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Abstract: Climatically driven processes are important controls on the Earth’s surface and on
interactions between the hydrological cycle and erosion in drainage basins. As a result, landscape
forms such as hillslope topography can be used as an archive to reconstruct historical climatic
conditions. Recent progress in the Structure-from-Motion (SfM) photogrammetric technique allows
for the construction of high-resolution, low-cost topography data using remote-controlled unmanned
aerial vehicle (UAV) surveys. Here, we present the climatic effects on the hillslope erosion rate
that can be obtained from the drainage frequency of hillslopes. We quantify the centimeter-scale
accuracy of surveys across 72 badland hillslopes in SE Taiwan, which is a tropical monsoon area
with an annual precipitation of over 2 m. Our observations indicate that climatic erosion results in a
higher drainage frequency and the number of furrows, instead of drainage density. Additionally,
the morphometric slope index (MSI) has a strong positive correlation with erosion and its rate
but shows a negative correlation with drainage length and a positive correlation with inclination.
This suggests that the erosion pattern is due to gravitational mass wasting instead of hydrological
erosion. MSI should always be calculated relying on the normalized slope length and is less applicable
to landslide-dominated erosion. We, therefore, suggest that UAV-driven digital elevation models
(DEMs) are integrated into erosion mapping to aid in identifying erosion patterns. We highlight the
unique opportunity for cross-climate zone comparative studies offered by badland landscapes and
differential rainfall patterns, with remote sensing techniques and the morphometric slope index.
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1. Introduction

Landscapes evolve under the influence of external drivers and can be used as an archive for
reconstructing historical climatic conditions. Badlands are a common landscape formation in softer
sedimentary rocks and clay-rich sediment and are distributed across climate zones, e.g., Midwestern
North America, as well as the Mediterranean and Asian tropical monsoon areas. Meanwhile, badlands
are especially sensitive to environmental change due to dense drainage systems and sharp slopes in
barren areas. Therefore, badlands lend a unique opportunity to extend the understanding of climatic
signatures in landscapes.

Nevertheless, studies comparing high-resolution digital elevation model (DEM)-based
morphometric analyses of badland hillslope development in different climate zones are still limited.
Meanwhile, the hydrological erosion in badlands also causes high denudation rates and corresponding
geohazards globally [1]. For example, gully erosion in Te Weraroa Stream, New Zealand affected
∼6% of the drainage basin and produced 28.7 Mt of sediment within 30 years [2]. In contrast,
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reforestation as a protection of the land surface can reduce the area of badlands and the expected
erosion rate [3,4]. In tropical monsoon areas, badlands in Taiwan caused extensive landslides,
mudflow [5], and denudation rates of around 9–13 cm per year [6], resulting in the Erren river, with its
drainage area mostly in the mudstone badlands, having the highest mean sediment yield in the world
of over 105 t/km2/yr [7]. Therefore, simple and systematic constraints on erosion help to improve the
understanding of interactions of the lithosphere and the hydrosphere in topography.

Several studies have measured morphological features in badland areas, with multiple-scale
measuring tools. Erosion pins [8–10] have traditionally been used for obtaining direct measurements,
although they destroy the original surface and are also limited in terms of spatial resolution [11].
In contrast, remote sensing has recently gained popularity for its wide spatial coverage, high resolution,
and ability to access hard-to-reach areas. Remote sensing methods, such as imagery from satellites,
manned gyrocopters, and unmanned aerial vehicles (UAV) [12–16], as well as laser scanning [17–20],
are widely used to create high-resolution DEMs for detailed analyses. Benefitting from the recent
progress in the Structure-from-Motion (SfM) photogrammetric technique (e.g., [13,21]), high-resolution
topography data can also be obtained through UAV surveys. Additionally, UAV surveys have relatively
low operational costs and are convenient, providing low-cost (in terms of time and budget) and
high-spatial-resolution DEMs (e.g., [13,21]). Consequently, they have been used in various fields, such
as rescue (e.g., [22–24]), active fault mapping (e.g., [25–27]), the study of fluvial processes (e.g., [28–30]),
and the study of landslides (e.g., [31–35]). With high-resolution topography datasets, GIS-based
morphometric analysis can also be conducted to derive additional morphological information [36–39].

