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Abstract: The performance of Level-3 gridded Global Precipitation Mission (GPM)-based
precipitation products (IMERG, Integrated Multi-satellite Retrievals for GPM) is assessed against
two references over oceans: the OceanRAIN dataset, derived from oceanic shipboard disdrometers,
and a satellite-based radar product (the Level-3 Dual-frequency Precipitation Radar, 3DPRD). Daily
IMERG products (early, late, final) and microwave-only (MW) and Infrared-only (IR) precipitation
components are evaluated at four different spatial resolutions (0.5◦, 1◦, 2◦, and 3◦) during a 3-year
study period (March 2014–February 2017). Their performance is assessed based on both categorical
and continuous performance metrics, including correlation coefficient, probability of detection,
success ratio, bias, and root mean square error (RMSE). A triple collocation analysis (TCA) is also
presented to further investigate the performance of these satellite-based products. Overall, the IMERG
products show an underestimation with respect to OceanRAIN. Rain events in OceanRAIN are
correctly detected by all IMERG products ~80% of the times. IR estimates show relatively large
errors and low correlations with OceanRAIN compared to the other products. On the other hand,
the MW component performs better than other products in terms of both categorical and continuous
statistics. TCA reveals that 3DPRD performs consistently better than OceanRAIN in terms of RMSE
and coefficient of determination at all spatial resolutions. This work is part of a larger effort to
validate GPM products over nontraditional regions such as oceans.

Keywords: precipitation; satellite remote sensing; error analysis; triple collocation

1. Introduction

Global precipitation data play a key role across numerous applications such as hazard mitigation,
terrestrial hydrology, climate change studies, as well as agriculture and irrigation practices [1–4].
The National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration
Agency (JAXA) launched the Global Precipitation Measurement (GPM) mission in 2014, which
carries an advanced radar (Dual-frequency Precipitation Radar; DPR) and a radiometer system
(GPM Microwave Imager, GMI) to measure global precipitation from space [5]. Certain geographical
locations, such as oceans and impervious terrain regions, entirely depend on satellite measurements as
the only source of precipitation information [6] and the Integrated Multi-satellite Retrievals for GPM
(IMERG) products represent the state-of-the-art product for global precipitation estimation. The IMERG
algorithm fuses information from several satellite-based microwave and infrared precipitation
estimates, as well as ground gauge information.

The measurement and validation of oceanic precipitation are vital for understanding the global
water cycle, as most of the global precipitation occurs over oceans [7]. Due to the scarcity of surface
measurements over oceans, satellite-based precipitation observations often represent the only source
of information. It is critical to characterize errors associated with these products, as these errors may
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lead to erroneous conclusions in many applications, e.g., fresh water budgets, currents, cyclones
and hurricanes propagation, and El Niño-Southern Oscillation (ENSO) cycle predictions. The GPM
Ground Validation (GV) group utilizes reference data obtained from multiple sources, including
radar networks and ground-based measurements to validate satellite precipitation measurements [8].
However, validating satellite products over oceans is more challenging because of their inaccessibility
and geographical extent (~75% of earth’s surface). Past efforts have used weather radars situated
on islands and coastlines [9]. Over the years, rain gauge measurements onboard cruise, merchant,
and research ships have been used to estimate oceanic precipitation in addition to tropical buoy gauge
arrays and manual observations from voluntary observation ships [10–12]. Rain gauges mounted on
buoys take point measurements with high temporal resolution, but are easily influenced by wind speed,
which can lead to erroneous estimates. In contrast, satellite precipitation estimates have relatively high
spatial coverage but lower temporal resolution [13].

Thanks to the launch of the Tropical Rainfall Measurement Mission (TRMM) in 1997 and GPM
in 2014, satellite precipitation products have provided useful information on oceanic precipitation
quantification and patterns. Bowman [14] and Serra and McPhaden [15,16] compared TRMM-based
precipitation retrievals against rain gauge data from ocean buoys in the Pacific and Atlantic
Oceans. These studies highlighted the uncertainties associated with an area-averaged and a point
measurement-based comparison. In order to fill this gap, scientific groups, such as the International
Precipitation Working Group (IPWG) and the GPM GV group, have pressed the need for improved
and robust oceanic precipitation surface measurements and associated errors [17]. OceanRAIN
(Ocean Rainfall and Ice-phase precipitation measurement Network) is an effort to provide high
quality along-track shipboard precipitation data for surface validation over global oceans [18]. IMERG
V03 has been evaluated against OceanRAIN precipitation and showed an underestimation of shallow
tropical rainfall [19]. Another recent study used OceanRAIN precipitation data for evaluating the
HOAPS (Hamburg Ocean Atmosphere Parameters and fluxes from Satellite data) precipitation product
across the Atlantic Ocean [20]. This study highlighted that the differences between HOAPS and
OceanRAIN are governed by the point-to-area (along track-pixel) effect rather than the precipitation
regime itself. Although some efforts have been done in this direction, there is still a need for more
evaluation of satellite-based products (particularly their most recent versions) over oceans.

