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Abstract: Spatiotemporal data fusion is a key technique for generating unified time-series images from
various satellite platforms to support the mapping and monitoring of vegetation. However, the high
similarity in the reflectance spectrum of different vegetation types brings an enormous challenge in
the similar pixel selection procedure of spatiotemporal data fusion, which may lead to considerable
uncertainties in the fusion. Here, we propose an object-based spatiotemporal data-fusion framework
to replace the original similar pixel selection procedure with an object-restricted method to address this
issue. The proposed framework can be applied to any spatiotemporal data-fusion algorithm based on
similar pixels. In this study, we modified the spatial and temporal adaptive reflectance fusion model
(STARFM), the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and the
flexible spatiotemporal data-fusion model (FSDAF) using the proposed framework, and evaluated
their performances in fusing Sentinel 2 and Landsat 8 images, Landsat 8 and Moderate-resolution
Imaging Spectroradiometer (MODIS) images, and Sentinel 2 and MODIS images in a study site
covered by grasslands, croplands, coniferous forests, and broadleaf forests. The results show that
the proposed object-based framework can improve all three data-fusion algorithms significantly by
delineating vegetation boundaries more clearly, and the improvements on FSDAF is the greatest
among all three algorithms, which has an average decrease of 2.8% in relative root-mean-square error
(rRMSE) in all sensor combinations. Moreover, the improvement on fusing Sentinel 2 and Landsat
8 images is more significant (an average decrease of 2.5% in rRMSE). By using the fused images
generated from the proposed object-based framework, we can improve the vegetation mapping
result by significantly reducing the “pepper-salt” effect. We believe that the proposed object-based
framework has great potential to be used in generating time-series high-resolution remote-sensing
data for vegetation mapping applications.

Keywords: spatiotemporal data fusion; object-based framework; similar pixel; vegetation mapping

1. Introduction

Mapping the distribution and quantity of vegetation is critical for managing natural resources,
preserving biodiversity, estimating vegetation carbon storage, and understanding the Earth’s energy
balance [1]. Remote-sensing technology has been proven to be an efficient and economical tool for
mapping vegetation types and cover at large spatial scales [2,3]. However, the spectral similarities
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among different land surface objects and different vegetation types have been a major factor influencing
the accuracy of vegetation mapping [4]. Because vegetation phenology information provided by
multi-temporal images with a finer spatial resolution is beneficial for improving vegetation mapping
accuracy [5,6], the derivation and processing of multi-temporal remote-sensing data with a high spatial
resolution have been an active research area in the field of vegetation mapping.

Given the tradeoff between spatial resolution and temporal revisiting cycles [7], current satellite
images have either high spatial resolutions but low temporal resolutions (e.g., Landsat, Sentinel 2) or low
spatial resolutions but high temporal resolutions (e.g., Moderate-resolution Imaging Spectroradiometer
(MODIS), Sentinel-3). Moreover, cloud contaminations can further increase the fragmentation of
satellite remote-sensing data [8]. Spatiotemporal data fusion, a methodology for fusing satellite images
from two different sensors, has been developed to generate data with both high spatial and temporal
resolutions [9]. Conventionally, in spatiotemporal data fusion, imagery with a high spatial resolution
but low temporal resolution is called “fine imagery”, while imagery with a low spatial resolution but
high temporal resolution is called “coarse imagery” [10], which is being followed in this study.

So far, many spatiotemporal data-fusion algorithms have been developed, and they can be
generally divided into five categories (i.e., unmixed-based, weight function-based, Bayesian-based,
learning-based, and hybrid methods) [11]. Nevertheless, most of these methods have a common
key step, which is to find similar pixels from the fine imagery. These similar pixels from the fine
imagery are used to predict the fused value and reduce the prediction uncertainty caused by noise [12].
For example, the spatial and temporal adaptive reflectance fusion model (STARFM) uses the spectral
similarity and spatial distance as constrains to select similar pixels within a defined search window and
predict the reflectance value of a target pixel by using the linear weighted method [13]. The enhanced
spatial and temporal adaptive reflectance fusion model (ESTARFM) also uses spectral similarity to
select initial similar pixels in two fine images acquired at different times, and further constrains the
selection results by only using the similar pixels found in both images [12]. The flexible spatiotemporal
data-fusion model (FSDAF) uses auxiliary land-cover classification information to help determine the
similar pixels by ensuring they have the same land cover type as the target pixel [14]. The performance
of all above-mentioned methods is highly influenced by the similar pixel selection accuracy since
wrong similar pixels can lead to errors in the final spatiotemporal fusion results [15].

