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Abstract: This paper introduces a new algorithm (BUNTUS—Built-up, Nighttime Light, and Travel
time for Urban Size) using remote sensing techniques to delineate urban boundaries. The paper
is part of a larger study of the role of urbanisation in changing fossil fuel emissions. The method
combines estimates of land cover, nighttime lights, and travel times to classify contiguous urban
areas. The method is automatic, global and uses data sets with enough duration to establish trends.
Validation using ground truth from Landsat-8 OLI images revealed an overall accuracy ranging from
60% to 95%. Thus, this approach is capable of describing spatial distributions and giving detailed
information of urban extents. We demonstrate the method with examples from Brisbane, Australia,
Melbourne, Australia, and Beijing, China. The new method meets the criteria for studying overall
trends in urban emissions.

Keywords: remote sensing; urban areas; climate; google earth engine; machine learning;
land cover; nightlight

1. Introduction

The world is urbanizing rapidly. The United Nations Department of Economic and Social
Affairs [1] reported that 55.3% of the world population now lives in urban areas. They projected that the
world’s urban population will reach 60% by 2030 and 67% by 2050. Urban areas are the hub of economic
activities and, consequently, of fossil fuel emissions [2]. The relationship between urban size as well as
emissions is, however, complex and contested. Bettencourt and West, (2010) [3] found a relationship
between urbanisation and the economy. They stated that it requires only 85% more infrastructure when
one doubles the population in an urban area. The authors of reference [4] also found the decreasing
trend of carbon emissions intensity in highly dense urban areas (100 metropolitan cities) of the United
States. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report concluded
that urban areas generate the majority of carbon emissions from final energy use [5,6]. However, it is
not well understood how carbon footprints are distributed among cities. Any global study of such
relationships requires a consistent definition of urban extent, which is the task of this paper.

No single definition of urban extent will suit all administrative, policy or research needs. It is
recommended that the methodology used for delineating cities should be tailored to its application.

Even within the literature, different disciplines require different definitions. In urban ecology,
cities are defined on a qualitative basis—for instance, the areas under the influence of humans [7,8].
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In social science, the areas with high population densities are regarded as urban or city areas [8].
Economics defines the city by its political, cultural, and economic characteristics [9].

This work forms the first part of a study of the global distribution of trends in urban fossil fuel
emissions and related quantities. That study requires a definition of urban extent so we can attribute
emissions as urban or not. The needs of the overall study provide some important requirements for
the algorithm we use for the urban extent. We will use these so often throughout the paper that we
label them here:

R1 The study is global, so we may only choose globally consistent and available datasets.
R2 We wish to study enough cities to establish patterns, so the algorithm must be computationally

efficient enough for large-scale use.
R3 Changes in urban extent can be small, so the algorithm must work at high resolution, no more

than 1 km.
R4 The study must be long enough to establish trends. We estimate this requires two decades of data.

In this paper, we propose a novel and multiple-step approach which satisfies these requirements.
We define an urban area as a contiguous (i.e., simply connected) and compact region including a
pre-defined urban center and which satisfies several criteria relating to density and surface properties.
The urban boundary is the bounding polygon for this region. The compactness requirement means
that gaps such as green belts (but not water) should be included in the urban area. The criteria which
define the urban area must be deducible from datasets satisfying R1, R3, and R4.

The outline of the paper is as follows. In Section 2, we review existing methods for determining
urban extent, focusing on their utility for our task. In Section 3, we describe our methodology and its
underlying data sets. In Section 3, we also present available validation for the method and three case
studies of different cities. In Section 4, we validate and discuss the results with a particular focus on
the uncertainties of the method and summary of the main results. Section 5 comprises of discussion
and Section 6 comprises of conclusion.

2. Review of Existing Methods

We use two classes of remotely sensed data to delineate cities: built-up area and, nighttime lights.
We also use travel time based on openly available street maps. Several authors have used one of
these. Jaeger et al. (2010), Kasanko et al. (2006), Poelmans and Van Rompaey (2009), and Zhang
and Seto (2011) [10–13] used measures of built-up area to study urban expansion, while Schneider
and Woodcock (2008), and Schwarz (2010) [14,15] also analysed urban form. Goldblatt et al. (2016),
Parés-Ramos et al. (2013), and Small et al. (2005) [16–18] used nighttime lights to delineate cities.
Finally, Mindali et al. (2004), Niu et al, (2018), Sun et al., (2016), and Xie and Levinson (2007) [19–22]
used travel time with other datasets as a measure of urban extent.

Before describing BUNTUS in detail, we will briefly review some previous work that approaches
similar problems. This will establish the need for a new approach, motivate our choice of validation
datasets and provide background on our choice of algorithm.

We have noted 12 urban area products with global coverage, using built-up area or human
settlements, based on remotely sensed data and freely available. These are summarised in Table 1
and described below. In particular, we note the requirements listed above which each dataset does
not meet.
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Table 1. Global land cover and urban area products.

Product Name Map Group Temporal Resolution Spatial Resolution Availability

HYDE3.2 [23] History database of the global
environment v3.2

Human settlement or
built-up oriented

products

10,000 BCE to 2015 CE 5 arc min Open Source

GMIS [24]
Global Man-made Impervious
Surface (GMIS) Dataset from

Landsat, v1 (2010)
2010 30 m Open Source

HBASE [25] Global Human Built-up and
Settlement Extent 2010 30 m Open Source

IMPSA [26] Global impervious surface area 2000–2001 30 arcsecond Open Source

GUF [27] Global Urban Footprint 2011 0.4 arcsec (~12 m) Free for scientific study

GHSL [28] Global Human Settlement
Layer 1975, 1990, 2000, 2014 38 m to 1 km Open Source

GRUMP [29] Global rural-urban mapping
project (alpha version) 1995 30 arcsecond (vector) Open Source