The morphometric slope index (MSI) was developed to analyze Calanchi erosion in northern
Sicily, Italy. Calanchi is a specific term for badlands in Italy which has dense drainage systems and
steep clayey slopes [36]. The methodology builds a relationship among morphometric features, erosion
type, process and volume, in slope scale. However, the Calanchi area is mainly distributed in the
Mediterranean climate. In this study, we would like to apply this method to the mudstone badland area
in SE Taiwan, which is a tropical monsoon area with an annual precipitation of over 2 m. Therefore,
it provides an opportunity to verify the applicability of MSI to a specific alternate climate region
with spring monsoons and typhoons in summer. Furthermore, comparing the two types of badland
hillslope evolutions, in Italy and Taiwan, could also extend the understanding of climatic signatures
in badland areas. In this contribution, the data from UAVs are used to create high-resolution aerial
images and DEMs for the calculation of MSI and morphometric features. This study aims to evaluate
the development of badland hillslopes in Taiwan using MSI, and establish the relationship between
MSI and other topographic features. The quantitation of slope-scale erosion volumes during typhoon
events would extend the understanding of erosion patterns induced by high-intensity rainfall.

2. Materials and Methods

2.1. Study Area

Our study area comprises about 1 km2 of badlands landscape in Tainan County, SW Taiwan
(Figure 1a). This area hosts a military facility with high levels of security and, therefore, has undergone
little intensive development in the past. Consequently, the area exhibits a natural landscape without
extensive human disturbance and is, therefore highly suitable for a landscape-development study.
It has a hot and wet tropical climate with major rainfalls from the seasonal monsoon and typhoons.
The rainy season is between May and October and accounts on average for 89% of the total annual
rainfall (2118 mm). The peak is in August with >400 mm of monthly rainfall on average. The average
monthly rainfall is typically <40 mm from November to April.

The stratigraphy of the study area is dominated by clay and sandstone, which are prone to erosion
caused by rainfall. As rainfall infiltrates the mudstone, the ionic bond link is destroyed and then
releases strain energy, causing slaking. Illite (30.54%) and chlorite (28.70%) are the main minerals in
the mudstone [5]. There is also a large proportion of soluble salt, which is easily dissolved by rainfall
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to form sodium ions. The sodium ions make soil particles disperse easily and result in slaking of the
mudstone. After a long dry period, the mudstone surface shrinks and then forms cracks and crusts,
8–10 cm thick on the weathered surface layer and the cracks are preferential routes for infiltration. Plus,
the alternate climate makes the annual erosional cycle in the the badland hillslope.

The typical badlands landscape is composed of steep slopes, dense rills, and gullies, as well
as pipes or tunnels. Several studies have focused on the slope evolution of the mudstone areas in
Taiwan. Yen [40] mentioned that the homogeneous lithology controlling the gradient tends to form
hillslopes of 40–50◦ during the erosion process, followed by a parallel slope retreat. However, the
longitudinal sections of the mudstone badlands slope are not completely linear, consisting of a steep
slope in the upper part and a gentle slope in the lower part. The two steps in the slope indicate that the
badlands slope evolution is simultaneously driven by gravity and water erosion. This implies that it is
the external force, rather than tectonic movement, that mainly controls the form of the hillslope [40].
Yen and Chen [41] developed the landscape evolution of the mudstone badlands slope—drainage
density, roughness, and local slope gradient would increase in the young state and decline the relief by
climatic erosion and then eventually reach stabilization.
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Figure 1. Location and geological background of the study site. (a) The geological map of the study
area [42](Niupu, Tainan City). (b) The NIR image derived from the UAV survey. The red areas denote
selected slopes in this study and green squares denote ground control points (GCPs) for the UAV survey.
(c) Examples of slope unit and (d), (e) denote centroid elevation and aspect of all slopes, respectively.
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2.2. DEMs Created from UAV Surveys

UAV surveys were conducted between July and August of 2017. The dates of the acquisition
were chosen according to the weather conditions. The two consequent typhoons (July 29–August
01), Nesat and Haitang, packed 579 mm of rainfall with the maximum rainfall intensity of 74 mm/h
likely causing severe erosion in the mudstone areas. We conducted UAV surveys to collect surface
near-infrared (NIR) images for DEM generation and ortho-rectification with a Canon s110 camera and
an eBee Classic drone [43]. Detailed information on this equipment is provided in Table 1.