Currently, the similar pixel selection methods based on spectral similarity satisfy the requirements
for applications such as land-cover mapping [16], since the spectral differences among different land
cover types are observable. However, these methods may not perform well when they are used
in vegetation-mapping applications. Differences in spectral reflectance are much smaller among
vegetation types than among land cover types [2], and spectral similarity-based methods (e.g., STARFM
and ESTARFM) may lead to many wrong similar pixels. These misidentified similar pixels may result
in blurring effects at the boundaries among vegetation types in the fused images and, therefore, cause
vegetation mapping errors. Moreover, the vegetation classification map required by the methods
using auxiliary classification information (e.g., FSDAF) is not available in most applications. How to
accurately identify similar pixels from fine imagery is still a challenging task for spatiotemporal fusion
in vegetation mapping applications.

In addition to spectral information, image textures have been shown to be another useful type
of information for vegetation mapping [17,18]. Different compositions of vegetation types may
have significant differences in textures, which can help separating adjacent vegetation types [19,20].
The object-based image analysis (OBIA) method is one of the several approaches utilizing image
textures [21]. OBIA incorporates texture information, spectral information and context structure to
segment the image into homogeneous objects [22]. Each segmented object from OBIA can be treated
as a thematic class, e.g., vegetation type, which provides a potential candidate pool for selecting
similar pixels. Therefore, using the OBIA segmented objects as a constraint beyond spectral similarity
might provide a more accurate set of similar pixels that have the same vegetation type as the target
pixel. However, to the best of our knowledge, the effectiveness of OBIA in similar pixel selection



Remote Sens. 2019, 11, 2927 3 of 29

has not yet been tested, although the consensus for advantages of OBIA has been achieved among
numerous researchers.

This study describes and tests an object-based spatiotemporal data-fusion framework that uses an
additional constraint for selecting similar pixels from segmented objects. To evaluate the proposed
framework, we implemented the object-based improvement in the three widely used spatiotemporal
data-fusion algorithms, i.e., STARFM, ESTARFM and FSDAF and tested their performance.

2. Methodology

Although most current spatiotemporal fusion algorithms differ greatly in principle, they share the
same four implementation steps: (i) initial prediction; (ii) selection of similar pixels; (iii) calculation of
weighting coefficients of similar pixels; (iv) final prediction based on similar pixels. These steps can
be described as follows: first, the value of each fine pixel is estimated at the predicted date through
temporal/spatial dependence; next, pixels similar to each fine pixel are selected; then, the weight of
each similar pixel is calculated based on the spectral/spatial distance; lastly, the weighted sum of
similar pixels is used to predict the final value of each fine pixel. In this study, the proposed framework
shares the same four steps mentioned above. To reduce the uncertainty brought by selecting the wrong
similar pixels in step (ii), we integrated an object-restricted similar pixel selection method (Figure 1).
Any spatiotemporal fusion algorithms sharing the same four steps described above (e.g., STARFM,
ESTARFM and FSDAF) can use this framework by replacing step (ii) with the proposed method.
Details of the object-restricted similar pixel selection process are introduced as follows.

Figure 1. The schematic diagram of the proposed spatiotemporal data-fusion framework. (a) The workflow
of the proposed framework, and (b) the illustration of the object-restricted similar pixel selection method.

Defining objects through image segmentation is the basis of the object-restricted similar pixel
selection (Figure 1a). For the proposed framework, it is critical to set a suitable scale for the image
segmentation process because too small a scale can lead to a small object size that might result in an
insufficient number of similar pixels, and an excessively large scale might decrease the homogeneity
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within an object. To determine the optimal segmentation scale, this study uses the improved Estimation
of Scale Parameter tool (ESP2) developed by Drăguţ et al. [23], an optimal scale selection method
that can simultaneously minimize the intrasegment homogeneity and maximize the intersegment
heterogeneity [24]. Three optimal segmentation scales, from small to large (i.e., Level 1, Level 2 and
Level 3), are provided by the ESP2 tool, and the smallest optimal scale Level 1 is used as the baseline
scale to start the similar pixel selection process.