VMAP0 [30] Vector Map Level Zero
Land cover products

consist of built-up and
other classes

2000 1:1,000,000 scale (vector) Open Source

MODIS [31] 500 m MODIS urban land cover
(2001v4) 2001–2017 500 m Open Source

CCI [32] Climate Change Initiative (CCI)
Land Cover 1992–2015 300 m Open Source

GLC30 [33] Global Land Cover 30 m 2000, 2010 30 m Open Source

GLC [34] Global Land Cover 2015 100 m Open Source
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GRUMP and VMAP0 are provided as vector files, while the rest are rasters. The highest resolution
GUF and GHSL are based on radar measurements while the rest are based on optical imagery, with a
resolution of 0.4 arcseconds. VMAP0, GLC30, MODIS 500, GLC, and CCI are multi-class land cover
maps that include an urban class. HYDE3 and IMPSA portray urban land as a persistent variable, as the
part of the impenetrable surface and the division of urban land, individually. Each of these products
has to solve a common set of problems: the ambiguity of the observable attributes of cities, sporadic
coverage (usually due to cloud obscuration), and arbitrary thresholds for quantities in finite-sized
pixels. Many products use strategies combining satellite imagery with ground-based results and
Geographic Information System (GIS) information layers.

GRUMP urban areas [29] are polygons bounding contiguous regions of nighttime lights. These are
combined with estimated metropolitan boundaries extracted from a pre-existing settlements map to
account for lack of electrification. GRUMP data approximate the city size by buffering on the points of
the settlements. The “bloom” of lights in deserts is the major reason for the overestimation of urban
areas [35]. GRUMP has an effective resolution of 1km and is tied to the year 1995. This makes it
difficult to use for trend analysis.

MODIS 500 draws on coarse-resolution multispectral MODIS images from the Terra and Aqua
platforms for the whole year. It yields the highest accuracy in land cover classification for the year
2009 [36] among all its years. Its effective resolution is 500 m, and it is referenced to 2001.

In 2010, China launched a worldwide mapping project for land cover to generate GlobeLand30
land-cover maps for two decadal epochs (2000 and 2010). The 2010 land cover maps of the Earth
were provided to the United Nations as support for worldwide practical improvements and fighting
environmental change. GlobeLand30 2010 has the same 30 m spatial resolution as the Landsat
sensor [33]. GlobeLand30 has sufficient spatial resolution to see small changes in urban extent from
year to year but its temporal resolution is too coarse to establish trends.

TerraSAR-X is an imaging radar launched by the German Aerospace Agency (DLR) in 2007 [27].
In 2016 TerraSAR-X was used to produce the Global Urban Footprint (GUF) [37], a worldwide map of
human settlements at 12 m resolution for the reference year 2011. GUF depends on the examination of
182,249 single look complex pictures procured with 3 m ground resolution mostly during 2011 and
2012. GUF has the highest spatial resolution of any current global product but is limited to a single
reference year.

The Global Human Settlement Layer (GHSL) project of the Joint Research Center of the European
Commission is a general system for completely automated analysis of optical or radar imagery. It has
so far been applied to optical imagery from 0.5–80 m resolution and 10–20 m resolution for radar
measurements. These can be combined to map built-up surfaces and are produced using a completely
computerized image processing technique [28] namely Symbolic Machine Learning (SML) directed
classifier [28]. The GHSL methods were also applied to Landsat imagery to produce the built-up zone
network made available in 2016. It is generated by re-processing the archive of Landsat imagery with
the GHS Sentinel-1 built-up framework and Globe-Land30 2010 as the training data set. The GHSL is
limited to epochs 1975, 1990, 2000, and 2014.

ESA CCI Land Cover (v2.0.7) is a project of the European Space Agency (ESA). It generated
Annual maps of land cover (including an urban class) from 1992 to 2015 with a spatial resolution of
300-m [32]. The ‘urban area’ class which is a part of the chosen map for land cover for the year of 2015,
has been generated by following the classification standards of the GUF [37] and GHSL [38].

The Global Human Built-Up and Settlement Extent (HBASE) dataset [25] was generated from
Landsat imagery for 2010 as the reference year. HBASE has been generated by post-processing the
Global Manmade Impervious Surface (GMIS) dataset which approximates fractional impermeable
cover worldwide extracted using the Global Land Survey 2010 [25]. HBASE maps the occurrence of
human settlements and developed regions.

The above products have a range of strengths and weaknesses. None, however, combined the
temporal and spatial resolution we need for our future study of emissions trends. This provides the
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motivation for the methodology described and tested in the rest of this paper. Many of the previous
products are probably more refined for their chosen reference years than our method. These will
provide data for comparison and testing.

We also note that most of the above products do not solve all of our problems. They classify,
pixel by pixel, the land cover type at some spatial and temporal resolution. Solving the problem of
which of these pixels to assign to a given city is different from the original classification. As we will see,
this makes up the majority of the effort and always involves combinations of data sets.

3. Methodology

The flow chart of the adopted methodology is depicted in Figure 1. The empirical framework for
delineating urban areas contains three steps—land cover generation, nightlight classification, and travel
time calculation. The steps consist of processing an individual dataset. Each of these datasets has some
advantages and disadvantages. For example, Landsat provides the free optical remote sensing imagery
of medium resolution (30 m). Surface classification using Landsat is limited by cloud obscuration, the
similarity of radiance signatures among surface types and incomplete training data [39]. Another problem
with land cover is the occurrence of gaps when we focus on one class (built up in the present study).
Unlike Landsat, the Nighttime Light (NTL) products do not show any gaps over a city area. However, due to
their large pixel size, NTL products provide ambiguous information at the edges of the cities and on
coastlines. Travel time provides evidence on the connectivity of a city but not whether this is associated
with population so it cannot define urban extent alone. If combined judiciously, the three datasets can
provide a more reliable urban boundary estimate than any of them alone. The algorithm is named
BUNTUS (Built-up, Nighttime Light, and Travel time for Urban Size). In what follows we show the study
area and explain each step separately and their fusion into a final product.
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3.1. Case Studies

In this pilot study, we chose three cities (see Figure 2) that test different aspects of BUNTUS.
Beijing has been chosen due to its rapid growth, including agglomeration, Melbourne due to rapid
growth, and Brisbane due to its unusual urban form of a long coastal strip.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 20 
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Figure 2. Study area map.

3.2. Land Cover Classification

We face three significant problems when establishing a land cover classification for the duration
of 21 years at global scale.