Table 1. Information on the UAV surveys and resulting DEMs.

Date
Rainfall in
This Period

(mm)

Number
of Images
Obtained

Flight
Height

(m)

GSD
(cm/pixel)

RMS * of
Horizontal
Errors (m)

RMS of
Vertical

Errors (m)

Point Cloud
Density
(pts/m2)

2017/07/01
748.1

111 330 11 0.01 ± 0.01 0.03 ± 0.04 159
2017/08/04 124 320 11 0.01 ± 0.02 0.04 ± 0.03 145

* RMS: root-mean-square.

In order to achieve a high survey accuracy, we installed 11 ground control points (GCPs) across the
1 km2 surveying area (Figure 1b) and conducted high precision GCP surveys using a Leica RX1250XC
differential GPS to obtain their coordinates. The GCPs were made of iron nails with a 5 mm diameter
surrounded by aerial photogrammetric targets. All GCPs were positioned on solid sites, such as paved
roads or bridges, to ensure stable anchoring for the survey. The coordinates of each GCP were measured
over a period of more than 15 min using the real-time kinematic (RTK)-GPS system. The average
flight altitude was 325 m and the average flight time to cover the entire study area was about 30 min.
The resulting ortho-rectified images have a ground sample distance (GSD) of 11 cm. The data were
transformed into 3D-models of the study area using the Acute 3D software (Bentley Systems).

2.3. DEM of Difference (DoD)

DoD is the difference between two DEMs of the same area but acquired at two different times [44].
It reveals the geomorphic change and provides insight into the relationship between process and
form. It can also be used to assess the simulation of numerical morphodynamic models. In this study,
we constructed a DEM of each UAV survey and then obtained the DoD accordingly.

Wheaton et al. [44] and Williams [45] proposed that the DEM elevation value is likely to contain a
vertical error component (or uncertainty). In DoDs, the combined errors are as follows:

δUDoD =
√
δZ2

1 + δZ2
2 (1)

where δZ1 and δZ2 are the errors associated with Z1 and Z2, respectively. We followed this method to
calculate the error in our DoDs.

2.4. Parameter Extraction and Calculation of MSI

The geomorphological features of individual hillslopes were mapped manually using ArcGIS
10.5. The ortho-rectified UAV images were used to identify the hillslope divides and drainages. From
the hillslope divides and drainages, we can calculate the plane tributary area (A2D), slope length (L),
circularity ratio (RC), drainage frequency (F), drainage density (D), and drainage length (l). The slope
inclination (P) is derived from the constructed DEM and we then calculate the reconstructed surface
area (Ar) accordingly. The eroded volume (V) can reflect the amplitude of the transient topography in
response to climate forces. The former is defined as the maximum vertical distance between drainage
divide and valley bottom; the latter can be derived by creating a TIN surface capping the hillslope
and subtracting the hillslope DEM from this surface, normalized by drainage area for comparison
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among hillslopes of different size (V/A2D). The MSI is then calculated for the reconstructed slope of
each hillslope [36]:

MSI =
Ar

A2D
× L×RC (2)

Spearman’s correlation test was conducted to obtain the relationship between topographic indices
calculated from the DEM and other data mentioned previously, and the MSI. The significance values of
Spearman’s rank correlation coefficient (p-value) were set at 0.01 and 0.05, respectively.

3. Results

3.1. DoD Uncertainty Estimation

The DoD of the slopes studied between July 1st and August 4th, 2017 show a mean of 0.07 m and
a standard deviation of ~0.01 m. The distribution of survey error in each grid is shown in Figure 2.
As calculated, the uncertainty of DoD is ± 0.1 m. We, therefore, mark the change between ±0.1 m as
uncertainty (error).

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 15 

 

The DoD of the slopes studied between July 1st and August 4th, 2017 show a mean of 0.07 m 

and a standard deviation of ~0.01 m. The distribution of survey error in each grid is shown in Figure 

2. As calculated, the uncertainty of DoD is ± 0.1 m. We, therefore, mark the change between ±0.1 m 

as uncertainty (error). 

 

Figure 2. Probability density of the survey error. The gray area denotes the binned probability of the 

survey error, the box plot displays an error distribution, and the red solid line denotes the fitting 

curve of the Gaussian distribution. 