With the determined baseline scale, the multiresolution segmentation method is used to segment
the input fine image into objects. After segmentation, each pixel is exclusively assigned to an object
and gets a corresponding object identification. The rule of the proposed object-restricted similar pixel
selection can be described as follows:

∣∣∣∣F(xi, y j, b
)
− F(xw/2, yw/2, b)

∣∣∣∣ ≤ Ts

O
(
xi, y j

)
−O(xw/2, yw/2) = 0

(1)

where F refers to the fine imagery at the input time; b refers to the bth band; (xi, y j) indicates the
locations of the candidate similar pixel within the search window; w is the size of the search window;
(xw/2, yw/2) indicates the location of the target pixel, which is usually at the center of the search window;
Ts represents the principle used by the spatiotemporal fusion algorithm to determine if the candidate
pixel is a similar pixel, which could be a threshold or a prerequisite (e.g., STARFM selects similar pixels
with the smallest spectral difference from the target pixel); and O indicates the object identification.
The proposed object-restricted similar pixel selection gives a further restriction to the location of similar
pixels without any changes in the principle Ts. To be specific, if the given similar pixel is labeled with
the same object identification as the target pixel, we can assume that it has the same thematic class,
i.e., vegetation type in this study, as the target pixel, thus it will be retained after the object-based
restriction. Otherwise, it will be removed from the set of similar pixels. As shown in Figure 1b,
the similar pixels within the search window that are located outside the object are eliminated.

Although the smallest optimal scale provided by ESP2 tool can provide highly homogeneous
similar pixels within an obtained object, it may also result in an insufficient number of similar pixels
required by the spatiotemporal data-fusion algorithm (e.g., FSDAF recommends selecting more
than 20 similar pixels). To resolve this issue, the proposed framework further iterates the similar
pixel selection process by increasing the segmentation scale until enough similar pixels are found
(Figure 1a). To be more specific, if enough similar pixels cannot be found, the next-level optimal scale
(Level 2) provided by the ESP2 tool is used to segment the input fine images using the multiresolution
segmentation method. The derived object(s) containing the pixel(s) are used to replace the original
object(s) derived at the baseline scale. Then, the same similar pixel selection procedure described
above is used to select similar pixels. If the number of similar pixels is still insufficient, the process
is iterated again by replacing the segmentation scale with the Level 3 optimal scale. If the number
of similar pixels is still insufficient, the object restriction process is replaced by only using the search
window to find similar pixels.

3. Experiments

3.1. Test Algorithm Description

STARFM, ESTARFM and FSDAF are three widely used spatiotemporal data-fusion methods,
and are usually considered as benchmarked methods to rectify the performance of spatiotemporal
data fusion [25,26]. These three methods all rely on similar pixels within a search window for
predicting the value of a target pixel, which can be improved by the proposed framework. In this study,
we re-edited their pixel selection process using the proposed object-restricted similar pixel selection
method to derive object-restricted STARFM (OSTARFM), object-restricted ESTARFM (OESTARFM), and
object-restricted FSDAF (OFSDAF), following the methods described in Section 2. The performances
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of these object-restricted models were compared with the original algorithms to validate the proposed
object-based spatiotemporal data-fusion framework.

The implementation of the proposed framework to specific spatiotemporal data fusion can
be coordinated with the method of similar pixel selection used by the algorithm. There are two
approaches for implementing the proposed framework: “restrict-then-select” and “select-then-restrict”.
Specifically, “restrict-then-select” is restricting the shape and size of the search window to segmented
objects before the similar pixel selection and thereby selecting the number and location of candidate
pixels. In contrast, the “select-then-restrict” is restricting the selected similar pixels after similar pixel
selection. For algorithms that select N candidate pixels with the minimum spectral distance as the
similar pixel, such as STARFM and FSDAF, we used the “restrict-then-select” approach to implement
the proposed framework. Since with the simple discrimination criterion of minimum spectral distance
it is easy to select pixels outside the objects as similar pixels, using the “restrict-then-select” approach
allows obtaining enough similar pixels. For algorithms that use thresholds to select similar pixels,
such as ESTARFM, the result obtained through the “restrict-then-select” approach is the same as that
through the “select-then-restrict” approach. However, the “select-then-restrict” approach uses less
computational time than the “restrict-then-select” approach in the iterative selection of objects at
different scales when the number of similar pixels is insufficient.

