduced the focal loss in order to improve the classifier in
classifying the hard samples. The proposed method is tested on a benchmark dataset of ten classes to
prove the superiority. The proposed method outperforms some state-of-the-art methods with a mean
average precision (mAP) of 90.4% and better detects the multi-scale objects, especially when objects
show a minor shape change.

Keywords: multi-scale geospatial object detection; class-specific anchor; discriminative feature with
context information; focal loss; soft filter

1. Introduction

The emergence of HRRSI poses new challenges and requirements for the interpretation and
recognition of remote sensing images. Geographic object detection on HRRSI is an important issue for
interpreting geospatial information, analyzing the relationship between the geospatial objects and the
automatic modeling of outdoor scenes [1,2].

During the past decades, many methods were studied for object detection of HRRSI. In general,
these methods can be mainly divided into four categories [3]: Template matching-based object
detection [4–6], Knowledge-based object detection [7–9], Object-based object detection [10–12],
and Machine learning-based object detection [13–15]. The similarity measure is utilized to find the best
matches of templates generated manually or from the labeled instances in the template matching-based
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object detection. However, these methods are sensitive to shape and perspective changes. Therefore, it
is difficult to design a universal template with limited prior information or parameters of the geometric
shapes. Knowledge-based object detection methods represent the geometric and context information
such as shape, geometry, spatial relationship and other features for object extraction in the form of
rules to determine the objects satisfying the rules. But some objects may be missing if the detection
rules are strict. At the same time, false positives may exist. Object-based object detection methods
consist of image segmentation followed by object classification. The scale in the segmentation is a
parameter that is difficult to control which may heavily influence the classification accuracy. Moreover,
the features need to be designed manually for classification. Machine learning-based object detection
methods mainly involve feature extraction, dimension reduction, classification and other processes [16].
The advanced semantic features extracted by deep learning methods have shown great success in
object detection [17]. Therefore, the CNN-based object detection algorithms are studied in this paper.

At present, the methods based on CNN for object detection in the natural images are mainly
divided into two categories according to the detection process: one is one-stage methods such as
Single Shot Multi-Box Detector (SSD) [18], You Only Look Once (YOLO) [19] and its improved
versions YOLOv2 [20], YOLOv3 [21]. The other is two-stage object detection methods involving
region proposal and classification, like Regions with CNN features (RCNN) [22], Fast Region-based
CNN (Fast RCNN) [23] and Faster Region-based CNN (Faster RCNN) [24]. The two-stage object
detection methods usually perform better than the one-stage methods while the one-stage methods
are usually faster in detection. The Faster RCNN framework can provide satisfactory performance
with relatively less computational cost among all above-mentioned approaches. Therefore, the Faster
RCNN framework is studied in this paper.

The Faster RCNN framework was proved to perform well in the object detection of HRRSI in
recent years [25–27]. However, because of different spatial resolutions, spatial distributions and scales
between natural images and HRRSI, the following limitations may exist in the Faster RCNN.

• Compared with objects in the natural images, the spatial distribution of geographic objects is
more complex and diverse and the scale of geographic objects varies more significantly. As shown
in Figure 1, objects in HRRSI have a large scale range because of different spatial resolutions,
shooting angles and the size of objects. It is difficult to detect well geographic objects of different
scales simultaneously, such as playground and vehicles. The fixed anchor size provided for the
Faster RCNN may be inappropriate for the scales of different objects, which may lead to the
missing detections.

• In Faster RCNN framework, the quality of bounding boxes of the region proposal network
used in the classification process may affect the detection results. Non-Maximum Suppression
(NMS) method [24], [28] may directly delete the bounding boxes with high overlap, leading to
the missing detection of dense objects. The bounding boxes containing different objects may
increase diversity of samples during the training process and removing the bounding boxes
containing no objects may reduce the negative influence of the background information on the
testing process. Therefore, it is necessary to choose the effective boxes from the predicted boxes
for the classification stage.

• The quality of samples and the proportion of the number of positive samples to that of negative
samples will affect the results in the CNN classifier. Compared with the one-stage detection
algorithm, the Faster RCNN algorithm can adjust the ratio of the number of positive samples to
that of negative samples but it still cannot control the ratio of the number of hard samples to that
of easy samples during the training process. The difficult samples play a more important role in
the classifier than the easy samples in terms of the classification accuracy.
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In order to detect objects with different scales, some methods have been proposed [29,30].
The Multi-Scale CNN [31] proposed a multi-scale object proposal network that uses feature maps at
different layers to generate the multi-scale anchor boxes and improve the detection accuracy. However,
the shallow layer with less semantic information may generate some negative bounding boxes and
the anchors that are also required to initialize the network influence the object detection performance.
The recurrent detection with activated semantics (RDAS) [32] incorporates semantic information with
bounding boxes segmentation of the ground truth into low-level features to improve the recall ratio of
small scale objects and geometrically variant objects. The role of the activated semantics in RDAS on
the objects with large scales is also limited. The above-mentioned multi-scale object detection methods
use fixed anchor size, which is inappropriate for multi-scale objects. In order to solve this problem, this
paper adds a class-specific anchor block to learn the suitable anchor size for each category according to
the Intersection-over-Union (IOU) [33] method from true bounding boxes. The class-specific anchors
can provide more appropriate initial values to generate the predicted bounding boxes covering the
scales of all categories and improve the recall ratio. However, the class-specific anchors may provide
less context information than the fixed anchors especially for small objects, which may decrease the
classification precision. That is because the bounding boxes generated by the proposed class-specific
anchors are usually comparable to the size of true bounding boxes but with less context information,
which does not benefit the classification process [34]. Therefore, we propose to incorporate the context
information into the original high-level feature to increase the feature dimension and improve the
discriminative ability of the classifier for higher precision in the object detection.