1. Dealing with the inevitable instabilities arising from different instruments and conditions;
2. A lack of trustworthy and independent data points for training the classification;
3. The computational demands of classification at this resolution.

We are, of course, not the first to face these challenges—the authors of references [16,40–42] have
all suggested solutions.

For point 1, we take advantage of the multiple well-calibrated images available for the same
location, reducing both calibration and cloud contamination problems. A more refined option would
be to combine the same set of Landsat scenes by computing a “cloud score” extracted using the F-mask
(Zhu and Woodcock, 2012) cloud detection algorithm.

The second challenge is best addressed by exploiting local existing or global and coarse resolution
maps (e.g., the already cited Globcover map [43] to automatically select significant locations for the
training data. Additionally, classification by ensemble learning, i.e., by means of the joint use of
multiple classifiers, is one approach to improve robustness.

For point 3, we are indebted to the Google Earth Engine (GEE). It provides both an interface to a
parallel architecture for large-scale processing and to the entire LANDSAT archive.
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For the land cover mapping, Landsat Thematic Mapper (TM), Landsat Enhancement Thematic
Mapper (ETM), and Landsat Operational Line Imager (OLI)’s Top of Atmosphere (TOA) products
have been used. TOA products are radiometrically calibrated by following the radiometric calibration
coefficients defined by Chander et al. (2009) [44] and available at GEE. So, instead of generating
our own radiometrically calibrated Landsat product, we utilized the already available dataset. As
the aim is to extract almost cloud-free collections for a specific period of interest, we adopted the
Hu and Hu, (2019)’s [45] methodology and applied Algorithms.Landsat.simpleCloudScore function
to get the cloud distribution probability score (0–100) of selected images for each year. Then we
applied the image.updateMask function to remove the cloudy regions with cloud score greater than 40.
After the removal of clouds, we applied a median ee.Reducer function to the collection of images having
unmasked pixels to reduce the image collection to a single output image representing the median
values. This generated cloud free composites of images from 1998 to 2018.

Before constructing a classifier, we need to choose a training data set consistent with our goals of
resolution, time-span, and global coverage. We used the Moderate Resolution Imaging Spectroradiometer
(MODIS) Terra and Aqua reflectance monthly land cover product (known as MCD12Q1.006). MCD12Q1
version 6 land cover data has been derived from six classification schemes and available at an annual
interval from 2001 to 2017 [31]. For the years 1998–2000, we used the 2001 values for training while
for 2018, we used 2017 values. Using different years for training does not affect much the accuracy of
classification as landcover varies much more in space than one year to the next.

After the selection of a Landsat TOA product and training sites, the next step was the selection and
application of a classifier. Achieving high accuracy in land cover classification is challenging, particularly
in urban areas because of heterogeneity in landscape and mixed pixels [46,47]. For example, bare soil and
sand are often confused with the concrete pixels because of similar reflectance [48,49]. To deal with such
problems, many land cover classification algorithms such as Decision Trees, Artificial Neural Networks,
Support Vector Machines, and Random Forest are used in remote sensing (Akar and Güngör, 2012;
Deilmai et al., 2014). We used the Random forest [50] which has been used recently in a large number of
studies [51–53] due to its ability to handle high data multicollinearity and dimensionality efficiently [54].
The model works by randomly picking a sample of observations and a sample of variables (a few
hundred to several thousand depending on the size and nature of the training set) with replacement to
produce a large number of individual decision trees [55]. The classified image consisted of 16 classes
(the same as the classes of MCD12Q1) of land cover at 30 m spatial resolution. The code for the land cover
classification is available at https://code.earthengine.google.com/f5974440d4a895f6f97edf9c6af4b780.

3.2.1. Accuracy Assessment

A confusion matrix [56] was employed to assess the accuracy of land cover generated through
classification. A confusion matrix is a summary of prediction results on a classification problem.
The element i, j in a confusion matrix, shows the proportion of true class I that is classified as class j.
The identity matrix indicates perfect classification. We applied the validated.errorMatrix function at the
Google Earth Engine platform to get the accuracy of land cover. A commonly acceptable accuracy
limit for land cover maps derived from the classification of satellite data is 85% [57,58]. The accuracy
does not only depend upon the input and classifier, but it also depends upon the quality of the satellite
imagery (e.g., radiometric calibration and cloud obscuration). The Landsat imagery in this study had
little cloud obscuration (except Melbourne for 2005 and 2010). We tested the land cover classification
of 16 classes and the average of minimum accuracy values for all cities were 75%.

3.2.2. Urban Area Generation

The generated land cover had 16 classes. The class type and selection standards are defined
by Sulla-Menashe and Friedl, (2018) [31]. There were two reasons for the selection of 16 classes.
First, we wished to use the MCD12Q1 as is. Second, a higher number of classes minimizes the effect of
mixed pixels. We remapped the (16 classes) into two classes—built-up and non-built-up. The built-up
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was assigned a value of 1, and everything else was reclassified as non-built up and assigned a value of
0. As our main focus was the built-up area, we again assessed the accuracy of two classes on Google
Earth. Our two-class classification was more than 90% successful in all datasets. Next, we needed to
deal with small gaps in built-up areas (e.g., parks, water bodies) which arise from the high resolution of
our data. A neighborhood circle of one square kilometer was applied to the built-up class to filter-out
the contiguous and non-contiguous area by using the focal statistic tool of ArcMap. The tool performed
a neighborhood operation to compute the values of each output cell around a specified cell after the
application of cells window. The output represented the urban density ranging from 0 to 1, 0 for others
and 1 for completely urban area. The output was multiplied with the built-up class to produce built-up
and non-built-up areas. A Euclidean distance of 100 m was applied to each cell to deal with the open
space within the built-up class and calculated the new urban area. A connectivity raster was created
between the cells of the same value which were connected to each other in any direction. The final
output was a raster with minimum gaps to be used in the fusion step. The final output had two classes:
built-up (1) and non-built-up (0) at a spatial resolution of 30 m.