The overall objective of this study is to investigate and better understand how the latest Version
05 of the IMERG products and components performs across oceans at different spatial resolutions.
As there is no reference that is continuously available both in time and space over oceans, IMERG
products are evaluated against the OceanRAIN precipitation dataset and the Level-3 DPR product,
3DPRD. This work assesses all products at the daily temporal resolution and at four different spatial
resolutions, i.e., 0.5◦, 1◦, 2◦ and 3◦. The GPM GV group lays special emphasis on validation studies
in “nontraditional” regions like oceans and this study fits well within this wider effort. The datasets
and methodology used in this study are presented in Section 2. Results are described in Section 3
and discussed in Section 4, whereas Section 5 summarizes the main conclusions and presents future
research directions.

2. Materials and Methods

2.1. Data

IMERG fuses information from multiple sources, including satellite microwave and infrared
precipitation estimates and ground gauge information. The IMERG algorithm uses several passive
microwave (PMW) sensors to assemble and intercalibrate precipitation estimates. However, due to the
limited sampling of PMW sensors on low-earth-orbit platforms, the gaps are filled by MW-adjusted
IR estimates. As IMERG products are provided at 30 min temporal resolution, MW retrievals are
obtained either from calibrated conical-scan microwave radiometer or cross-track-scan microwave
retrieval, essentially from the one that is closer to the half-hour window. IR estimates are provided
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by various sensors (refer to [21] for more details). The IMERG algorithm is run twice in near-real
time and once after monthly gauge data become available to generate the following multi-satellite
products: (i) early, available ~4 h after the observation time allowing quick assessment for flood
and landslide forecasts; (ii) late, available ~12 h after the observation time, mainly for agricultural
applications like drought monitoring, crop yield forecasts, and crop production; and (iii) final, available
~2 months after observation for research applications. The data fields are provided by the NASA
Precipitation Processing System (PPS) as global Level-3 gridded precipitation estimates (mm·h−1) at
the spatial/temporal resolution of 0.1◦/30 min. In this study, the following data fields archived in each
IMERG file are used: precipcal for the early, late, and final merged products, HQprecipitation for the
MW component, and IRprecipitation for the IR component.

The GPM core satellite carries the dual-frequency precipitation radar operating at Ku-band
(13.6 GHz) and Ka-band (35.5 GHz). DPR provides measurements that are spaced at ~5 km, over
245 km (at Ku-band) and 120 km (at Ka-band) wide swaths. The attenuation and loss of the radar
signal along with precipitation phase still influence DPR observations, as in the TRMM Precipitation
Radar [22–25], but these issues are addressed in the Level-2 DPR algorithm. The Level-3 DPR algorithm
performs a spatial and temporal statistical processing to generate gridded products that cover the
whole globe and are available at multiple temporal (hourly, daily and monthly) and spatial (0.25◦

and 0.50◦) resolutions. In this work, the daily Level-3 product 3DPRD is used at its native spatial
resolution of 0.25◦ and with a spatial coverage from 67◦ S to 67◦ N and from 180◦ W to 180◦ E. The data
archived in the GRID/precipRateESurfMean data field are utilized in this study. IMERG uses Level-2
PMW precipitation retrievals trained by the 2BCMB (GMI+DPR) combined algorithm. For interpreting
reflectivity profiles from DPR reflectivity observations, 2BCMB uses a different approach than the DPR
algorithm to interpret the reflectivity profiles. Moreover, several levels of processing from the 2BCMB
estimates to the Level-2 PMW, which adopts a Bayesian retrieval algorithm, to IMERG guarantees that
the IMERG product is different from the 2BCMB precipitation on a scene-by-scene basis, although
their long-term means will look similar as a result of the intercalibration [26].