It should be noted that the FSDAF method requires a pre-classified vegetation map as a prerequisite
for selecting the similar pixels. The selected similar pixels should have the same vegetation class as
the targeted prediction pixel. In this study, we used the ISODATA (Iterative Self-Organizing Data
Analysis Technique) algorithm to classify the study area into 6–10 classes from the input fine imagery
based on pre-knowledge [27]. Moreover, considering the low vegetation mapping accuracy using
unsupervised classification methods in complex vegetated environment, we further replaced the
procedure of converting the temporal changes from coarse pixels to fine pixels by using segmented
objects instead of vegetation classes in the OFSDAF method. The conversion principle can be found
in [14], and is not described in detail here. It should be noted that this study focuses on the changes in
performance of the STARFM, ESTARFM and FSDAF algorithms by using the proposed object-based
strategy, rather than on comparing these algorithms. In addition, in this study, the original and
improved fusion methods were tested under the same parameter setting.

3.2. Data

We selected a study area with high vegetation coverage in Tenihe Farm (49◦33′N, 120◦29′E), which
is located in Hulunbuir, Inner Mongolia, China (Figure 2a). This region is characterized by a continental
temperate semi-arid climate, with an average annual mean air temperature of −1.8 ◦C to 2.1 ◦C and an
average annual total precipitation of 350–400 mm [28]. The growing season is from May to September.
For this study we chose a rectangular site of 18 km × 18 km, with UTM coordinates 50 N of the
southeast and northwest vertexes (5,421,810, 773,070) and (5,439,810, 791,070), respectively (Figure 2b).
The average elevation of the study site is about 850 m and the elevation of the central area is higher
than the surrounding (Figure 2c). The study site is in the forest-steppe ecotone with both natural and
planted vegetation. Vegetation types in the study area include food crops (e.g., wheat/Triticum aestivum
Linn and corn/Zea mays L.), cash crops (e.g., beet/Beta vulgaris Linn., and canola/Brassica campestris L.),
meadow steppes (e.g., Chinese leymus/Leymus chinensis (Trin.) and stipa/Stipa capillata Linn.), cold
temperate broadleaf deciduous forests (e.g., birch/Betula platyphylla Suk. and aspen/Populus davidiana
Dode) and cold temperate coniferous forests (e.g., larch/Larix gmelinii (Ruprecht) Kuzeneva.). Food crops
and cash crops are located in the north and south of the study site, meadow steppes and cold temperate
broadleaf deciduous forests are distributed in the central area of the study site, and cold temperate
coniferous forests are mainly located in the southeastern area of the study site (Figure 2d). The complex
and diverse vegetation composition provides an ideal condition for evaluating the performance of the
proposed framework in vegetated areas.
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Figure 2. (a) An overview of the study area located in Hulunbuir, Inner Mongolia, China; (b) the Sentinel
2 true color image of the study area; (c) the digital elevation model of the study area; and (d) the and
vegetation map of the study area.

In this study, we used the 10 m resolution Sentinel 2 and 30 m resolution Landsat 8 data. As shown
in Figure 3, three sets of cloud-free Sentinel 2 and Landsat 8 images (L1 products) covering the
study area were obtained from the Copernicus Open Access Hub (https://scihub.copernicus.eu/) and
the United States Geological Survey (USGS) websites (https://earthexplorer.usgs.gov/), respectively.
Sentinel 2 images have four 10 m bands (band 2, 3, 4, 8), which were treated as the fine bands to fuse
with the corresponding Landsat 8 bands (band 2, 3, 4, 5). Specifically, we employed the cloud-free
Sentinel 2 image on 25 April 2018 (Figure 3a) and Landsat 8 images on 24 April 2018 and 26 May 2018
(Figure 3d,e) to predict a Sentinel-like imagery on 26 May 2018 using original and improved STARFM,
ESTARFM and FSDAF (Table 1). These images were collected over a one-month timespan in the early
growing season of the study site, during which we can clearly observe the vegetation phenological
changes (Figure 3). Since the ESTARFM algorithm requires more than one input fine image, we further
collected the Sentinel 2 imagery on 2 October 2018 (Figure 3c) and a Landsat 8 imagery on 1 October
2018 (Figure 3f). In October, the study site is at the end of the growing season, and most vegetation
has experienced dramatic phenological changes compared with the beginning of the growing season
in April.