3.3. Nighttime Light Data Processing

Nighttime light (NTL) satellite images are a class of remote sensing product, globally available
for multiple years. The global open source night light images are available from two sensors;
The Operational Linescan System (OLS) instrument mounted on the United States Airforce Defense
Meteorological System Program (DMSP) and the Visible Infrared Imaging Radiometer Suite
(VIIRS) sensor mounted and flown on NASA/NOAA Suomi-National Polar-Orbiting Operational
Environmental Satellite System (SNPP). The OLS images are processed by NOAA’s National
Geophysical Data Center (NGDC) and are available from 1992 to 2013 as annual composites. The OLS
product has two spatial resolution—“fine” data have 0.56 km, and “smooth” data have 2.5 km spatial
resolution (Huang et al., 2014). DMSP/OLS suffers from poor intercalibration. It also saturates easily
(having only six bits of dynamic range). VIIRS is considered superior to DMSP-OLS product [35]
because of high spatial, temporal, and radiometric resolution which are 742 m, monthly composites,
and 12 bits, respectively. The VIIRS product for stable lights is already intercalibrated and needs no
further processing. We consequently use different strategies for DMSP/OLS and VIIRS data.

DMSP-OLS sensors capture artificial lighting from the earth surface [18,26,59] which can be utilized
to determine the boundary of urban territories. The image product of DMSP-OLS sensor stores the
reflectance in the form of Digital Numbers (DNs). The DN value is higher in the areas where the night
time light is higher and vice versa. This product can help to distinguish between urban and non-urban
areas on the basis of DNs. A pixel of this product is viewed as urbanized if its extent surpasses a
limit [18]. A cluster of same DNs would represent a land cover over [60–62]. However, the derivation
of land cover by using NTL information is sometimes incorrect, particularly in less dense urban
territories [13]. DMSP-OLS can likewise misrepresent the extent of urban regions [18,60] while
disregarding small or emerging settlements. Also, the extent and intensity of lit regions cannot
straightforwardly delimit urban areas due to the “blooming” impact [63,64]. “Blooming” alludes to
the appearance of lit territories as bigger than the settlements they are related with [18].

To overcome the blooming and saturation effect we utilized reference [65]’s intercalibration
parameters for DMSP-OLS annual composites (see Figure 3), and to identify the urban areas, we used
the multivariate analysis technique of Parés-Ramos et al. (2013) [17] to find the threshold DN for urban
regions. For the multivariate analysis, we classified the NTL imagery into five classes to establish
the relationship between DN and land cover. We classified the DMSP and VIIRS datasets at their
native resolutions of 2.5 km and 742 m, respectively, into five classes and overlayed on Google Earth
Imagery and Landsat imagery (see Figure 4). After several tries, we found the threshold as shown in
Figure 4. The land cover of each threshold has been shown with the help of arrows in Figure 4. Our
focus was on the extraction of urban area from the NTL, so we checked the pixel values of NTL at
the urban areas. Using these thresholds, we reclassified the DMSP/OLS data into two classes (1) PV
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0–45 non-urban (value 0), (2) and PV 45.01–64, urban (value 1). We tested these thresholds by direct
visualisation of Melbourne, Brisbane, and Beijing. Our objective requires a consistent methodology, so
we used the same threshold for all cities. We classified the VIIRS data into two classes: (1) PV −0.89–5.2,
no development (value 0), (2) PV 5.3–10,000, urban (value 1).
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Our classification captures the fine boundaries of built-up areas with high precision (Figure 4).
However, during visualization, we noticed mixed pixels at the edges of the urban class. To minimize
this problem, we resampled the two-class night time light datasets to a spatial resolution of 30 m.
We later overlayed with Landsat’s urban area, enforcing the correct surface type at a resolution of 30 m.

3.4. Travel Distance Raster Creation

The road network provides a third view of urban extent since it measures the connectivity of a
space. Complete and accurate geospatial road network data is, therefore, a valuable dataset. Open Street
Maps (OSM) provides the road network geospatial data at global level at no cost. In the present study,
OSM planet road data has been utilized, which was acquired from http://download.geofabrik.de/.

The idea behind the inclusion of the travel time was to check the contiguity and connectivity of the
urban areas and to include the emissions economically connected to the city by travel. The motivation
for including travel time in the present study follows Day et al. (2017) [66]. Day et al. (2017) [66]
calculated the urban footprints of Sri Lanka for the year 2000 by using travel time, and the population
in their gravity model. Because of the lack of historical travel time polygons, it was difficult for us
to define long-term urban area boundaries by using travel time alone. Rather, we combined it with
other datasets.

Road network datasets were downloaded as shapefiles of line features. The extent of the region to
download was based on the largest urban image from landcover classifications after applying a 15-km
buffer. The road network shapefile was processed in ArcGIS 10.5.1 by using the network analysis
toolset. An average speed of 45 km per hour (km/h) was chosen for each road network. The length
of each road was calculated in kilometers. Once the road length (in km) and speed (45 km/h) was
calculated, we calculated the travel time (TT) for each road in minutes by using the following formula:

TT (Minutes) = 60(Length/Speed). (1)

The district center point (taken from the ArcGIS Hub [67]) was chosen as the facility point and the
travel time from that point was calculated at the interval of 10 min. The output was a service area
of equal time. Hence multiple polygons were generated with 10 min interval as shown in Figure 5.
The travel time depends on the extent of the city and density of the roads. The travel time output
was in the form of polygons, i.e., a vector data. We converted the vector data into raster at a spatial
resolution of 30 m, to merge with the other two datasets. Since NTL and Landsat datasets were in
classes, we reclassified the travel time rasters by taking the reciprocal of the values and multiplying by
10. The reason for taking the reciprocal of travel time was to give more weight to the area close to the
urban core. For example, the 10 min travel time value resulted in 1 (10*1/10 = 1) and 20 min travel time
resulted in 0.5 (10*(1/20)) and so on. So, the travel time rasters were float rasters with the values 0–1.

http://download.geofabrik.de/
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3.5. Fusion of Datasets

Once three rasters were produced, we proceeded to merge those rasters. A simple sum of three
rasters was generated according to

DNout = DNB + DNNTL + DNTT. (2)

This summed raster takes the values from 0 to 3 (see Figure 6). Our final step is to classify an
area as urban using a threshold on this summed raster. By visualizing many rasters on Google Earth
Imagery we chose a threshold of 1.5. This thresholding may generate islands of urban areas which
were not contiguous to the urban core. We selected the largest contiguous urban area which contained
the urban core and converted it into a vector data polygon.