Several research vessels (RV) have gathered precipitation data along with auxiliary atmospheric
data as part of the OceanRAIN initiative over the Pacific and Atlantic Oceans since 2010. The mainstay
of OceanRAIN is an optical disdrometer (the Eigenbrodt ODM470) coupled with an anemometer and
a precipitation detector. The measuring volume is illuminated evenly along the cross section by an
infrared light diode. The ODM470 records the light extinction caused by the passing hydrometeor in
terms of activation voltage which is proportional to the cross-sectional area of the hydrometeor [27].
To obtain the particle size distribution, the hydrometeors are counted in a 60 s window and sorted
in a bin size ranging from 0.04 mm to 22 mm. A particle size distribution is then used to derive
precipitation phase, intensity, accumulation, and precipitation occurrence. Moreover, the installation
height of ODM470 on RVs assures minimal splashing water effect on the measurements. Further
details regarding the instrument and the OceanRAIN dataset can be found in Klepp et al. [28]. Figure 1
shows the ship tracks of the RVs collecting precipitation data during the 3-year study period (March
2014–February 2017).

Information regarding the sample size of precipitation data collected by each RV is presented
in Table 1. The temporal resolution of the data is 1 min. The ODM470 instrument used in
OceanRAIN can measure very light precipitation (from 0.01 mm·h−1 to 0.09 mm·h−1) unlike common
gauges. As highlighted in Klepp et al. [29], when an insignificant number of particles is recorded,
the measurement is flagged and assigned a value of 0.00 mm·h−1. Moreover, to avoid unrealistic
spikes, quality control is maintained through routine visual inspections. Seven RVs have acquired
OceanRAIN data during the three years of analysis. Polastern has the longest time series and thus
collected the largest numbers of samples, whereas World spans over two months only and shows the
smallest sample size. Measurements from all RVs are merged together to facilitate the comparison
with the IMERG products/components, resulting in a total of 623,641 samples over the 3-year period.
Considering rain rates larger than 0 mm·h−1, the sample size reduces to 379,744 during the same study
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period. IMERG, DPR, and OceanRAIN data are all matched to the daily temporal scale and to a regular
cartesian grid at four different spatial resolutions (0.5◦, 1◦, 2◦ and 3◦).
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Maria 27,083 23,954 Mar–Jun 2014 
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World 4879 3860 Jan–Feb 2017 

TOTAL 623,641 379,744 Mar 2014–Feb 2017 
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Figure 1. Ship tracks of OceanRAIN across the Pacific and Atlantic Oceans during March 2014–February
2017 (blue crosses correspond to 8030 unique locations).

Table 1. Data collected by each research vessel (RV) during the 3-year study period (March 2014–Feb
2017).

RV ID Sample Size # Cases with Rain > 0 mm·h−1 Time Series

Sonne-II 60,168 58,083 Nov 2014–Jan 2015
Roger 10,763 8469 Aug–Sep 2014

Polastern 445,635 233,349 Mar 2014–Oct 2016
Meteor 20,299 19,358 Mar 201–Mar 2016
Maria 27,083 23,954 Mar–Jun 2014

Investigator 54,814 32,671 Jan 2016–Feb 2017
World 4879 3860 Jan–Feb 2017

TOTAL 623,641 379,744 Mar 2014–Feb 2017

2.2. Spatio-Temporal Data Alignment

IMERG (both merged products and components), DPR, and OceanRAIN data have different
native resolutions. Moreover, OceanRAIN data are not gridded, which also necessitates a spatial
alignment to a common grid. IMERG (native resolution = 0.1◦) and 3DPRD (native resolution = 0.25◦)
are mapped to a common 0.5◦ cartesian grid through simple spatial averaging. Then, all OceanRAIN
measurements falling within each 0.5◦ grid box are averaged together. Both IMERG and OceanRAIN
datasets are averaged temporally for every day during the 3-year study period to match the daily
resolution of 3DPRD.

In order to investigate the impact of spatial resolution (i.e., grid box size) on our analysis, daily
IMERG and 3DPRD data are upscaled to coarser resolutions (1◦, 2◦, and 3◦) and compared to the
OceanRAIN data. IMERG, 3DPRD, and OceanRAIN at these resolutions are generated by spatially
averaging all the valid observations (including zeros) available within each grid box. Statistical metrics
for the three collocated products are thus computed at a total of four spatial resolutions (0.5◦, 1◦, 2◦

and 3◦) and at the daily time scale.

2.3. Performance Analysis

Categorical and continuous statistics allow characterization of systematic and random errors,
which are both critical to evaluate and further improve precipitation retrieval algorithms, for instance
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through bias adjustment techniques. Both categorical and continuous statistics are used to assess
the performance of the IMERG products/components against two references, i.e., OceanRAIN and
3DPRD. The rationale behind the use of two different reference datasets consists in the fact that over
oceans there is no ideal benchmark for evaluating precipitation products that is continuously available
both in time and space. A rain/no-rain threshold of 0.01 mm·h−1 is used to compute categorical and
continuous statistics. Categorical statistics include probability of detection (POD), success ratio (SR),
critical success index (CSI), and the hit bias. Among the continuous statistics, correlation coefficient
(CC), standard deviation (SD), and the root mean-square error (RMSE) are considered. Definitions
and equations for each metric are reported in Appendix A, together with the contingency table on
which the categorical statistics are based. All error metrics are computed at the daily scale for the four
spatial resolutions.