3.2. Morphometric Slope Index (MSI) 

A total of 72 hillslopes were identified and mapped from the DEM obtained from the UAV data 

in the study area, as shown in Figure 1c. Overall, the elevation of the slopes range from 70 m to 130 

m, and 42% of the 71 hillslopes are about 90–100 m in elevation (Figure 1d). In addition, 75% of the 

71 hillslopes are S-facing (including SE, S, and SW) (Figure 1e). This implies that the effect of 

orographic precipitation and the difference of tectonic activity is negligible. The MSI of the 72 

hillslopes is shown in Table 2. 

The relationship between MSI and morphometric features is shown in Table 3. MSI has a strong 

positive correlation with total drainage length (R2 = 0.77), total number of furrows (R2 = 0.79), plane 

length (R2 = 0.86), eroded volume (R2 = 0.87), and mean eroded depth (R2 = 0.70). In addition, it also 

has no correlation with inclination (R2 = 0.32) and circularity ratio (R2 = 0.41). In contrast, it has no 

correlation with drainage density (R2 = −0.12) and mean drainage length (R2 = −0.27). 

Table 2. Morphometric Slope Index (MSI) and morphometric features of different slopes. (F): drainage 

frequency (m−2); (D): drainage density (m−1); (l): drainage length (m); (N): drainage number ; (l/N): 

average drainage length (m); (L): slope length (m); (P): incision (°); (Rc): circularity ratio; (A2D): plane 

tributary area (m2); (p): drainage basin perimeter; (Ar): reconstructed surface area (m2); (MSI): 

morphometric slope index (m); (V): erosion amount (m3); (V/A2D): mean erosion depth (m). 

Slope ID F D L N l/N L P Rc V V/A MSI 

1 0.03 0.16 110.59 19 5.82 52.90 48.92 0.50 1676.98 2.37 40.65 

2 0.03 0.16 81.14 14 5.80 37.56 47.26 0.56 550.27 1.06 31.15 

3 0.01 0.18 25.62 2 12.81 23.62 46.26 0.31 170.51 1.21 10.67 

4 0.03 0.17 190.76 30 6.36 32.06 43.19 0.72 1239.45 1.14 31.55 

5 0.03 0.17 158.71 24 6.61 34.58 44.67 0.65 2956.57 3.12 31.84 

6 0.03 0.15 83.81 17 4.93 48.76 46.20 0.48 1386.21 2.43 33.48 

7 0.03 0.21 84.87 11 7.72 39.83 45.25 0.41 97.39 0.24 23.41 

8 0.03 0.18 77.78 13 5.98 39.66 48.76 0.55 657.67 1.55 32.80 

9 0.02 0.15 112.01 17 6.59 43.68 46.81 0.61 2406.42 3.15 38.91 

10 0.03 0.12 62.64 14 4.47 46.01 47.45 0.45 814.64 1.62 30.60 

Figure 2. Probability density of the survey error. The gray area denotes the binned probability of the
survey error, the box plot displays an error distribution, and the red solid line denotes the fitting curve
of the Gaussian distribution.

3.2. Morphometric Slope Index (MSI)

A total of 72 hillslopes were identified and mapped from the DEM obtained from the UAV data
in the study area, as shown in Figure 1c. Overall, the elevation of the slopes range from 70 m to
130 m, and 42% of the 71 hillslopes are about 90–100 m in elevation (Figure 1d). In addition, 75%
of the 71 hillslopes are S-facing (including SE, S, and SW) (Figure 1e). This implies that the effect of
orographic precipitation and the difference of tectonic activity is negligible. The MSI of the 72 hillslopes
is shown in Table 2.
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Table 2. Morphometric Slope Index (MSI) and morphometric features of different slopes. (F): drainage
frequency (m−2); (D): drainage density (m−1); (l): drainage length (m); (N): drainage number; (l/N):
average drainage length (m); (L): slope length (m); (P): incision (◦); (Rc): circularity ratio; (A2D):
plane tributary area (m2); (p): drainage basin perimeter; (Ar): reconstructed surface area (m2); (MSI):
morphometric slope index (m); (V): erosion amount (m3); (V/A2D): mean erosion depth (m).