One significant simplification is the final decision rule itself. Inspection of Equation (2) shows
it can be replaced with a decision tree. If built-up and nightlights agree they determine the value,
otherwise the point is considered urban if travel time is ≤50 min. This may mean that the travel time
information is rarely active. We can see this by considering a map of points in which built-up and
nightlights disagree and superimposing the travel-time 50-min polygon. Little of the peri-urban area
lies inside the polygon. The travel-time metric does, however, serve to in-fill gaps within the city
such as large parks which might be excluded otherwise. It does not remove all gaps within the urban
boundary since, for many of these, built-up and nightlights may agree that the pixel is not urban.
This can be addressed by defining the smallest polygon bounding all urban points.
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Figure 6. Fusion of three datasets (Melbourne in 2018). Plate (A) represents the travel time raster
(DNTT), plate (B) represents the built-up area (DNB), plate (C) represents the Nighttime Light classified
raster (DNNTL), plate (D) represents the fusion of all three datasets (DNout), plate (E) represents
the classified sum with a threshold value 1.5, and plate F represents the largest contiguous urban
area boundary.

3.6. Processing Time and Equipment

The processing time of each dataset depends upon the extent of the city. For land cover classification,
processing time depends upon the number of training sites and availability of Google Earth Engine.
Also, processing time varies with the usage of satellite sensors. For example, it took 8–10 min to process
TM and ETM images of Melbourne but took more than 15 min in case of OLI against 1200 training sites
for a single year. Similarly, the processing time of the network dataset varies with the size of the city
and number of line features. For nighttime light rasters processing and travel time data development,
ArcGIS 10.7.1 batch processing has been used on Lenovo X250. The computational cost of combining
three datasets is bearable because the BUNTUS algorithm processes the subsets of all three datasets
and combine them as a single band raster.

4. Results

4.1. Validating BUNTUS

Direct quantitative validation of BUNTUS is difficult. As we pointed out in Section 2, no other
dataset has the time and space resolution for complete comparison. More seriously, the definition of
urban extent is arbitrary. Our task is to capture urban dynamics. Thus, we can compare magnitudes of
rankings of changes from BUNTUS and other datasets.

The most direct, if labour-intensive, comparison is with direct urban imagery. Figure 7 shows
BUNTUS boundaries of Melbourne from 1996 to 2016 overlaid on Google Earth imagery. For the year
2017 and 2018 Google Earth did not have imagery at the time of writing. We see agreement in both
extent and form between Google Earth imagery and BUNTUS estimates. Comparison for Beijing and
Brisbane indicate similar performance.
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4.2. Comparison

In Figure 8, we have compared the boundaries of our urban area with some of the world’s freely
available urban area boundaries. Fine resolution satellite imagery was acquired from Google Earth
for the year 2010. The urban area boundaries generated in the present study has been compared
(visually) with GRUMP (vector data for urban settlement), MODIS, Global Cover (both Land Cover
with multiclass), HYED3.2 (multi-class), GMIS, and HBASE (both urban settlement datasets) for the
year 2010. We used GRUMP’s 1995 data as it is not available for 2010. It is clear that the GRUMP 1995
urban area is more extended than BUNTUS. Likewise, the MODIS, HYED3.2, and Global Cover are
showing a rough urban area boundary due to their coarser spatial resolution. GMIS and HBASE look
similar to BUNTUS in their extent, shape and urban pattern. However, both GMIS and HBASE contain
gaps within their urban areas, nor do they consist of a contiguous area to the urban core.

From Figure 8, it is clear that the GRUMP, MODIS, HYDE, and Global Cover 300 do not match
with the settlements on Google Earth Imagery. We could not calculate a comparable urban area from
MODIS, HYDE and Global Cover 300. When we presented their multiple land cover onto a built-up
area classification, they generated coarse and scattered pixels and urban agglomeration. We could not
distinguish the exact Beijing, Brisbane, and Melbourne extents from these products. GMIS and HBASE
match with the BUNTUS (see Figure 9). We extracted the contiguous pixels of GMIS and HBASE and
calculated the urban area of Melbourne for 2010. The HBASE showed an annual growth rate of 69%
from 2000 (2675 km2) to 2010 (2865 km2) and GMIS showed an annual growth rate of 51% from 2000
(2104 km2) to 2010 (2212 km2). BUNTUS showed an annual growth rate of 1.1% for the same period.
We note that Melbourne’s population growth during this period was approximately 2% making an
area growth-rate of 0.5% in area unlikely.
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Figure 8. Comparison of Built-up, Nighttime Light, and Travel time for Urban Size (BUNTUS)
boundaries with Global Rural-Urban Mapping Project (GRUMP 1995 product), Moderate Resolution
Imaging Spectroradiometer (MODIS) 500-m land cover, History Database of the Global Environment
(HYDE version 3.2), Global Man-made Impervious Surface (GMIS), and Global Cover and Human
Built-up and Settlement Extent (HBASE) global datasets for the year 2010.
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Figure 9. A close comparison of Built-up, Nighttime Light, and Travel time for Urban Size (BUNTUS),
Global Man-made Impervious Surface (GMIS), and Global Cover and Human Built-up and Settlement
Extent (HBASE) of Melbourne.

4.3. Urban Expansion

Figure 10 presents growth in urban boundaries for the three cities for the 20 annual increments.
Figure 10 is helpful to understand how urban areas have grown over time. For example, Brisbane has
grown more on its northern and southern sides, Beijing in all directions, and Melbourne has grown
more on its western and southwestern sides.