Triple collocation is an alternative method for assessing the quality of a product without assuming
a reference and the random errors are computed against an unknown truth [30–36]. This technique has
been widely used in precipitation studies, although some studies showed that TCA is highly sensitive
to its input configurations, including scale differences, time span under observation, and measurement
triplets [37–39]. The method proposed by McColl et al. [31] is applied here to estimate RMSE and R2

values of a specific precipitation product with the truth defined as:

Xi = X′i + εi = αi + βit + εi (1)

where Xi(i ∈ {1, 2, 3}) represents collocated measurement systems linearly related to the true value
t with additive random errors εi, whereas αi and βi represent the least square intercepts and slopes,
respectively. Assuming that the errors from each system have (i) zero mean, (ii) are mutually
uncorrelated (Cov

(
εi, ε j

)
= 0, i 6= j), and (iii) orthogonal with respect to t (Cov(εi, t)), the RMSE and

coefficient of determination (R2) are computed as follows:

RMSE =


√

Q11 − Q12Q13
Q23√

Q22 − Q12Q23
Q13√

Q33 − Q12Q23
Q12

 (2)

R2 =


Q12Q13
Q11Q23
Q12Q23
Q13Q22
Q13Q23
Q12Q33

 (3)

where Qij = Cov
(
Xi, Xj

)
and Cov represents the covariance matrix.

We applied TCA by aggregating daily data at different spatial resolutions (0.5◦, 1◦,
2◦ and 3◦) over the 3-year period and by selecting instances when and where all three
datasets have precipitation rates ≥ 0.01 mm·h−1. TCA is applied to the following triplets
of precipitation products: (1) early-3DPRD-OceanRAIN (Triplet A); (2) late-3DPRD-OceanRAIN
(Triplet B); (3) final-3DPRD-OceanRAIN (Triplet C); (4) MW-3DPRD-OceanRAIN (Triplet D); and (5)
IR-3DPRD-OceanRAIN (Triplet E). R2 and the RMSE are then computed for each triplet.

3. Results

As a first step to investigate the datasets considered in this study, the probability density functions
(PDFs) of each of the six daily precipitation products at 0.5◦, 1◦, 2◦ and 3◦ spatial resolutions are
investigated (Figure 2). At the finer scale (0.5◦), 3DPRD demonstrates a sharp distribution concentrated
around small precipitation rates (<0.01 mm·h−1), whereas IR reveals the most uniform distribution
among all datasets. The MW component and the merged products have all similar distributions that
are close to the one of OceanRAIN. Coarser resolutions result in flatter 3DPRD distributions that get
closer to the other IMERG products. In the IR distributions, the density of low precipitation rates
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becomes larger at coarser resolutions. Other IMERG products maintain similar distributions when
moving from finer to coarser resolutions, except for IMERG early, which flattens out significantly at 3◦.
The distribution of OceanRAIN is similar across the four resolutions, albeit slight variations at small
rain rates (<0.01 mm·h−1).
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and (d) 3◦ spatial resolution.

In order to further investigate the performance of the satellite-based precipitation products with
respect to the ground reference, cumulative distribution functions (CDFs) of daily IMERG products
and 3DPRD are compared to the CDF of OceanRAIN at 0.5◦ and 3◦ resolutions (Figure 3). All IMERG
products and components show an overall underestimation with respect to OceanRAIN, both at finer
and coarser spatial resolutions. This underestimation increases when moving from the finer to the
coarser resolution. When analyzing the CDF of 3DPRD at 0.5◦, we observe an overestimation of
precipitation rates ranging between 0.01 mm·h−1 and 0.9 mm·h−1 and an underestimation at larger
rain rates. However, at the coarser resolution, 3DPRD consistently underestimates the reference,
similarly to the other satellite-based products.