In order to reduce the redundant boxes, NMS is a common method to delete the predicted
boxes containing the same objects on the basis of IOU of the boxes with the highest score belonging
to the foreground. However, the spatial distribution of geographic objects is randomly positional
and directional. If the density of objects is high, some overlap usually exists between the predicted
bounding boxes. The NMS method may directly filter out the bounding boxes containing different
objects, leading to some undetected objects. In this paper, a soft filter is proposed by using the weights
related to IOU to decrease the score of the highly overlapped predicted boxes and deleting the boxes
with low scores in the iterative process. The soft filter can increase the diversity of the samples to
improve the classifier and avoid missing or false detection to some extent in the testing procedure.
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The hard samples can help to improve the classifier in distinguishing the similar bounding boxes.
Online Hard negative Example Mining (OHEM) [35] is a method sorting the loss of the samples to select
the difficult samples and improve the discriminative ability of a trained model. However, training
the network with only the hard samples is unsuitable for all conditions since not all samples are hard
samples. In training process of classification, the number of the samples to train the classification
network is usually limited and the difficulty of the samples is hard to control. In order to improve the
influence of hard samples on the classifier, the focal loss [36] is introduced to our method by giving
easy samples lower weights and relatively improving the role of hard samples in the loss function.

The major contributions of this paper are four-fold:

• Unlike the fixed anchors set manually and empirically in the traditional methods, we design a
class-specific anchor block to learn suitable anchors for objects in each category with different
scales and shapes to improve the recall ratio.

• Considering the limited label information of the class-specific anchor size especially for small
objects, we expand the original feature with the context information to increase the discriminative
ability of feature for classification.

• The soft filter method is proposed to select effective boxes by retaining the boxes including
different objects and deleting the background boxes for the classification stage. The soft filter
method can improve the diversity of samples for classification and avoid some missing or false
detection of the objects.

• We introduce the focal loss to replace the traditional cross entropy loss. In the focal loss, the
samples are weighted to reduce the influence of easy samples on the objective function and
improve the ability of the classifier to distinguish the difficult samples.

The rest of this paper is organized as follows. The class-specific anchor based and context-guided
object detection method with CNN is presented in Section 2, which mainly consists of a class-specific
anchor based region proposal network and a discriminative feature with context information classification
network. The dataset description along with implementation details are outlined in Section 3. Section 4
presents the object detection results of the proposed method and the state-of-the-arts. Section 5 analyzes
the proposed method from the aspect of recall and precision along with sensitivity analysis. Section 6
concludes the paper with potential future directions.

2. Methodology

This paper proposes a class-specific anchor based and context-guided multi-class object detection
method with convolutional neural network (CACMOD CNN) for HRRSI by making several
improvements on the Faster RCNN framework. The proposed method consists of a class-specific
anchor object proposal network and a discriminative feature with context information classification
network. Figure 2 shows the architecture of CACMOD CNN. The procedures of the CACMOD CNN
can be illustrated as follows.
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In the RPN, in order to improve the ability to detect objects of different scales, we design a block
to learn the class-specific anchors to make the generated bounding boxes cover the scales of different
geographic objects. After training the RPN, numerous predicted bounding boxes are generated by
the class-specific anchors. In order to improve the quality of the bounding boxes in the classification
stage, a soft filter is proposed to retain the bounding boxes containing different objects and remove the
predicted boxes containing no objects. The class-specific anchor block and soft filter can provide more
effective bounding boxes for the classification stage.

In the classification stage, considering the limited label information provided by class-specific
anchors of small objects in the feature map, the context information is merged with the original feature
to improve the discriminative ability of features in recognizing the objects. However, it is still difficult
for the classifier to distinguish hard samples. Therefore, the focal loss is introduced to increase the role
of the difficult samples in the loss function.

2.1. Learn the Class-Specific Anchors Automatically

For the two-stage object detection method, the anchor size to generate candidate boxes is important
for the region proposal stage. The anchor sizes which can cover as many true bounding boxes as
possible are beneficial to detect multi-scale objects. Faster RCNN uses the anchors with a fixed size to
detect objects of different scales in natural images. The anchors in the Faster RCNN usually have the
length-width ratios of 1:1, 1:2, 2:1 and scales of 128, 256, 512. Since the distance between the shooting
position and the objects is usually close, the fixed anchors in Faster RCNN may deliver good object
detection performance in the natural images. However, these parameters are inappropriate for HRRSI
with a large coverage area and multiple types of geographic objects. There exist significant changes in
the scale and orientation for geographic objects due to different sizes of geographic objects, shooting
angles and flight heights. Take the NWPUVHR-10 benchmark dataset as an example, we make statistics
of the average width and length of the class-specific objects to explain why the parameters in the Faster
RCNN are inappropriate for geographic objects.

In Table 1, we found that the average width and length of the geographic objects range between
40 and 282. The scales of some categories are not included in the anchor size of Faster RCNN, such as
vehicle, storage tank and ship. Similarly, the length-width ratios of 1:1, 1:2, 2:1 are also unsuitable for
geographic objects with different shapes. Although the RPN can learn to adjust the boxes appropriately,
the unsuitable anchor size may lead to missing detection since the predicted bounding boxes cannot
cover all geographic objects.

Table 1. Statistics of the average width and length of all the objects of each category in the NWPU
VHR-10 dataset.

Label Vehicle Storage Ship Ground Harbor Tennis Baseball Basketball Airplane Bridge

H(pixels) 40.0 39.2 51.1 282.5 95.3 65.8 78.4 88.9 66.9 145.1
W(pixels) 41.7 40.0 59.1 278.9 116.8 62.4 90.9 101.5 68.9 170.3

The scale and shape of the geographic objects from different categories vary greatly in the HRRSI
because of the different object sizes, while those in the same category caused by different flight heights
and shooting angles change relatively little. Therefore, we propose the class-specific anchor block to
learn the anchor of the most suitable scale for each category from the training dataset in the specific
category and generate the bounding boxes covering the scales of all the categories.