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
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Figure 3. Red-green-blue composites of the Sentinel-2 images with a 10 m resolution from (a) 25 April
2018 and (b) 30 May 2018 and (c) 2 October 2018; and the corresponding Landsat 8 images with a 30 m
resolution from (d) 24 April 2018 and (e) 26 May 2018 and (f) 1 October 2018.

Table 1. Acquisition dates and usages of the collected data. Note that MODIS represents for the
Moderate-resolution Imaging Spectroradiometer and N/A represents that the corresponding image is
not used in the fusion. The MODIS images here are resampled from Landsat 8.

Acquisition Date Source
Data Usage

Sentinel 2-Landsat
8 Fusion

Landsat 8-MODIS
Fusion

Sentinel
2-MODIS Fusion

24 April 2018 Landsat 8 Input Input N/A
MODIS N/A Input Input

25 April 2018 Sentinel 2 Input N/A Input

26 May 2018 Landsat 8 Input Reference N/A
MODIS N/A Input Input

30 May 2018 Sentinel 2 Reference N/A Reference

1 October 2018
Landsat 8 Input Input N/A
MODIS N/A Input Input

2 October 2018 Sentinel-2 Input N/A Input

All collected L1 Sentinel 2 and Landsat 8 data were preprocessed using the Sentinel Application
Platform (SNAP) and Land Surface Reflectance Code (LaSRC) to convert to land-surface reflectance
products, respectively. Then, all Landsat surface reflectance products were registered to the Sentinel
2 products using the Automated Registration and Orthorectification Package (AROP) [29]. Besides
the aforementioned Sentinel 2 and Landsat 8 images, we further simulated a set of 480 m-resolution
MODIS images by resampling the Landsat 8 images using the ENVI Software (Figure 4). This is a
commonly used method for validating spatiotemporal data-fusion algorithms, because it can avoid the
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registration errors brought by real images [30]. The eCognition Developer 8.7 software was used to
segment objects from the Sentinel 2 image on 25 April 2018 and the Landsat 8 image on 24 April 2018.
The segmentation scales were set as the Level 1, Level 2 and Level 3 derived from the ESP 2 tool (with a
step size is 1, 3 and 5) respectively. The segmented objects from the Sentinel 2 image were used as the
inputs for the fusion between Sentinel 2 and Landsat 8 images and between Sentinel 2 and MODIS
images, and those from Landsat 8 images were used as the inputs for the fusion between Landsat 8
and MODIS images.

Figure 4. Red-green-blue composites of the simulated Landsat-like MODIS images at a 480 m resolution
on (a) 24 April 2018 and (b) 26 May 2018 and (c) 1 October 2018.

3.3. Experimental Setup and Accuracy Assessment

To validate the performance of the proposed framework in the fusion of different dataset
combinations, we run the STARFM, ESTARFM, FSDAF, OSTARFM, OESTARFM, and OFSDAF
algorithms to fuse the Sentinel 2 data with Landsat 8 data, fuse the Landsat data with MODIS
data, and fuse the Sentinel 2 data with MODIS data, respectively. For each data-fusion experiment,
the search window size for the similar pixel selection was determined by a trial-and-error method [31].
The window size was set as 4 × n + 1, where n was iteratively increased from 1 to 10 with a step 1.
The window size generating the highest fusion accuracy was used to run the corresponding pair of
original and object-based spatiotemporal data-fusion algorithms.

Each predicted image was visually compared to the observed image near the prediction date.
Moreover, we calculated four statistics to evaluate quantitatively the fusion accuracy for each individual
band (i.e., blue, green, red, and near-infrared/NIR) and normalized difference vegetation index (NDVI),
namely the root-mean-square error (RMSE), relative RMSE (rRMSE), average absolute difference
(AAD), and Pearson correlation coefficient (r). These four indices have been widely used in the previous
studies [13,14]. RMSE and rRMSE provide a global description of the radiometric difference between
the predicted imagery and the real reference imagery, AAD is used to measure the average bias for
an individual prediction, and r indicates the linear correlation between predicted imagery and the
reference imagery. The mathematic definitions of these indices are shown in Equations (2)–(5):

RMSE j =

√∑N
i=1

(
Pi j −Qi j

)2

N
(2)

rRMSE j =
RMSE j ∗ 100

Q j
(3)

r j =

∑N
i=1

(
Pi j − P j

)(
Qi j −Q j

)
√∑N

i=1

(
Pi j − P j

)2
·
∑N

i=1

(
Qi j −Q j

)2
(4)
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AAD j =

∑N
i=1

∣∣∣Pi j −Qi j
∣∣∣

N
(5)

where N is the total number of pixels, and j indicates the jth band, and Pi j and Qi j are the values of the
ith pixel of jth band in the predicted imagery and observed reference imagery.