As mentioned above, the performance of the IMERG products and components is further
investigated against two different references: OceanRAIN and 3DPRD. The performance metrics
considered in this work are illustrated in Figures 4 and 5 in terms of performance and Taylor
diagrams [40,41]. The performance diagram displays categorical statistics such as probability of
detection (POD), success ratio (SR), critical success index (CSI), and hit bias. The upper right corner
of the diagram represents the perfect score with POD, SR, CSI and hit bias approaching 1. Both
performance and Taylor’s diagrams are presented at the four different resolutions: 0.5◦ (a–b); 1◦ (c–d);
2◦ (e–f); and 3◦ (g–h) for each one of the five IMERG precipitation products. The left panels in
each Figure present results for OceanRAIN as reference, whereas the right panels show 3DPRD as
the reference.
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Figure 3. Cumulative distribution functions of OceanRAIN and (a) IMERG early; (b) MW; (c) IMERG
late; (d) IR; (e) IMERG final and (f) 3DPRD) at 0.5◦ (black) and 3◦ (red) spatial resolution during the
study period. Precipitation rates on the x-axis are shown in logarithmic scale. Dashed lines correspond
to satellite products, whereas solid lines correspond to OceanRAIN.

By analyzing the performance diagrams in Figure 4, we observe that, overall, IR is the only
product whose statistics are markedly different from the other products, which are closely packed
together in the diagrams. POD is just below 0.80 for all IMERG products except for IR, which has a
POD slightly greater than 0.80 with OceanRAIN as reference. This suggests that all products have a
good ability of detecting precipitation (i.e., ~80% of the times that OceanRAIN detects rain, the satellite
product agrees). SR on the other hand is the lowest for IR (~0.55) and higher for other products
(~0.65). Likewise, the hit bias and CSI are respectively around 1.50 and 0.50 for IR and 1.30 and 0.55
for the other products at 0.5◦ resolution, when compared to OceanRAIN. The performance metrics
show minimal changes with spatial resolutions: SR and CSI exhibit slight improvements at coarser
resolutions, whereas POD and hit bias do not show any dependence on the spatial scale.
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(b,d,f,h) at 0.5◦ (a,b), 1◦ (c,d), 2◦ (e,f), and 3◦ (g,h) spatial resolutions. Circles represent Probability
of Detection (POD) and Success Ratio (SR) for different regions, ‘+’ indicates variance, dotted lines
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Figure 5. Taylor diagrams for the IMERG products vs. OceanRAIN (a,c,e,g) and vs. 3DPRD (b,d,f,h) at
0.5◦ (a,b), 1◦ (c,d), 2◦ (e,f), and 3◦ (g,h) spatial resolutions. Standard deviation (SD dotted blue curves),
RMSE (solid gray curves), and correlation (CC radial dotted black lines) are normalized with respect to
the reference data. REF indicates the OceanRAIN/3DPRD-based reference metrics (with itself), i.e., SD
and CC of 1 and RMSE of 0.
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By analyzing the performance diagrams with 3DPRD as reference (presented in the right panels
in Figure 4), we observe that the POD is much lower (0.35–0.65) than in the previous case (when
OceanRAIN was taken as benchmark) and that it shows larger variability across different spatial
resolutions. However, the SR is not influenced by changes in the spatial resolution and ranges between
0.70 and 0.80 for all products. CSI and the hit bias also manifest improvement at coarser spatial
resolutions with values increasing from 0.35 to 0.55 for CSI and from 0.50 to 0.85 for the hit bias. CSI
may not always be a reliable indicator because of its dependence on frequency of events. Specifically,
it may increase with resolution because of its inherent bias with event frequency. However, CSI is a
valid indicator of the relative performance of various algorithms [42]. Interestingly, the difference in
performance between IR and other IMERG products follow a very similar pattern for both references.

The Taylor diagrams in Figure 5 present continuous statistics such as correlation (CC), normalized
standard deviation (SD), and root-mean square error (RMSE), where RMSE is expressed as a function
of CC and SD. A normalized version of the Taylor diagrams, in which the SD and RMSE are normalized
by the standard deviation of the reference, is considered here to provide a better measure of the relative
performances of the satellite-based precipitation products [41]. The perfect scores are 0 for RMSE
and 1 for CC and SD. Similarly to the categorical scores, continuous statistics are computed at four
different resolutions: 0.5◦ (a–b); 1◦ (c–d); 2◦ (e–f); and 3◦ (g–h) spatial resolutions. The left panels
correspond to OceanRAIN taken as the reference, whereas the right panels consider 3DPRD as the
reference. At 0.5◦, the correlation coefficient between all the IMERG products and OceanRAIN is 0.20,
except for the IR component, which exhibits minimal CC (0.05). CC doubles for all the products at 1◦

spatial resolution (5c), including IR, depicting a CC of 0.4. RMSE follows a very similar trend as CC
with changing resolutions. Specifically, RMSE shows the lowest values at 1◦ (0.80), whereas it is 1 for
the other resolutions. At 0.5◦ and 1◦ SD is 0.25 for all IMERG products and decreases to 0.1 at 2◦ and
3◦ resolutions. Overall, the continuous statistics for all IMERG products appear to converge at a single
value at 2◦ and 3◦.