In training process of the RPN, the bounding boxes are annotated as positive ones or negative
ones according to the IOU between the anchor and the true bounding boxes in Equation (1). If the IOU
is over the upper threshold Tu, the anchor is labeled as a positive sample.

IOU(groundtruth_box, anchor) =
area(groundtruth_box) ∩ area(anchor)
area(groundtruth_box) ∪ area(anchor)

(1)
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A larger IOU between anchor and true bounding box is more helpful to the RPN and generates
the bounding boxes with the sizes comparable with the true bounding box. Therefore, the function
relevant to IOU is selected as the distance loss for calculating class-specific anchors in Equation (2).

d(groundtruth_box, anchor) = 1− IOU(groundtruth_box, anchor) (2)

Considering the intra-class diversity of shapes and orientations, the IOU between the anchor and
bounding box of each object needs to be large. Therefore, the class-specific anchor is automatically
calculated from all training samples by minimizing the loss function shown in Equation (3), and n is
the number of the bounding boxes of each category.

loss =

n
∑

j=0
d(groundtruth_boxj, anchor)

n
(3)

Considering the random orientations of geographic objects and making the shape of class-specific
anchors more suitable for true bounding boxes, we fixed the width as the short side of the true
bounding boxes and the height as the long side to calculate the optimum class-specific anchor shapes
for each category in the Figure 3. The detailed procedure of the class-specific anchor based region
proposal network is shown in Algorithm 1.

Algorithm 1. The procedure of the class-specific anchor based region proposal network

Input: The training dataset of truth bounding boxes for the current class, S = S1, S2, . . . , SN ;
Si = (w1, h1), (w2, h2), . . . , (wn, hn) indicates the bounding boxes for class i;
the width of the truth bounding boxes, wj;
the height of the truth bounding boxes, hj;
the number of the current classes, N
the upper threshold of IOU, Tu;
Output: The class-specific anchor set, A = (W1, H1), (W2, H2), . . . , (WN , HN);
the width of class-specific anchor i, Wi;
the height of the class-specific anchor i, Hi.
1: Normalize the shape of the training set S as shown in Figure 3
2: Randomly initialize the Wi and Hi for the i-th class-specific anchor.
3: While no convergence of loss
4: For t = 1, . . . , T do
5: calculate the loss function lossi

t according to the Equation(3);
6: if lossi

t − lossi
t+1 ≥ 1e−5

7: update Wi , Hi
8: return Wi , Hi
9: Considering the orientation of the objects, respectively calculate the IOU between with the size (Hi, Wi) or
(Wi, Hi) and truth bounding box by Equation (1).
10: The class-specific anchor shape with a larger IOU is selected as the positive samples to train RPN.

Max[IOUWi ,Hi , IOUHi ,Wi ] > Tu
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2.2. Merge the Context Information to Improve the Feature Representation

The CNN architecture has shown great success in object detection [37], [38] because more
discriminative features can be extracted by the CNN architectures such as AlexNet [39], VGGNet [40],
CaffeNet [41], GoogLeNet [42] and ResNet [43] for HRRSI. ResNet performs better than other methods
in the classification by increasing the depth of network to generate the feature with more semantic
information. In this paper, ResNet50 is used to extract features in both the region proposal and the
classification stage. Figure 4 depicts the structure of the ResNet50 network.
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As shown in Figure 5, the size of feature map in Resnet50 is decreased due to the pooling layer in
each stage. After four stages, the ratio of the size of original image to that of the final feature map is
16 to 1. The predicted bounding boxes have different sizes, so feature maps for different bounding
boxes have different sizes. In order to ensure that the feature of each box is with the same dimension
in classification, ROI-pooling is adopted to normalize different bounding boxes with the same size.
The size of feature maps after ROI-pooling is usually set to 7 × 7 pixels empirically, meaning that
the most suitable size of original images is 112 × 112 pixels. As shown in Table 1, we can find that
the shape of small objects such as vehicles and storage tanks is only about 40 × 40 pixels, which
is much smaller than 112 × 112 pixels. Although the ROI-pooling can resize the feature map with
7 × 7 by up-sampling or down-sampling, the small feature map may decrease the accuracy in object
detection due to a less discriminative ability of features to express the label information. Therefore, it
is fundamental to increase the discriminative ability of features for higher classification accuracy.

The bounding boxes generated by class-specific anchors have a comparable size to the true
bounding boxes but with limited label information. That is because that the size of the bounding boxes
generated by class-specific anchors for small objects is limited in providing enough label information
for classification. The context information around the objects could provide the useful background
information to increase the label information in a bounding box. Therefore, this paper proposed
to concatenate the context information with the original feature to expand the feature dimension.
We doubled the size of the predicted box with the center in the predicted box to incorporate the context
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information. As shown in Figure 5, the features of objects and context information are normalized
with ROI-pooling respectively. The final feature for classification is obtained by concatenating the
normalized context feature and the normalized original feature. The feature fusion process extends the
dimension of the effective features and improves the discriminative ability of the features, especially
for the small objects.
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2.3. Soft Filter Effective Predicted Boxes to the Classification