Figure 11 summarizes the area of the three cities from 1998 to 2018. The graph, in the case of
Beijing, shows continuous growth annually except for some points where some inputs are problematic.
For example, the graphs show that Beijing in 2015 (3154 km2) to 2018 (3180 km2) was smaller than in
2014 (3206 km2). This could have happened because of the low accuracy of 2014 image classification.
Similarly, Brisbane and Melbourne showed some irregularities but overall the urban growth was
smooth. Some apparent discontinuities were explainable. For example, Brisbane’s area suddenly
increased in 2013 due to its urban agglomeration with the Gold Coast. In the following year Brisbane’s
area decreased. The reason was that our algorithm generated some gap between Brisbane undoing the
agglomeration. Hence there was a decrease in Brisbane’s area in 2014 (see Figure 10).
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Figure 11. Urban area versus year plot.

Generally, urban area does not shrink except during war or natural disasters. We can take
advantage of this fact by making the boundary calculation purely additive, i.e., once a pixel is included
in a city it remains there. Thus, the agglomeration of Brisbane in 2013 is not undone in subsequent years.
This alternative methodology showed higher accuracy than the default algorithm when compared
with high-resolution imagery. The boundaries generated through this method followed the urban
settlements edge with high accuracy. Also, the urban area from this algorithm showed a smooth
growth rate (see Figure 12).

From 1998 to 2018, the Beijing’s area has increased by ~96% from 1723 km2 to 3384 km2, Brisbane’s
area has increased by ~76% from 1105 km2 to 1948 km2, and Melbourne’s area has increased by ~31%
from 1569 km2 to 2049 km2.
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5. Discussion and Limitations

5.1. Discussion

When assessing the utility of a dataset like BUNTUS, we need to keep in mind its intended
application. This is true for any urban data set, since no single definition would suffice for all
applications, even if the data to determine it existed. Our task here is to define an algorithm at once
robust, consistent, and efficient enough to define global trends in urban extent for many cities over
decades. The simplifications necessary to do this should be borne in mind when using BUNTUS,
especially for other purposes.

A phenomenon which may confuse results is agglomeration, in which two cities fuse. For example,
until 2011, Brisbane comprised a core city and surrounding suburbs. By 2013, the region of the Gold
Coast to the south had fused into the Brisbane area. This resulted in a big increase in the Brisbane urban
area. This change can be seen in Figure 10. Before 2013, the Gold Coast and Brisbane were separate
entities (as per our boundaries). We remain consistent and followed our definition of urban areas,
that the urban areas are those areas which were contiguous to the urban core. In general, where area
definitions may be unstable, it is safer to calculate intensive quantities like emissions per unit area or
per capita than absolute or extensive changes. This will be the focus of future research using BUNTUS.

5.2. Limitations

Finally, BUNTUS is limited by the quality of data. For example, due to the unavailability of
cloud-free satellite images, the accuracy of the built-up classification is reduced for some regions
and years. Similarly, the unavailability of Landsat product for the year 2012 left a gap in the study.
Although the Landsat imagery with scanline error has been available for the year 2012, because of
the consideration of high accuracy, we skipped Landsat7 product with scanline error in the present
study [68]. Another limitation is the difference in resolution of the different data sets, resulting in
mixed pixels. Though we tried to minimize the effect of mixed pixels when dealing with the coarser
resolution datasets by resampling, they still play a role at a smaller scale.
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6. Conclusions

Results from this exploration demonstrate that, by combining Landsat information with the
nighttime lights and travel time information, it was possible to outline regions on a city level with
sufficient stability and precision to determine trends. The methodology is fairly robust to variable data
quality and availability and the algorithm sufficiently automatic and general to derive trends for many
cities. The motivation behind BUNTUS was the development of urban size boundaries for the study of
emissions trends. However, considering our definition of the urban area, BUNTUS boundaries can be
used for other kinds of urban studies and trends.

7. Future Work

The development of this algorithm was the first step in a study of the relationship between
urbanisation and trends in fossil fuel use. Future work will focus on the application of the algorithm to
problems like the energy efficiency of cities as a function of size and development, relationships with
other pollutants and the possible role of different urban forms in these trajectories [69]. As a first step,
we will generate trends for 100 cities and overlay the boundaries on gridded population and emissions
estimates. We will also test the trends in urban boundaries for more cities against a wider array of
high-quality though temporally sparse datasets.

Author Contributions: Conceptualization, M.L., P.J.R., and K.R.G.; Formal analysis, M.L.; Funding acquisition,
P.J.R.; Investigation, M.L., P.J.R., and K.R.G.; Methodology, M.L. and P.J.R.; Project administration, M.L.; Software,
M.L.; Supervision, P.J.R.; Validation, M.L. and P.J.R.; Visualization, M.L. and K.R.G.; Writing—original draft, M.L.;
Writing—review & editing, M.L., P.J.R., and K.R.G.

Funding: Muhammad Luqman is thankful to the University of Melbourne for a Melbourne Research Scholarship.

Acknowledgments: We are thankful to Google for providing the Google Earth Engine platform. We acknowledge
the United States Geological Survey’s (USGS) Landsat datasets, Open Street Map’s network datasets, DMSP-OLS,
and VIIRS products, and Google Earth. We also acknowledge the valuable suggestions of Robyn Schofield, Jason
Thompson, Kerry Nice, and Roger Dargaville.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. United Nations. World Urbanization Prospects 2018—Population Division—United Nations. 2018. Available
online: https://esa.un.org/unpd/wup/ (accessed on 13 June 2018).

2. Hoornweg, D.; Sugar, L.; Trejos Gómez, C.L. Cities and Climate Change: An Urgent Agenda; World Bank:
Washington, DC, USA, 2010.

3. Bettencourt, L.; West, G. A unified theory of urban living. Nature 2010, 467, 912–913. [CrossRef] [PubMed]
4. Brown, M.A.; Southworth, F.; Sarzynski, A. The geography of metropolitan carbon footprints. Policy Soc.

2009, 27, 285–304. [CrossRef]
5. Creutzig, F.; Baiocchi, G.; Bierkandt, R.; Pichler, P.-P.; Seto, K.C. Global typology of urban energy use and

potentials for an urbanization mitigation wedge. Proc. Natl. Acad. Sci. USA 2015, 112, 6283–6288. [CrossRef]
[PubMed]

6. Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.;
Brunner, S.; Eickemeier, B.; et al. Summary for policymakers climate change 2014, mitigation of climate
change, IPCC 2014. In Climate Change 2014: Contribution of Working Group III to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY,
USA, 2014.