Continuous statistics with 3DPRD used as a reference exhibit more pronounced variability at
coarser spatial scales. CC changes from 0.40 at 0.5◦ and 1◦ resolutions to 0.45 at 2◦, and to 0.30 at 3◦

resolution. RMSE shows values of 0.80 at 0.5◦ and 2◦ resolutions and of 1 at 1◦ and 3◦ resolutions for
all IMERG products. SD moves closer to the reference value (SD = 1) as the spatial resolution goes up
from 0.35 (at 0.5◦) to 0.75 (at 2◦), but it falls back to 0.50 at 3◦. Among all IMERG products, the MW
estimates exhibit the best continuous statistics when evaluated against 3DPRD.

Since the categorical and continuous statistics do not provide a definitive answer to what reference
should be used to evaluate the IMERG products and components, a triple collocation analysis is
adopted here as an alternative method to investigate random errors associated with the products
of interest. Table 2 summarizes the TCA results for the five triplets for each one of the IMERG
products and components, when 3DPRD and OceanRAIN are used as the other two measurements.
The RMSE and R2 values obtained from TCA are compared at the four spatial resolutions. Among the
three precipitation measurements in each triplet, the IMERG products consistently exhibit the higher
correlations and lower RMSE values.

Figure 6a presents mean values of all precipitation products at four spatial resolutions along
the study time series, whereas Figure 6b shows the overall bias (mm·h−1) of each satellite product,
defined as follows:

Bias = µSat − µRe f (4)

where µRef is the mean precipitation of either OceanRAIN (top panel) or 3DPRD (bottom panel),
and µSat represents the mean precipitation of each IMERG product/component. Precipitation mean
values and biases are computed for collocated products using a threshold of 0.01 mm·h−1.
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Table 2. RMSE (in mm·h−1) and R2 from TCA for five precipitation product triplets at four spatial
resolutions (0.5◦, 1◦, 2◦, 3◦).

Triplet ID Products RMSE (mm·h−1)
0.5◦, 1◦, 2◦, 3◦ R2 0.5◦, 1◦, 2◦, 3◦

A
early 0.35, 0.30, 0.22, 0.21 0.50, 0.45, 0.67, 0.53

3DPRD 1.05, 0.50, 0.40, 0.53 0.32, 0.37, 0.36, 0.19
OceanRAIN 2.15, 1.61, 3.20, 2.88 0.07, 0.38, 0.05, 0.08

B
late 0.33, 0.29, 0.22, 0.21 0.48, 0.43, 0.62, 0.50

3DPRD 1.07, 0.49, 0.40, 0.53 0.27, 0.40, 0.38, 0.20
OceanRAIN 2.14, 1.64, 3.18, 2.88 0.08, 0.35, 0.05, 0.08

C
final 0.32, 0.28, 0.23, 0.20 0.50, 0.43, 0.61,0.51

3DPRD 1.09, 0.49, 0.40, 0.52 0.26, 0.40, 0.37, 0.21
OceanRAIN 2.12, 1.62, 3.22, 2.90 0.08, 0.35, 0.05, 0.07

D
MW 0.36, 0.32, 0.24, 0.22 0.62, 0.47, 0.71, 0.53

3DPRD 1.02, 0.49, 0.40, 0.53 0.37, 0.42, 0.37, 0.19
OceanRAIN 2.21, 1.68, 3.32, 2.92 0.06, 0.33, 0.05, 0.08

E
IR 0.59, 0.38, 0.29, 0.23 0.04, 0.31, 0.63, 0.48

3DPRD 1.86, 0.61, 0.48, 0.61 0.01, 0.31, 0.31, 0.12
OceanRAIN 2.62, 1.87, 3.84, 3.26 0.00, 0.37, 0.04, 0.09
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The precipitation mean of all satellite products decreases when moving to coarser resolutions
(from 0.5◦ to 3◦), likely due to the inclusion of more pixels where no precipitation occurs. However,
this is not the case for OceanRAIN, since not as many more observations as in the case of the gridded
products are included when increasing resolution. In terms of bias, all IMERG products show larger
bias when OceanRAIN is used as a reference as opposed to 3DPRD, which is expected due to the
inherent different nature of satellite-based retrievals and track-based observations. For the same
reason, biases between the IMERG products and OceanRAIN tend to increase when resolution gets
coarser, whereas IMERG biases with respect to 3DPRD decrease with coarser resolution because of
the smoothing effect of the spatial aggregation. This is a critical point that should be considered
when choosing a satellite-based reference versus a track-based one for evaluating IMERG products
over oceans.