After the region proposal stage, we can obtain many predicted boxes from the feature maps.
As shown in Figure 6, the predicted boxes could be divided into two types, the red boxes containing the
objects and the yellow boxes containing no objects. The boxes containing objects may include several
overlapped boxes with the same object shown with red dotted lines. In training stage of classification,
the trained samples in the classification stage are randomly selected according to the IOU between the
predicted boxes and true bounding boxes. The boxes containing different objects may have a positive
effect on the training. The boxes containing the same objects may decrease the diversity of samples
due to the limited trained samples and the boxes containing no objects provide no label information.
In the testing stage of classification, if all predicted boxes are tested, the computational cost may be
large. The boxes containing no object sometimes may be confused with the object category because
of the similar spectral information. Therefore, the redundant predicted bounding boxes containing
the same objects and no objects may decrease the classification accuracy in the object detection. It is
necessary to select the effective boxes for the classification stage.
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The NMS algorithm is the most common method to remove redundant boxes based on the
score and the IOU with the highest score in the testing stage of classification. If the IOU between
the candidate bounding box and that with the highest score is above the defined threshold, the
corresponding box is eliminated. If we directly use the NMS method to filter the predicted boxes, two
obvious limits exist in the training and testing processes of classification:

1. Geographic objects are with a random arrangement of orientation and spatial distribution.
When the objects are densely distributed, the random direction will cause a large overlap between
predicted boxes containing different objects. In the testing process, improper IOU threshold in NMS
will directly eliminate the boxes containing different objects, leading to missing detection.
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2. In the training process, deleting the bounding boxes containing different objects directly by
NMS may reduce the diversity of the samples in the classification, affecting the discriminative ability
of the classification model.

Considering the above limitations, we proposed the soft filter algorithm to select the effective
predicted boxes in the testing and training process of the classification. The soft filter algorithm reduces
the score of the predicted box overlapped with those having the highest score according to their IOU
ratio in the Equation (4), and removes the predicted boxes whose foreground scores are below a certain
threshold during the iterative process.

Si =


Si, IOU(Bmax, Bi) < Nt

Si × (1− IOU(Bmax, Bi)),
IOU(Bmax, Bi) ≥ Nt

(4)

Soft filter is an effective method retaining the boxes containing different objects. The process is
elaborated on as Algorithm 2:

Algorithm 2. The procedure of a soft filter to select effective bounding boxes

Input: The predicted bounding box set, B = {B1, . . . , BN}; the score set, S = {S1, . . . , SN}; Si represents the
possibility of the boxes belonging to the foreground; the overlapped threshold, Nt; the background threshold,
NS; The number of B, N.
Output: the effective bounding box set, E = {E1, . . . , EM};
1: Find the box Bmax with the highest score Smax from the predicted box set B;
2: Calculate the IOU between other boxes and the Bmax;
3:Update the score set S according to Equation(4);
4: For t = 1, . . . N do
5: If the score Si < Ns:
6: The box Bi will be removed from set B since they may belong to background boxes;
7: Update set B, set S.
8: Repeat Step 1-7 until all the boxes are repeated.

2.4. Focal Loss to Improve the Influence of Hard Samples on the Classifier

The quality of the samples plays a fundamental role in training a convolutional neural network.
In the training process, Faster RCNN divides the predicted boxes into positive and negative samples
by setting a threshold over the IOU between the predicted boxes and true boxes. If the IOU is above
the upper threshold, the predicted box is considered to be a positive sample, and vice versa. As shown
in Figure 7, there are two types of samples used for training according to the difficulty in classification:
easy samples and difficult samples. In the training process, the difficult samples can increase the
value of the loss functions in classification and thus improve the ability of the classifier to distinguish
similar objects.
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Our proposed framework is a two-stage algorithm. We can set the same number for the positive
samples and negative samples to improve the classification accuracy, but we cannot keep the balance
between the number of difficult and easy samples. Therefore, this paper replaces the existing cross
entropy loss with the focal loss in the classification to decrease the role of the easy samples in the loss
function and increase the discriminative ability of the classifier.

The loss function for object detection consisting of region proposal network and classification
network is defined as Equation (5):

L({pi}, {ti}) = ∑
i

Lcls(pi, p∗i ) + λ∑
i

p∗i Lreg(ti, t∗i ) (5)

Here, λ is an adjustable equilibrium weight, setting to 1 in this paper. Lcls and Lreg are classification
and region proposal loss respectively. When the anchor is a positive sample, p∗i = 1, Otherwise, p∗i = 0.

The focal loss function of the CACMOD CNN in the classification stage is defined in Equation (6):

Lcls(pi, p∗i ) = −(1− pi)
γlog(pi) (6)

where pi is the probability that i-th bounding box belongs to the predicted category, and γ is the weight
controlling the role of easy samples, empirically setting to 2 in this paper. The value pi of the easy
sample is usually large, the weight (1− pi)

γ will reduce the contribution of the easy sample to the loss.
Equation (7) defines the loss function of the bounding box regression in the CACMOD CNN:

Lreg = SL1(ti − t∗i ) =


i f
∣∣ti − t∗i

∣∣< 1
0.5 · (ti − t∗i )

2

otherwise∣∣ti − t∗i
∣∣−0.5

(7)

Here, ti represents the parameterized coordinates of the candidate bounding box, and t∗i represents
the coordinates of the true bounding box.

3. Experimental Setup and Dataset Description

3.1. Experimental Data and Setup

The experiments are made on the NWPU VHR-10 dataset [44] so as to demonstrate the
performance of the proposed CACMOD CNN architecture. The NWPU VHR-10 dataset consists
of 10 categories with 800 HRRSI, where the spatial resolution of 715 images is 0.5-2m and that of
remaining 85 images is 0.08m. The ten categories cover vehicles, tennis courts, storage tanks, ships,
harbors, ground track fields, bridges, basketball courts, baseball diamonds and airplanes. 650 images in
this dataset are labeled with at least one true bounding box per image and other 150 images contain no
labeled bounding boxes. The true bounding boxes include 598 vehicles, 524 tennis courts, 655 storage
tanks, 302 ships, 224 harbors, 165 ground track fields, 124 bridges, 157 basketball courts, 390 baseball
diamonds and 757 airplanes. The experiments are repeated three times by a random selection 20%
training dataset, 20% validation dataset and 60% testing dataset from the NWPU VHR-10. In order to
ensure that the number of the samples for training is sufficient, we also augment the dataset by flip
and rotation by four direction of 0, 90, 180 and 270.