Slope ID F D L N l/N L P Rc V V/A MSI

1 0.03 0.16 110.59 19 5.82 52.90 48.92 0.50 1676.98 2.37 40.65
2 0.03 0.16 81.14 14 5.80 37.56 47.26 0.56 550.27 1.06 31.15
3 0.01 0.18 25.62 2 12.81 23.62 46.26 0.31 170.51 1.21 10.67
4 0.03 0.17 190.76 30 6.36 32.06 43.19 0.72 1239.45 1.14 31.55
5 0.03 0.17 158.71 24 6.61 34.58 44.67 0.65 2956.57 3.12 31.84
6 0.03 0.15 83.81 17 4.93 48.76 46.20 0.48 1386.21 2.43 33.48
7 0.03 0.21 84.87 11 7.72 39.83 45.25 0.41 97.39 0.24 23.41
8 0.03 0.18 77.78 13 5.98 39.66 48.76 0.55 657.67 1.55 32.80
9 0.02 0.15 112.01 17 6.59 43.68 46.81 0.61 2406.42 3.15 38.91

10 0.03 0.12 62.64 14 4.47 46.01 47.45 0.45 814.64 1.62 30.60
11 0.05 0.14 25.20 9 2.80 22.44 46.19 0.64 138.62 0.78 20.64
12 0.02 0.14 8.84 1 8.84 19.29 46.82 0.47 63.78 1.02 13.15
13 0.03 0.18 33.44 5 6.69 32.20 48.12 0.48 135.41 0.74 22.96
14 0.02 0.14 51.41 6 8.57 33.22 44.45 0.53 492.33 1.36 24.66
15 0.03 0.11 11.63 3 3.88 25.84 47.86 0.38 79.93 0.76 14.45
16 0.01 0.11 21.81 3 7.27 29.04 48.29 0.48 378.16 1.88 20.80
17 0.01 0.13 48.12 5 9.62 49.82 49.36 0.44 982.22 2.57 33.51
18 0.02 0.12 45.48 7 6.50 43.79 49.17 0.52 623.55 1.70 35.03
19 0.02 0.14 145.07 25 5.80 47.74 47.29 0.70 3767.89 3.53 49.36
20 0.03 0.16 17.44 3 5.81 23.54 50.36 0.59 92.44 0.86 21.86
21 0.02 0.15 166.73 19 8.78 56.04 47.00 0.57 3034.36 2.77 46.52
22 0.02 0.21 135.55 13 10.43 34.36 43.78 0.64 424.07 0.67 30.43
23 0.03 0.17 142.03 25 5.68 40.42 45.87 0.65 2219.02 2.60 37.47
24 0.02 0.14 54.26 9 6.03 26.13 46.14 0.69 498.76 1.32 26.04
25 0.03 0.15 86.27 15 5.75 34.33 46.07 0.61 764.64 1.29 29.97
26 0.03 0.14 48.35 10 4.84 32.94 46.37 0.58 871.05 2.50 27.88
27 0.03 0.35 42.67 4 10.67 27.45 47.69 0.27 124.88 1.03 11.14
28 0.02 0.13 185.82 27 6.88 49.60 47.25 0.57 592.74 0.41 41.52
30 0.02 0.16 246.35 27 9.12 47.92 47.01 0.74 3117.43 2.05 51.88
31 0.02 0.14 52.14 7 7.45 26.08 43.17 0.33 504.93 1.37 11.83
32 0.03 0.17 65.31 11 5.94 31.61 46.66 0.63 749.07 1.93 29.21
33 0.01 0.14 49.32 5 9.86 32.55 44.60 0.45 623.54 1.73 20.56
35 0.02 0.16 24.86 3 8.29 25.09 49.76 0.51 172.95 1.13 19.74
36 0.01 0.13 14.56 1 14.56 22.76 49.14 0.40 94.93 0.85 14.08
37 0.01 0.11 53.98 7 7.71 28.17 44.92 0.58 29.87 0.06 22.97
38 0.01 0.11 55.53 7 7.93 31.70 47.45 0.58 982.93 1.97 27.35
39 0.03 0.15 29.69 5 5.94 21.81 43.02 0.45 197.19 1.01 13.50
40 0.03 0.12 51.03 12 4.25 27.24 46.85 0.67 585.24 1.42 26.64
41 0.03 0.11 29.77 7 4.25 22.36 46.14 0.72 452.40 1.71 23.12
42 0.03 0.14 40.51 8 5.06 23.21 44.96 0.59 460.12 1.60 19.21
45 0.01 0.12 32.11 3 10.70 34.93 47.44 0.41 48.38 0.18 21.18
46 0.02 0.16 51.14 5 10.23 42.46 47.53 0.35 259.00 0.82 22.12
47 0.02 0.15 45.81 7 6.54 31.35 45.81 0.48 292.51 0.93 21.56
48 0.02 0.17 71.36 10 7.14 36.86 45.48 0.48 491.18 1.15 25.17
49 0.02 0.15 83.29 10 8.33 46.10 47.16 0.50 796.72 1.45 33.79
50 0.03 0.16 43.43 7 6.20 30.96 47.98 0.54 477.71 1.77 25.11
51 0.03 0.18 46.22 7 6.60 25.70 45.67 0.54 242.27 0.97 19.78
52 0.02 0.14 8.07 1 8.07 18.16 50.58 0.58 36.09 0.61 16.45
53 0.02 0.13 71.63 13 5.51 48.91 48.19 0.41 1043.70 1.87 30.08
54 0.02 0.22 72.11 6 12.02 40.03 48.32 0.45 572.62 1.76 26.79
55 0.02 0.14 36.87 5 7.37 40.07 51.19 0.51 356.61 1.33 32.89
56 0.03 0.17 93.62 16 5.85 45.51 45.40 0.39 975.78 1.79 25.40
57 0.02 0.18 100.47 11 9.13 47.02 46.57 0.44 1140.62 2.03 30.24
58 0.03 0.15 76.22 13 5.86 48.83 49.34 0.51 1053.05 2.03 38.21
59 0.04 0.31 52.90 6 8.82 25.83 43.91 0.32 222.24 1.32 11.40
60 0.02 0.12 16.80 3 5.60 26.39 47.72 0.46 92.38 0.68 17.95
61 0.02 0.10 46.50 9 5.17 36.71 47.97 0.54 747.03 1.62 29.83
63 0.03 0.12 79.11 17 4.65 60.27 49.47 0.42 1494.95 2.33 39.35
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Table 2. Cont.