TCA also allows us to compare the two references used in the previous analyses against an
unknown truth. 3DPRD consistently outperforms OceanRAIN in terms of both R2 and RMSE at all
spatial resolutions. A comparison across the spatial resolutions reveals a very interesting pattern,
that is, R2 values are consistently higher for 3DPRD, as already anticipated by the Taylor diagrams.
In terms of RMSE, mean values for OceanRAIN across all the triplets are 2.25 mm·h−1, 1.68 mm·h−1,
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3.35 mm·h−1, and 2.97 mm·h−1 at 0.50◦, 1◦, 2◦ and 3◦ resolution, respectively. Mean RMSE value
for 3DPRD across all the triplets are 1.22 mm·h−1 (0.50◦), 0.52 mm·h−1 (1◦), 2.08 mm·h−1 (2◦) and
0.54 mm·h−1 (3◦).

In terms of triplets that consider IMERG products and components, Triplets A-D show comparable
performances in terms of both RMSE and R2, with Triplet D (the one including the MW component)
showing the lowest RMSE and the largest R2 and Triplet E (the one including the IR component)
showing the worst performance at all spatial resolutions. It is worth noting that the TCA assumption
of linear dependence among the datasets is not met for the 0.50◦ resolution for the IR component,
which leads to R2 values close to 0 for all the measurements in Triplet E.

4. Discussion

More than 75% of the global rain occurs over oceans, thus necessitating reliable measurements
over oceans for better understanding global atmospheric and hydrological processes. The launch of
precipitation-focused satellite missions (i.e., TRMM and GPM) in the past few decades has provided
the opportunity to estimate precipitation at fine spatial/temporal resolutions over oceans, where
surface observations are sparse and often influenced by wind speed and direction and by the stability
of the measuring platform [8]. Nevertheless, the true capability of these satellite precipitation estimates
over oceans is closely linked to the quantification of the uncertainties associated with them.

In this context, this study assesses the performance of the latest V05 IMERG products and
components over oceans. Two independent references (OceanRAIN and 3DPRD) are used to
evaluate the products at four spatial resolutions and daily temporal scale over a 3-year study
period. All IMERG products show comparable precipitation distributions, except for the IR estimates.
An overall underestimation by all IMERG products and 3DPRD against the OceanRAIN is observed
for the analysis period, which corroborates results from other studies where moored buoys were
used as a reference to evaluate satellite rainfall estimates [13]. Precipitation rates lower than
0.1 mm·h−1 dominate the distributions in all products and are more pronounced in 3DPRD estimates.
The OceanRAIN PDF appears to migrate closer to the IR PDF as we move to coarser resolutions, which
can be attributed to the IR sampling. Specifically, IR has good sampling and despite the noise, the IR
mean should converge to the mean of the MW with sufficient spatial/temporal averaging, which could
be the case here. The reader should note that the IR field provided in the half hour IMERG file may not
have been the one used in the merger with that half hour’s satellite estimates. In IMERG versions 03
through 05, the next half hour’s IR is used to merge with the current half hour’s satellite estimates
since it tends to exhibit the highest correlation.