3.2. Evaluation Metrics

In the paper, different object detection methods are evaluated by two universally-agreed, standard
measures average precision (AP) and precision-recall curve (PRC). In addition, mean AP (mAP) is an
evaluation metric for multi-class object detection, computing the mean of AP values in each category.
The final AP and mAP values are the mean of the corresponding values in three datasets.
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3.2.1. Precision—Recall Curve

PRC is a metric depicting the relationship between the Precision ratio and the Recall ratio.
The Precision ratio represents the ratio of objects detected correctly to the number of objects in all
region proposals. The Recall ratio reflects the ratio of the objects predicted to be true targets to the
number of true targets. The definitions of Precision and Recall ratio are shown in Equations (8) and (9):

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

Among them, TP and FP represent the number of the objects detected correctly and falsely in
all bounding boxes. FN is the number of objects that are not detected. The bounding boxes will
be identified as TP when the IOU between the bounding box and true bounding box is over 0.5.
In contrast, they are considered as FP when the IOU is below 0.5.

3.2.2. Average Precision

Average precision summarizes a precision-recall curve as the weighted mean of precisions with
the increase in recall from the previous threshold used as the weight, where Pn and Rn are the precision
and recall ratio at the n-th threshold. Therefore, the higher AP value reflects a better performance of
object detection. The largest recall ratio and its corresponding precision ratio in the PRC represent the
final evaluation metric of our proposed method.

AP = ∑
n
(Rn − Rn−1)Pn (10)

3.3. Implementation Details

CACMOD CNN was implemented on CUDA9.0 and cuDNN9.0 using Keras framework with the
Tensorflow as backend and executed on a 64-bit windows system and GeForce GTX1080ti GPU with
16 GB memory. The mini-batch stochastic gradient descent is adopted in the proposed end-to-end
object detection network with a batch size of 32 in the classification stage and 256 in the region proposal
stage. For the first 8000 iterations, the learning rate is initialized to 10−4 according to experience while
for other 4000 iterations it is set to 10−5. The ResNet50 is used as the shared feature for ablation
studies to demonstrate the effectiveness of the proposed CACMOD CNN. We initialize the parameters
of ResNet50 the same as the model pre-trained with ImageNet dataset. The parameters of Faster
RCNN were the same as those in the CACMOD CNN. The parameters in Algorithms 1 and 2 are set
to Tu = 0.7, Nt = 0.5 and Ns = 0.0075 according to experiments.

3.4. Baseline Methods

In order to validate the advantages and effectiveness of our proposed CACMOD CNN, we carry
out comparative experiments with several baseline methods. Our proposed method is improved on
Faster R-CNN, so Faster R-CNN is considered as the baseline. Besides, there are several other baselines
to be compared with our method, including the traditional detectors BOW [45], COPD [44] and the
one-stage deep learning method SSD [18], and the methods devoting to the multi-scale objects such
as object detection based on multi-scale CNN [31], Remote Sensing Imagery Based on Multi-scale
Single-Shot Detector with Activated Semantics(RDAS512) [32].

The ablation studies have also been made on the NWPU VHR-10 dataset to validate the superiority
of each contribution. The proposed method is tested without class-specific anchors, without incorporating
a context feature, without focal loss and without a soft filter.
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4. Results

Figure 8 shows the detection results of 10 categories in the NWPU VHR-10 dataset. The proposed
method can correctly identify most targets for all categories. The small objects such as the storage tanks
and vehicles can be detected with few missing objects, as shown in Figure 8d,e. The context feature
and the class-specific anchors can improve both the precision and recall ratio for the small objects due
to having more discriminative features and more appropriate scales for the classification and detection
of these categories. The method is also effective for the objects with a dense spatial distribution such as
tennis courts and harbors as shown in Figure 8b,f. The soft filter in the proposed method can increase
the possibility of detecting overlapped bounding boxes before the classification stage in the Figure 8h.
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Figure 8. Visualization of some object detection results of all the categories by proposed method in the
NWPU VHR-10 dataset. (a) airplanes. (b) tennis courts and basketball courts. (c) ships. (d) storage
tanks. (e) vehicles. (f) harbors. (g) baseball diamonds. (h) tennis courts, baseball diamonds and the
ground tack field. (i) brigdes.

Figure 9 shows a comparison between the object detection results of the proposed CACMOD
CNN and Faster R-CNN in categories such as airplanes, harbors, vehicles. The CACMOD CNN
performs better in those categories, while Faster R-CNN is with some missing targets and false alarms.
The size in specific-class anchors is more suitable than that in Faster RCNN especially for the small
objects since they can provide the initial anchors covering the scales of all the categories. Therefore, the
proposed method can detect the vehicles successfully. As shown in Figure 9a,c, undetected vehicles and
confusion exist between the background and the objects in Faster RCNN. The features in Faster RCNN
for classification may be indiscriminative because the bounding box of small objects may provide little
context information for distinguishing different categories. The detection results in Figure 9d,f show
that the CACMOD CNN can effectively increase the discriminative ability of the features extracted
from bounding boxes by expanding the original features with context information and improving the
classifier to distinguish the hard samples. As shown in Figure 9e, our method can also successfully
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detect the dense objects such as harbors whose shape may change to some extent. In contrast, some
missing objects may exist in the results shown in Figure 9b.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 24 
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Figure 9. Detection results of Faster RCNN and proposed method. (a–c) denotes the results of Faster
RCNN with ResNet50; (d–f) denotes the results of proposed method; (a–f) show the detection results
of airplanes, harbors, vehicles respectively.