7. Marcotullio, P.J.; Solecki, W. What is a city? An essential definition for sustainability. In Urbanization and
Sustainability; Springer: Dordrecht, The Netherlands, 2013; pp. 11–25.

8. Mcintyre, N.E.; Knowles-Yánez, K.; Hope, D. Urban ecology as an interdisciplinary field: Differences in the
use of ‘urban’ between the social and natural sciences. Urban Ecosyst. 2000, 4, 5–24. [CrossRef]

https://esa.un.org/unpd/wup/
http://dx.doi.org/10.1038/467912a
http://www.ncbi.nlm.nih.gov/pubmed/20962823
http://dx.doi.org/10.1016/j.polsoc.2009.01.001
http://dx.doi.org/10.1073/pnas.1315545112
http://www.ncbi.nlm.nih.gov/pubmed/25583508
http://dx.doi.org/10.1023/A:1009540018553


Remote Sens. 2019, 11, 2969 18 of 20

9. Tabuchi, T. Agglomeration in World Cities. Procedia Soc. Behav. Sci. 2013, 77, 299–307. [CrossRef]
10. Jaeger, J.A.G.; Bertiller, R.; Schwick, C.; Cavens, D.; Kienast, F. Urban permeation of landscapes and sprawl

per capita: New measures of urban sprawl. Ecol. Indic. 2010, 10, 427–441. [CrossRef]
11. Kasanko, M.; Barredo, J.I.; Lavalle, C.; McCormick, N.; Demicheli, L.; Sagris, V.; Brezger, A. Are European

cities becoming dispersed? A comparative analysis of 15 European urban areas. Landsc. Urban Plan.
2006, 77, 111–130. [CrossRef]

12. Poelmans, L.; van Rompaey, A. Detecting and modelling spatial patterns of urban sprawl in highly fragmented
areas: A case study in the Flanders–Brussels region. Landsc. Urban Plan. 2009, 93, 10–19. [CrossRef]

13. Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal
DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [CrossRef]

14. Schneider, A.; Woodcock, C.E. Compact, Dispersed, Fragmented, Extensive? A Comparison of Urban Growth
in Twenty-five Global Cities using Remotely Sensed Data, Pattern Metrics and Census Information. Urban
Stud. 2008, 45, 659–692. [CrossRef]

15. Schwarz, N. Urban form revisited—Selecting indicators for characterising European cities. Landsc. Urban
Plan. 2010, 96, 29–47. [CrossRef]

16. Goldblatt, R.; You, W.; Hanson, G.; Khandelwal, A. Detecting the Boundaries of Urban Areas in India: A
Dataset for Pixel-Based Image Classification in Google Earth Engine. Remote Sens. 2016, 8, 634. [CrossRef]

17. Parés-Ramos, I.K.; Álvarez-Berríos, N.L.; Aide, T.M. Mapping Urbanization Dynamics in Major Cities of
Colombia, Ecuador, Perú, and Bolivia Using Night-Time Satellite Imagery. Land 2013, 2, 37–59. [CrossRef]

18. Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights.
Remote Sens. Environ. 2005, 96, 277–291. [CrossRef]

19. Mindali, O.; Raveh, A.; Salomon, I. Urban density and energy consumption: A new look at old statistics.
Transp. Res. Part A Policy Pract. 2004, 38, 143–162. [CrossRef]

20. Niu, Q.; Wang, Y.; Xia, Y.; Wu, H.; Tang, X. Detailed Assessment of the Spatial Distribution of Urban Parks
According to Day and Travel Mode Based on Web Mapping API: A Case Study of Main Parks in Wuhan.
Int. J. Environ. Res. Public Health 2018, 15, 1725. [CrossRef]

21. Sun, Y.; Fan, H.; Li, M.; Zipf, A. Identifying the city center using human travel flows generated from
location-based social networking data. Environ. Plan. B Plan. Des. 2016, 43, 480–498. [CrossRef]

22. Xie, F.; Levinson, D. Measuring the Structure of Road Networks. Geogr. Anal. 2007, 39, 336–356. [CrossRef]
23. Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE database. Glob.

Biogeochem. Cycles 2001, 15, 417–433. [CrossRef]
24. De Colstoun, E.C.B.; Huang, C.; Wang, P.; Tilton, J.C.; Tan, B.; Phillips, J.; Niemczura, S.; Ling, P.Y.; Wolfe, R.

Global Man-Made Impervious Surface (GMIS) Dataset from Landsat; NASA Socioeconomic Data and Applications
Center (SEDAC): Palisades, NY, USA, 2017.

25. Wang, P.; Huang, C.; de Colstoun, E.C.B.; Tilton, J.C.; Tan, B. Global Human Built-up and Settlement Extent
(Hbase) Dataset from Landsat; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY,
USA, 2017.

26. Elvidge, C.; Tuttle, B.; Sutton, P.; Baugh, K.; Howard, A.; Milesi, C.; Bhaduri, B.; Nemani, R. Global distribution
and density of constructed impervious surfaces. Sensors 2007, 7, 1962–1979. [CrossRef]

27. Esch, T.; Bachofer, F.; Heldens, W.; Hirner, A.; Marconcini, M.; Palacios-Lopez, D.; Roth, A.; Üreyen, S.;
Zeidler, J.; Dech, S.; et al. Where we live—A summary of the achievements and planned evolution of the
global urban footprint. Remote Sens. 2018, 10, 895. [CrossRef]

28. Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.; Freire, S.; Halkia, M.; Julea, A.; Kemper, T.; Soille, P.; Syrris, V.
Operating Procedure for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975,
1990, 2000, and 2014; Publications Office of the European Union: Ispara, Italy, 2016; pp. 1–62.

29. CIESIN. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Urban Extent Polygons, Revision 01; NASA
Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2017.

30. National Imagery and Mapping Agency, Washington DC, VMap0; National Imagery and Mapping Agency:
Washington, DC, USA, 1997.

31. Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1)
Product; USGS: Reston, VA, USA, 2018.

http://dx.doi.org/10.1016/j.sbspro.2013.03.088
http://dx.doi.org/10.1016/j.ecolind.2009.07.010
http://dx.doi.org/10.1016/j.landurbplan.2005.02.003
http://dx.doi.org/10.1016/j.landurbplan.2009.05.018
http://dx.doi.org/10.1016/j.rse.2011.04.032
http://dx.doi.org/10.1177/0042098007087340
http://dx.doi.org/10.1016/j.landurbplan.2010.01.007
http://dx.doi.org/10.3390/rs8080634
http://dx.doi.org/10.3390/land2010037
http://dx.doi.org/10.1016/j.rse.2005.02.002
http://dx.doi.org/10.1016/j.tra.2003.10.004
http://dx.doi.org/10.3390/ijerph15081725
http://dx.doi.org/10.1177/0265813515617642
http://dx.doi.org/10.1111/j.1538-4632.2007.00707.x
http://dx.doi.org/10.1029/1999GB001232
http://dx.doi.org/10.3390/s7091962
http://dx.doi.org/10.3390/rs10060895


Remote Sens. 2019, 11, 2969 19 of 20

32. Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C.; Schlerf, M.; Santoro, M.;
Defourny, P. Land Cover CCI-Product User Guide-Version 2. Available online: http://maps.elie.ucl.ac.be/

CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf (accessed on 25 January 2019).
33. Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land

cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens.
2015, 103, 7–27. [CrossRef]

34. Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.;
Durieux, L.; et al. GlobCover: ESA service for global land cover from MERIS. In Proceedings of the 2007 IEEE
International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2412–2415.

35. Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping
nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62. [CrossRef]

36. Potere, D.; Schneider, A.; Angel, S.; Civco, D.L. Mapping urban areas on a global scale: Which of the eight
maps now available is more accurate? Int. J. Remote Sens. 2009, 30, 6531–6558. [CrossRef]

37. Esch, T.; Marconcini, M.; Felbier, A.; Roth, A.; Heldens, W.; Huber, M.; Schwinger, M.; Taubenböck, H.;
Müller, A.; Dech, S.J.I.G. Urban footprint processor—Fully automated processing chain generating settlement
masks from global data of the TanDEM-X mission. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1617–1621.
[CrossRef]

38. Pesaresi, M.; Ehrilch, D.; Florczyk, A.J.; Freire, S.; Julea, A.; Kemper, T.; Soille, P.; Syrris, V. GHS Built-up Grid,
Derived from LANDSAT, Multitemporal (1975, 1990, 2000, 2014). European Commission, Joint Research
Centre (JRC) [Dataset] PID. Available online: http://data.europa.eu/89h/jrc-ghsl-ghs_built_ldsmt_globe_
r2015b (accessed on 25 January 2019).

39. Irish, R.R. Landsat 7 Automatic Cloud Cover Assessment. In Proceedings of the Volume 4049, Algorithms
for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Orlando, FL, USA, 23 August 2000; p. 348.

40. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

41. Huang, C.; Yang, J.; Jiang, P. Assessing Impacts of Urban Form on Landscape Structure of Urban Green Spaces
in China Using Landsat Images Based on Google Earth Engine. Remote Sensing 2018, 10, 1569. [CrossRef]

42. Trianni, G.; Lisini, G.; Angiuli, E.; Moreno, E.A.; Dondi, P.; Gaggia, A.; Gamba, P. Scaling up to
National/Regional Urban Extent Mapping Using Landsat Data. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2015, 8, 3710–3719. [CrossRef]

43. Arino, O.; Perez, J.R.; Kalogirou, V.; Defourny, P.; Achard, F. GlobCover 2009. 2010. Available online:
https://epic.awi.de/id/eprint/31046/1/Arino_et_al_GlobCover2009-a.pdf (accessed on 20 January 2019).

44. Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat
MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [CrossRef]

45. Hu, Y.; Hu, Y. Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017
Supported by Google Earth Engine. Remote Sens. 2019, 11, 554. [CrossRef]

46. Rutherford, G.N.; Bebi, P.; Edwards, P.J.; Zimmermann, N.E. Assessing land-use statistics to model land
cover change in a mountainous landscape in the European Alps. Ecol. Model. 2008, 212, 460–471. [CrossRef]

47. Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the
Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ.
2005, 98, 317–328.

48. Deilmai, B.R.; Ahmad, B.B.; Zabihi, H. Comparison of two classification methods (MLC and SVM) to extract
land use and land cover in Johor Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 012052. [CrossRef]

49. Xu, X.; Min, X. Quantifying spatiotemporal patterns of urban expansion in China using remote sensing data.
Cities 2013, 35, 104–113. [CrossRef]

50. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
51. Akar, Ö.; Güngör, O. Classification of multispectral images using Random Forest algorithm. J. Geod. Geoinf.

2012, 1, 105–112. [CrossRef]
52. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit.

Lett. 2006, 27, 294–300. [CrossRef]
53. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the

effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens.
2012, 67, 93–104. [CrossRef]

http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf
http://dx.doi.org/10.1016/j.isprsjprs.2014.09.002
http://dx.doi.org/10.7125/APAN.35.7
http://dx.doi.org/10.1080/01431160903121134
http://dx.doi.org/10.1109/LGRS.2013.2272953
http://data.europa.eu/89h/jrc-ghsl-ghs_built_ldsmt_globe_r2015b
http://data.europa.eu/89h/jrc-ghsl-ghs_built_ldsmt_globe_r2015b
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.3390/rs10101569
http://dx.doi.org/10.1109/JSTARS.2015.2398032
https://epic.awi.de/id/eprint/31046/1/Arino_et_al_GlobCover2009-a.pdf
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.3390/rs11050554
http://dx.doi.org/10.1016/j.ecolmodel.2007.10.050
http://dx.doi.org/10.1088/1755-1315/20/1/012052
http://dx.doi.org/10.1016/j.cities.2013.05.002
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.9733/jgg.241212.1
http://dx.doi.org/10.1016/j.patrec.2005.08.011
http://dx.doi.org/10.1016/j.isprsjprs.2011.11.002


Remote Sens. 2019, 11, 2969 20 of 20
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