The performance of IMERG products and components is assessed by using a plethora of statistical
metrics to provide a comprehensive analysis of their associated uncertainty and errors. Among all
products, IR estimates perform worst in terms of CC, SD, and RMSE. However, in terms of POD,
the IR component tends to depict slightly improved values as compared to other IMERG products
against both references. The IMERG products follow IR in terms of rain detection because IR is the
only high-frequency observation contributing to the IMERG algorithm, whereas the MW component
is obtained from either calibrated conical-scan microwave radiometer retrievals or cross-track-scan
microwave sounder retrievals, whichever is closer to the half-hour window. The IR-based product is
estimated indirectly via cloud top temperature measurements. Oceans are commonly characterized by
dense cloud cover over tropical and temperate regions [43]. The increased POD for IR estimates could
be attributed to the fact that the data collected by RVs are mostly in the tropical and temperate regions
typically receiving more convective rainfall, which is well detected by IR sensors [44]. On the contrary,
the MW component performs better than the other components in terms of both categorical and
continuous statistics, which is in line with past studies conducted using buoys as a reference [13,45].
As this study does not distinguish the Pacific Ocean from the Atlantic Ocean, the performance over a
specific region cannot be inferred. However, previous studies suggest inconsistencies in POD, SR, CC,
and RMSE for satellite estimates across the western and eastern Pacific and Atlantic Oceans [45–47].
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3DPRD has the potential to be a very useful reference because of its global availability at all times
as opposed to OceanRAIN that provides very limited spatio-temporal measurements. In general,
while performance metrics are slightly better when OceanRAIN is used as reference to evaluate the
IMERG products, the continuous statistics are clearly better when 3DPRD is adopted. This may
be attributed to the similar nature of satellite-based products and to the pixel-to-pixel comparison
(with respect to the point-to-pixel comparison used in the OceanRain analysis). Although the
along-track averaged precipitation of OceanRAIN provides better representation of the areal extent
of satellite measurements, the track-to-area difference could be minimized by statistical adjustments
as proposed by Burdanowitz et al. [20]. Overall, this does not point to a conclusive evidence as to
which reference (OceanRAIN or 3DPRD) should be used for validating the IMERG products. Thus,
using an unknown truth-based analysis, such as TCA, is the recommended approach to evaluate
random errors associated with satellite-based products over oceans. Theoretically, TCA provides
error variance without assuming one of the observations as ground truth. The main assumption of
TCA is that three products have mutually independent errors. The results are biased to some extent
when two remotely sensed observations are used in the triplets. TCA shows a similar picture in terms
of the relative performance of the IMERG products and components with respect to each other as
observed in other performance metrics (e.g., RMSE, SD, and CC). Among all products analyzed here,
IMERG final shows the lowest RMSE with respect to the truth, followed by late, early, MW, IR, 3DPRD,
and OceanRAIN. The R2 is relatively higher for the IMERG products/components than the one of
3DPRD and OceanRAIN. In TCA, the performance of OceanRAIN is better at 1◦ resolution compared
to other resolutions. However, the satellite-based products do not show this behavior. This can possibly
be attributed to the influence of track-to-area averaging, i.e., the areal nature of satellite products vs
the track structure of OceanRAIN. This is an interesting point that should be investigated further in
future studies.

TCA clearly confirms that 3DPRD performs consistently better than OceanRAIN, as also shown by
the continuous error metrics. Khan et al. [48] demonstrated that IR estimates are affected by the largest
systematic and random errors over land compared to the other IMERG products and components
and their improvement could be critical to enhance the merged products. The findings over ocean
also point to larger errors in IR estimates over oceans, thus providing an opportunity to improve the
merged products also over oceans.

Using OceanRAIN as a reference for evaluating GPM-based products has its own limitations.
First, although OceanRAIN data are available since 2010, only a few years overlap with the GPM
mission. Second, measurements are spatially sparse and sample sizes are small at coarser temporal
resolutions. At this point mapping errors spatially is not possible because of the short length of the time
series, but additional validation analysis should be performed when longer time series of OceanRAIN
and GPM estimates will be available. A rain/no-rain threshold value is set to 0.01 mm·h−1 for
computing categorical and continuous statistics. This threshold may not be ideal for evaluating satellite
products at their native resolutions, as it is below the minimum detection limit of most spaceborne
instruments. However, a higher threshold would result in a reduced sample size, consequently
resulting in less robust conclusions. Future work should investigate the impact of this threshold on the
validation analysis.

5. Conclusions

This study evaluates the performance of Level-3 GPM gridded products over oceans using 3DPRD
and OceanRAIN as potential references. Similarly, this methodology could be applied to other new
generation satellite-based precipitation products, such as the Global Satellite Mapping of Precipitation
(GSMaP) product by JAXA [49]. The quasi-global availability of DPR-based measurements makes it a
unique reference where and when a surface-based reference is not available. Moreover, compared to
passive remote sensors such as passive microwave and infrared sensors, DPR offers more accurate
precipitation estimates. IR estimates exhibit margin for improvement over oceans, which in turn could
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lead to reduction in errors in the merged products. Future extension of this work could include alternate
independent precipitation datasets such as buoys and model reanalysis for the TCA. Future studies
should investigate error sources and attempt to separate error components (systematic and random),
which is extremely important to implement improvements in satellite precipitation algorithms.
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Appendix A

Table A1. Contingency table.

Satellite

Reference
PSat ≥ th Psat < th

PRef ≥ th H M
PRef < th F Z

where H represents ‘hit’ cases, i.e., both the satellite (PSat) and the reference (PRef) are greater than or equal to the
rain/no-rain threshold (th); F represents ‘false alarms’, i.e., PSat is greater than or equal to th, but PRef is less than th;
M represents ‘misses’, i.e., PRef is greater than or equal to th but PSat is less than th; Z represents ‘true negative’, i.e.,
PSat and PRef are both less than th. The contingency table parameters H, M, F, and Z are defined in Table 1.

POD : H/(H + M) (A1a)

SR : H/(H + F) (A1b)

CSI : H/(H + M + F) (A1c)

Hit bias : (H + F)/(H + M) (A1d)
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