As shown in Figure 10, the CACMOD CNN delivers good detection results in categories whose
objects are highly overlapped. The soft filter can decrease the possibility of missing detection of dense
objects and improve the recall ratio by retaining effective bounding boxes. The proposed class-specific
anchor can reduce the effect of intra-class and inter-class scale difference caused by different flight
heights, shooting angles and sizes of objects.
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Figure 10. Detection results of dense object by proposed method. (a) tennis courts and basketball
courts. (b) tennis courts. (c) harbors. (d) storage tanks. (e) tennis courts. (f) tennis courts. (g) harbors.
(h) harbors.

The AP values of each category and mAP of the CACMOD CNN and existing object detection
methods are presented in Table 2. The highest AP value of each category is shown in boldface. As can
be seen in Table 2, the proposed CACMOD CNN outperforms other object detection methods with
a mAP of 90.4%. The CACMOD CNN making improvements on the Faster RCNN outperforms
the Faster RCNN in all categories except the ground track field with a mAP of 6.9%. Compared
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with other methods, the CACMOD CNN performs better in bridges, tennis-courts and harbors since
these categories belong to the objects with variable shapes, and their objects are overlapped due
to the random orientations of geographic targets. The class-specific anchor can adapt to objects of
different shapes and random orientations and increase the recall ratio. Moreover, merging context
information can help to increase the discriminative ability of features and the precision ratio. The soft
filter can decrease the possibility of miss detection of dense objects and improve the recall ratio by
retaining effective bounding boxes. RDAS512 with Segmentation Branch and the multi-scale CNN
are aimed at multi-scale object detection. RDAS512 with Segmentation Branch method delivers better
performance in small objects including vehicles and storage tanks since it incorporates semantic
information with bounding boxes segmentation of the ground truth into low-level features to improve
the recall ratio of small scale objects. The multi-scale CNN performs better in ground track fields, ships
and baseball diamonds since it adds multi-scale anchor boxes to multi-scale feature maps and a larger
number of object proposals could improve the recall rate of the detection. The CACMOD CNN makes
improvements to the adaptive ability of anchors and discriminative ability of features, which may lead
to a comparable mAP to the above-mentioned methods. The proposed CACMOD CNN framework
delivers a higher mAP at the expense of more detection time compared with other methods because
the soft filter may spend a longer time retaining effective bounding boxes.

Table 2. The AP values of the seven baseline methods.

Methods BOW COPD SSD
Faster
RCNN

(Resnet50)

RDAS512 with
Segmentation

Branch (VGG16)

Multi
Scale
CNN

CACMOD
CNN

Vehicle 0.091 0.440 0.756 0.677 0.865 0.859 0.76
Storage 0.632 0.637 0.856 0.707 0.890 0.832 0.848

Ship 0.585 0.689 0.829 0.797 0.855 0.920 0.90
Ground 0.078 0.853 0.582 0.976 0.953 0.981 0.948
Harbor 0.530 0.553 0.548 0.900 0.826 0.851 0.958
Tennis 0.047 0.321 0.821 0.854 0.896 0.908 0.947

Baseball 0.032 0.833 0.966 0.86 0.950 0.972 0.963
Basketball 0.032 0.363 0.860 0.846 0.948 0.926 0.886
Airplane 0.025 0.623 0.957 0.939 0.996 0.993 0.969
Bridge 0.122 0.148 0.419 0.796 0.772 0.719 0.864
mAP 0.246 0.546 0.759 0.835 0.895 0.896 0.904

Time Per image(s) 5.32 1.07 0.09 1.46 0.057 0.11 2.7

To analyze the contribution of each step to the proposed algorithm in this paper, we conducted an
ablation study, where ResNet50 is used for extracting convolutional features for all methods. The APs
and mAPs of the ablation study are shown in Table 3 and Figure 11 shows the PRCs of the proposed
method as well as five ablation studies. If the PRC is further from the x-axis, the performance is better.
As shown in Table 3, each step in the proposed method all improved the mAP. The highest value
of each category is shown in boldface. Among them, the class-specific anchor contributes most to
the CACMOD CNN and the focal loss contributes the least. The class-specific anchor can increase
the recall ratio of most categories, especially for vehicle, storage tank, ship, harbor and tennis court.
That is because anchor boxes whose scales are more appropriate for most objects can be produced
by the detector. The AP values of the proposed method except the ground track field are largely
improved. The AP values of ground track field slightly are lower than those of Faster RCNN by
2.8% respectively. That is because the proposed class-specific anchor size of ground track field is
around 280 and objects of ground track field have large size changes. The proposed method delivers a
slightly poorer performance in detecting several objects with a size much larger or smaller than the
class-specific anchor size. The Faster RCNN with a fixed anchor size of 128, 256 and 512 can better
adapt to a ground track being filed. The CACMOD CNN without context feature is with the highest
AP in airplanes and storage tanks among all other methods, since the airplanes and storage tanks
may be objects with unique shape information that is easy to be distinguished. The context features
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have a larger positive influence on the vehicle, ship, and basketball court than on the airplane and
storage tank. Focal loss and a soft filter can improve the mAP in almost all categories by selecting hard
samples and effective bounding boxes.

Table 3. The AP values of the ablation study for the proposed method with ResNet50.