Slope ID F D L N l/N L P Rc V V/A MSI

64 0.02 0.15 90.84 10 9.08 57.44 48.78 0.40 1131.70 1.93 35.18
65 0.02 0.11 31.39 5 6.28 28.05 48.25 0.56 383.65 1.35 23.69
66 0.02 0.11 32.20 7 4.60 32.27 45.99 0.49 383.88 1.27 22.73
67 0.02 0.12 187.65 29 6.47 71.91 51.26 0.57 6439.13 4.03 65.52
68 0.02 0.12 148.08 23 6.44 47.46 47.51 0.65 2607.65 2.13 45.72
69 0.01 0.17 16.38 1 16.38 19.18 43.67 0.39 38.12 0.40 10.28
70 0.02 0.14 19.89 3 6.63 26.61 47.42 0.41 181.94 1.27 16.21
71 0.01 0.13 19.95 1 19.95 24.49 47.59 0.40 217.80 1.41 14.59
72 0.03 0.17 54.81 9 6.09 38.57 51.36 0.57 632.27 1.98 35.43
73 0.01 0.12 24.74 3 8.25 36.54 52.63 0.52 559.03 2.63 31.58
75 0.02 0.12 216.37 43 5.03 59.95 48.13 0.64 6840.12 3.92 57.40
76 0.03 0.29 56.08 6 9.35 31.39 43.90 0.31 87.66 0.45 13.51
79 0.01 0.10 21.46 3 7.15 21.36 45.02 0.60 229.54 1.11 18.12
81 0.01 0.09 43.40 7 6.20 33.43 47.02 0.74 1361.89 2.87 36.16

The relationship between MSI and morphometric features is shown in Table 3. MSI has a strong
positive correlation with total drainage length (R2 = 0.77), total number of furrows (R2 = 0.79), plane
length (R2 = 0.86), eroded volume (R2 = 0.87), and mean eroded depth (R2 = 0.70). In addition, it also
has no correlation with inclination (R2 = 0.32) and circularity ratio (R2 = 0.41). In contrast, it has no
correlation with drainage density (R2 = −0.12) and mean drainage length (R2 = −0.27).