Methods
Faster
RCNN

(ResNet50)

Proposed Method
without Context

Feature

Proposed Method
without Class-Specific

Anchors

Proposed
Method without

Focal Loss

Proposed
Method without

Soft Filter

Proposed
Method

Vehicle 0.677 0.682 0.657 0.748 0.758 0.760
Storage 0.707 0.912 0.672 0.808 0.819 0.848

Ship 0.797 0.801 0.743 0.869 0.847 0.90
Ground 0.976 0.965 0.976 0.958 0.941 0.948
Harbor 0.900 0.952 0.883 0.95 0.952 0.958
Tennis 0.854 0.92 0.806 0.949 0.943 0.947

Baseball 0.86 0.952 0.946 0.962 0.961 0.963
Basketball 0.846 0.818 0.846 0.906 0.901 0.886
Airplane 0.939 0.974 0.930 0.944 0.963 0.969
Bridge 0.796 0.863 0.839 0.863 0.851 0.864
mAP 0.835 0.884 0.830 0.896 0.894 0.904
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5. Discussion

5.1. Analysis of the Proposed Class-Specific Anchors

The initial parameters of anchors may affect the predicted boxes generated in RPN. The original
Faster RCNN proposed the nine anchors with length-width ratios of 1:1, 1:2 and 2:1 and scales of
128,256 and 512 to detect the multi-scale objects. The above nine fixed anchors in Faster RCNN may not
be suitable for geographic objects in the HRRSI because of different spatial resolutions and shooting
angles between HRRSI and natural images. The fixed anchors are difficult to use to satisfy the size of
the multi-class objects with a large change in scale. Considering the recall ratio of the object detection,
we propose the block to learn the anchor size for each category based on training dataset and improve
the adaptability of the anchors to the objects of different scales. The size of class-specific anchor for
each category learned from three different training datasets selected from NWPU VHR-10 by the
proposed method is shown in Table 4.
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Table 4. Size of Class-specific Anchor for each category.

Label Vehicle Storage Ship Ground Harbor Tennis Baseball Basketball Airplane Bridge

1
W (pixels) 32 40 38 238 78 55 75 86 60 143
H (pixels) 46 42 70 340 135 69 90 116 70 190

2
W (pixels) 31 40 42 243 73 51 76 75 66 127
H (pixels) 51 43 70 336 141 70 90 103 75 195

3
W (pixels) 33 31 38 223 84 52 76 67 68 110
H (pixels) 49 33 66 328 153 69 95 97 98 194

In order to analyze the role of the anchor size, we respectively calculate the average IOU value of
the 3 × 3 anchors in Faster RCNN and the proposed class-specific anchors with the true bounding
boxes for each category as shown in Figure 12. In Faster RCNN, the anchor size which is the closest
to the ground truth plays the most important role in predicting the boxes. Therefore, we choose the
anchor with the largest IOU of each true bounding box as the best anchor from the nine anchors in
Faster RCNN. The average IOU with the best anchor size in Faster RCNN is about 0.354, shown in
orange bars. Among them, the IOU of the small objects such as vehicles and storage tanks is very
low because the smallest anchor size in Faster RCNN with 128 × 128 pixels is still large for the small
geographic objects with approximately 40 × 40 pixels. The low IOU leads to the missing detection.
The blue bar represents the IOU of the class-specific anchors with the ground truth. The average IOU
of the Class-specific anchors is about 0.663. The class-specific anchors largely increase the IOU value of
each category, providing the suitable initial anchor size to improve the quality of predicted boxes in the
region proposal. The average IOU of the vehicles is improved from 0.113 to 0.714 and that of storage
tanks is improved from 0.107 to 0.686, proving that the size of class-specific anchors is comparable to
that of the objects.
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As shown in Figure 13, the average recall ratio of the CACMOD CNN is obviously higher than
that of Faster RCNN and the proposed method without a class-specific anchor in almost all categories,
showing the effectiveness of the class-specific anchors. The recall ratio of the proposed method for
each category is also higher than that of other methods except the ground track field and bridge since
some objects of these two categories are with significant shape changes. The class-specific anchors
are based on an assumption that the objects of the same category have a similar shape and scale, so
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the class-specific anchors could provide better initial values in the region proposal stage for those
categories whose size changes slightly. Figure 14 shows the range of the size of objects in the NWPU
VHR-10 dataset. The ground track field and the bridge are the categories with top two shape changes.
Therefore, the corresponding class-specific anchors may not be suitable for some objects with an
untypical shape in the two categories, leading to some undetected objects. The scales of 128, 256, 512
in Faster RCNN provide a larger size than the class-specific anchors, which may be more suitable for
minorities with large size changes. Therefore, the recall ratio of Faster RCNN is slightly better than
that of the class-specific anchors in the categories of ground track field and bridge.
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5.2. Analysis of the Proposed Method Improving the Accuracy of Classification

In addition to the recall ratio of the detection results, the precision ratio is also an important metric
to evaluate the results of the object detection. The average precision of the CACMOD CNN framework
is higher than that of Faster RCNN in almost all categories as shown in Figure 15, indicating the
effectiveness of proposed method in increasing the precision of classification. The soft filter to select
effective bounding boxes in classification provides the smallest contribution to the proposed methods
but effectively improves the precision of vehicles, ground track fields, harbors, baseball diamonds and
basketball courts. Focal loss improving the influence of the hard samples on the classification stage
is helpful for the categories of vehicle, ship, ground track field, harbor, baseball diamond, basketball
court and bridge. The proposed method without a context feature has the lowest precision among
all other methods, showing that the context features play the most important role in improving the
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discriminative ability of the features. Context features may play a more important role in increasing
the precision ratio of the vehicle, ship and bridge categories. As shown in Figure 16a–h, some false
alarms of the detection results exist in the proposed method without context information but were
correctly detected in the proposed method. The background boxes similar to the objects are easy to be
misclassified as the objects without the context information.
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Figure 16. Some typical bounding boxes belonging to background that are falsely detected as objects
in the CACMOD CNN without context information. (a) baseball diamond. (b) bridge. (c) airplane.
(d) vehicle. (e) baseball diamond. (f) bridge. (g) bridge (h) airplane.