Table 3. Pearson’s correlation matrix of MSI and morphometric features.

F D l N l/N L P Rc V V/A2D

F 1
D 0.41 ** 1
l 0.24 * 0.29 * 1
N 0.40 ** 0.12 0.92 ** 1
l/N −0.61 ** 0.34 ** −0.10 −0.43 ** 1
L 0.01 0.01 0.78 ** 0.71 ** 0.10 1
P −0.21 −0.28 * −0.15 −0.14 −0.02 0.32 ** 1
Rc 0.10 −0.21 0.32 ** 0.49 ** −0.41 ** 0.06 −0.08 1
V 0.10 −0.07 0.79 ** 0.83 ** −0.30 * 0.77 ** 0.11 0.23 1
V/A2D 0.02 −0.18 0.49 ** 0.53 ** −0.26 * 0.59 ** 0.27 * 0.03 0.87 ** 1
MSI 0.03 −0.12 0.77 ** 0.79 ** −0.27 * 0.86 ** 0.32 ** 0.41 ** 0.87 ** 0.70 **

** Significant correlation at the 0.01 level. * Significant correlation at the 0.05 level.

3.3. Distribution of Hillslope Erosion

Over the surveyed periods, about 68% of the study area was affected by erosion. We measured
31 cm of average erosion depth during the typhoon. The two selected badlands hillslopes represent
the erosion pattern (Figure 3). Overall, Hillslope 33 exhibited the largest observed erosion rate, located
on the steepest hillslopes and at sites with drainage areas under 100 m2. In addition, erosion and
deposition occurred simultaneously in drainage areas under 100 m2 s. Drainage areas between 200 m2

and 300 m2 predominantly exhibited a deposition of 0.4 m, and these are the areas where the main
gully is distributed (Figure 3c). Furthermore, erosion and deposition occurred in drainage areas over
300 m2 but resulted in a change of only ± 0.1 m. On Hillslope 59, the observed erosion was also located
on the steepest hillslopes with gradients greater than 40◦, and at sites with drainage areas under 50 m2

(Figure 3d). In contrast, deposition occurred in relatively gentle areas with slope gradients under 50◦,
and the deposition rate increased with decreases in slope gradient.
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4. Discussion

4.1. The Effect of Rapid Incision on Morphology of Hillslopes in Badlands

In order to isolate the topographic effects of different climatic forcing it is essential to understand
how landscapes work on badlands evolution. The calculated MSI in this study was compared to the
results of Buccolini et al. [36] (Figure 4), who documented 65 morphological features of hillslopes and
MSI in the central Sicily. Badlands in Taiwan have lower drainage length and drainage density than
those in Italy, which may imply that the relatively small hillslope area controls the drainage network
development. The badlands in the study area are caused by incision into weakly resistant mudrocks of
the river terrace [46], and the formation of mudstone badlands is mainly controlled by climatic erosion,
i.e., high rainfall events brought by either typhoons or summer monsoons. The strong climatic erosion
also steepens the hillslope to an average hillslope inclination of 47.1◦, which is 8.3◦ higher than that
of the badlands in Sicily, Italy. Additionally, the origin of the river terrace is ascribed to strong uplift
combined with a storm-induced incision in unconsolidated mudstone since 2000 YBP [46]. Such a
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young badlands landscape may explain why the morphology of badlands landscapes in Taiwan is
relatively short, small, and steep. However, the annual precipitation in the Taiwan badlands is three
times higher than in those of Italy, which may still cause strong erosional feedback, i.e., rills and gullies.
Thus, badlands in Taiwan have a higher drainage frequency and a greater number of furrows.
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Italy in terms of drainage frequency, drainage density, total drainage network length, total number of
furrows in the drainage unit, mean drainage network length, plane length, inclination, mean eroded
depth, and MSI.

4.2. Distinct Erosion Patterns in the Badlands Landscapes of Taiwan

In Taiwan, the higher mean eroded depth (Figure 4h) suggests that more sediment can be produced
from the tiny hillslopes, which has low drainage density. To our knowledge, gully erosion in Taiwan
is a dominant contributor to sediment production during the rainy season. However, no correlation
between drainage density and mean eroded depth (R2 = −0.18) are consistent with the results from
Italy, and this may suggest that the drainages in Taiwan could play the specific role of shredding the
landscape, instead of transporting eroded material, such as gully erosion (Figure 5a) and, therefore,
high drainage frequency likely cause more free-surface, making hillslopes more prone to erosion.
Moreover, no correlation between drainage density and mean eroded depth (R2 = −0.26) can explain
why the relatively short drainage length in Taiwan is not the main contribution to soil loss. Besides, the
observed difference of mean eroded depth, which reflects slope inclination (Figure 5c), may suggest
that the erosional pattern is mainly due to gravitational mass wasting, which preferentially occurred
during high-intensity rainfall events [47–51]. In addition, the mean circularity ratio is 0.52 in Taiwan,
which suggests that the shape of the badlands is not affected by the evolution of a single gully but
expands through many short drainage systems. Thus, the mean erosion depth is not influenced by the
circularity ratio, which may also suggest that hydrological erosion is not the main erosional process.
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During the study period, the total rainfall was 748.1 mm over 35 days (typhoons brought 579 mm
of rainfall, with a maximum intensity of 74 mm/h). The high rainfall intensity causes severe erosion of
the steepest areas in the badlands slopes. The eroded material was then transported downwards and
deposited in the lower part of the gully or downstream area (Figure 3). The observed erosion pattern is
consistent with the argument that gravitational mass wasting dominates the steep areas of the slope
during storm events.

4.3. Benefitting from the UAV-Driven High-Resolution Topography in Application of MSI

Traditionally, the investigation of hillslope erosion, i.e., landslides or gully erosion, has been
conducted directly through on-site human surveys or through satellite imagery technology (e.g., [52–54]).
The results of this study demonstrate the practicality and feasibility of using UAV data for topographical
analysis of landscape change. A combination of UAV and RTK-GPS surveys can facilitate the efficient
acquisition of high-precision and accurate information about slope erosion. This particularly benefits
the construction of high-resolution DEMs and DoDs for studying erosion patterns and volumes.
The detailed topographic data also further extends the understanding of erosional processes, which
is essential to understanding the response of a landscape to climatic forces. Our findings suggest
that high-resolution topographic UAV surveys may guide further investigations in other badland
areas or active-hillslope erosion regions across climatic zones. This may provide opportunities for
clarifying the reaction of morphometric features to different environments. For further application
of MSI, two related issues need to be considered. Firstly, while slope length is a function of MSI, the
scale of hillslopes can range from tens to hundreds of meters. Therefore, the normalized slope length
should always be used. Secondly, MSI is representative of hydrological erosion but is not suitable for
landslide-dominated areas. Thus, we suggest that using UAV-driven DEMs to construct the DoD is
beneficial for identifying erosion distribution, especially in areas of high rainfall intensity.
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5. Conclusions

Through a morphometric analysis of UAV-acquired DEMs and DoDs, we have reached the
following conclusions. First, by conducting UAV surveys, we were able to quantify the landform
change to centimeter-scale accuracy across 72 badlands hillslopes and construct high-resolution DEMs
and DoDs. These provide reliable data constraint on the relationship between hillslope-morphology
and erosion and will benefit the monitoring of land surface change as a result of exogenic forces.

The topographic effects of the climatic difference are important to reveal the mechanism of
landscape evolution. Our observations indicate that badlands hillslopes in Taiwan are relatively short,
small, and steep compared with those of Italy. Because the annual precipitation of over 2 m causes
strong incision, the mudstone badlands in Taiwan are characterized by higher drainage frequency and
more furrows. Thus, we suggest that MSI can be used in the badlands areas of Taiwan. Our findings
suggest that MSI has a strong positive correlation with erosion, which is consistent with results from
Italy. However, the mean eroded depth shows no correlation with mean drainage length and a positive
correlation with inclination, suggesting that the erosion pattern is due to gravitational mass wasting,
rather than hydrological erosion.

MSI combined with UAV-driven DEMs, provides a relatively convenient and rapid method
for assessing the severity of soil loss and evaluating landscape maturity. We highlight the unique
cross-climate zone comparative study offered by badlands landscapes, with differential rainfall patterns,
using simple survey techniques and morphometric slope index. The results of this study also suggest
that UAV techniques are able to provide quantitative evidence for hillslope morphological analysis, and
through simple morphological indicators, we can achieve comparative studies in different climate zones.
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