The proposed method without class-specific anchors but with the fixed nine anchors has
comparable precision to the proposed CACMOD CNN. Compared with Faster RCNN, the proposed
CACMOD CNN without class-specific anchors increases the precision ratio of most categories, proving
the effectiveness of focal loss, merging the feature with context information and soft filter to improve the
precision ratio in improving the object detection performance. As shown in Figure 15, a class-specific
anchor can increase the precision ratio in vehicle, storage tank, ship, baseball diamond and airplane
categories but has a negative influence on the ground track field, harbor, basketball court and bridge.
The accuracy of the objects such as the basketball court, harbor, ground track field and bridge in the
proposed method without a class-specific anchor is slightly higher than that of the proposed method,
because the predicted bounding boxes more suitable for each category of the class-specific anchors
may have less context information than that of Faster RCNN with the nine anchors due to a limited
feature size.

Figure 17 shows some bounding boxes that are incorrectly detected in the CACMOD CNN
framework. The predicted boxes with a large size containing the shape of objects similar to the ground
track field is detected incorrectly as the category of ground track field in Figure 17a,b. Similarly, the
river bank in Figure 17d is detected as the bridge. The part of the harbor is also confused with the
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harbor in Figure 17c. The reason for this may be that the features used for classification in the proposed
framework may not be discriminative enough for some big objects with shape changes that are larger
than normal. The context information beneficial to the small objects sometimes may have a negative
influence on the big objects or objects with large shape changes.
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5.3. Sensitivity Analysis of the Parameters in the Proposed Method

In Algorithm 1, Tu is the threshold to select the positive samples to train the RPN, according to
the IOU between the anchor and true bounding boxes. According to experience, Tu usually ranges
from 0.6 to 0.8. We have made experiments on the influence of Tu on the APs and mAPs. As can be
seen in Table 5, Tu has little influence on the AP and Tu = 0.7 is selected as the optimum parameter
since it has the highest mAP.

Table 5. The effect of the threshold to select the positive samples in the RPN on APs and mAPs.

1 2 3

Tu 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8
vehicle 0.758 0.788 0.751 0.73 0.732 0.73 0.765 0.759 0.758
storage 0.793 0.856 0.823 0.856 0.786 0.856 0.86 0.903 0.848

ship 0.873 0.874 0.881 0.913 0.919 0.913 0.893 0.907 0.898
ground 0.948 0.96 0.95 0.973 0.943 0.973 0.97 0.969 0.978
harbor 0.916 0.976 0.969 0.967 0.954 0.967 0.934 0.945 0.963
tennis 0.939 0.945 0.939 0.958 0.966 0.958 0.953 0.93 0.942

baseball 0.958 0.963 0.964 0.964 0.974 0.964 0.952 0.951 0.852
basketball 0.894 0.900 0.893 0.853 0.88 0.853 0.872 0.876 0.852
airplane 0.97 0.965 0.973 0.965 0.972 0.965 0.963 0.969 0.965
bridge 0.839 0.827 0.845 0.839 0.893 0.839 0.862 0.873 0.848
mean 0.889 0.905 0.899 0.902 0.902 0.902 0.902 0.908 0.890

The parameter settings including the background threshold Ns and the overlapped threshold
Nt have an impact on accuracy of object detection in Algorithm 2. Therefore, the influence of these
two parameters on the recall ratio and AP is studied. When performing sensitivity analysis of one
parameter, the other parameter is fixed as the optimum parameters shown in Section 3.1. The range of
these parameters is set according to experience.

As can be seen in Figure 18a–d, the overlapped ratio Nt has little effect on the recall and AP
except in the harbor category. That is because there may exist highly overlapped in the dense harbors.
The score threshold of objects belonging to the background Ns has more influence on the recall and AP
in categories of small objects such as vehicle, ship and storage tank. That is because compared with
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those categories with big objects, the features of small objects are relatively insufficient to represent the
label information.
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6. Conclusions

In this paper, a CACMOD CNN for multi-class geospatial object detection in HRRSI is proposed.
We proposed a class-specific anchor block to initialize the region proposal network, providing the
suitable predicted boxes for each category. We also merged this feature with the background feature to
provide more context information for improving the discriminative ability of classification. In order
to further increase the precision ratio of the object detection, a soft filter to select effective boxes is
proposed for the classification stage and focal loss to improve the role of hard samples in the loss
function is adopted in the proposed method. According to the experimental results, the following
conclusions can be drawn:

(1) Unlike the fixed anchors in the traditional methods, the proposed class-specific anchors can
better adapt to the large scale variation of multi-class objects in the HRRSI and effectively improve the
recall ratio of categories that have small objects or limited shape changes, such as vehicles, storage
tanks, ships, harbors, tennis courts and so on.

(2) The context information plays an important role in increasing the precision ratio of the categories
that may be confused with background information especially for vehicles, ships and bridges.

(3) The soft filter can better detect overlapped dense objects such as harbors and tennis courts
compared with NMS. The soft filter also improves the precision of classes which be confused with
other objects including vehicles, ground track fields, harbors, baseball diamonds and basketball courts.

(4) Focal loss is helpful for the precision ratio of almost all categories including vehicle, ship,
ground track field, harbor, baseball diamond, basketball court and bridge.

(5) The proposed method outperforms some state-of-the-art methods of multi-class geographic
object detection with a mAP of 90.4% on the NWPU VHR-10 dataset.

However, the proposed method does not perform well on the geographic objects with shape
changes that occur more often than normal. The features and anchors will be designed to detect the
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objects with more frequent shape changes than normal for improving object detection accuracy in
future work.
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