3.4. Vegetation Mapping and Accuracy Assessment

To test the potential of the proposed framework in vegetation mapping, we evaluated the
performance differences on vegetation mapping using the fused Sentinel 2 images from both original
and modified algorithms. The Support Vector Machine (SVM) algorithm was used to classify the study
area into five vegetation types, which are food crops, cash crops, cold temperate coniferous forests,
meadow steppes, and cold temperate broadleaf deciduous forests. The original Sentinel 2 image on
25 April 2018 and the fused Sentinel 2 image from Landsat 8 were used as the inputs of SVM classifier.
The default SVM classifier with the radial basis function data on 26 May 2018 kernel type in the ENVI
software was used here to perform all classifications.

The ground truth of vegetation map was created based on digitalization and validation process.
First, we manually digitalized a vegetation map created by the local administration bureau. Then,
all polygons within the digitalized map were surveyed in the field to validate its accuracy, and the
final vegetation map include 572 polygons with a mean size of 0.623 km2. This vector map was then
converted to a raster file with a spatial resolution of 10 m. Two thirds of pixels in the ground-truth
vegetation map were used as the training samples to train the SVM classifier to generate vegetation
maps from the fused images. The remaining one third of pixels were used to evaluate the accuracy of
the predicted vegetation maps. Two statistical parameters, i.e., overall accuracy and kappa coefficient,
were calculated to assess the accuracy of each predicted vegetation map.

4. Results

4.1. Fusions Between Sentinel 2 and Landsat 8 Images

The three optimized segmentation scales derived from the ESP 2 tool were used for segmenting
the Sentinel 2 image on 25 April 2018 are 84, 159 and 159. The same Level 2 and Level 3 optimal
scales indicate that the study site displays considerable texture differences. The visual comparison
among the three original spatiotemporal data-fusion algorithms shows that all the predicted images
on 26 May 2018 have similar spatial patterns on the color ramp as the reference data and can capture
the phenological changes of vegetation during the one-month timespan (Figure 5). The STARFM and
FSDAF methods show similar fusion results (Figure 5b,d); while the ESTARFM method generates an
image with significant color ramp differences (Figure 5c). All three methods generate a large amount of
distorted and noisy pixels, especially at the edge between vegetation types, which can be more clearly
seen in the NDVI maps (Figure 6b,d,f).
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Figure 5. Comparisons of the Sentinel 2-Landsat 8 fusion results using different fusion algorithms.
(a) The Red-green-blue composite (left) and normalized difference vegetation index (NDVI) overlaid
with Level 1 segmented objects of the reference Sentinel 2 imagery (right). (b–g) The fusion results
derived from the spatial and temporal adaptive reflectance fusion model (STARFM), enhanced spatial
and temporal adaptive reflectance fusion model (ESTARFM), flexible spatiotemporal data-fusion
mode (FSDAF), object-restricted STARFM (OSTARFM), object-restricted ESTARFM (OESTARFM), and
object-restricted FSDAF (OFSDAF), respectively.
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Figure 6. Comparisons of the Sentinel-2-Landsat 8 fused results within the red box area (3 km×3 km)
of Figure 5. (a) The red-green-blue composite (left) and NDVI (right) maps of the reference Sentinel-2
image; (b–g) the red-green-blue composite (left) and NDVI (right) maps resulting from the STARFM,
OSTARFM, ESTARFM, OESTARFM, FSDAF and OFSDAF, respectively.

The overall visual patterns of the object-based methods are very close to the fusion results of the
original methods (Figure 5). However, all three object-based methods can improve the fusion results by
reducing the distortions and noises at the boundaries between vegetation types (Figure 6c,e,g). These
visual findings are consistent with the quantitative analysis results. The RMSE, rRMSE and AAD for all
three object-based methods decrease for all bands, and the r values all increase (Table 2). Specifically,
the performance of the OSTARFM method is best in the three object-based methods, followed by the
OFSDAF method and the OESTARFM method. Moreover, the improvements in the vegetation-related
bands (e.g., red, NIR, and NDVI) are greater than in blue and green bands (Table 2). The average
improvement of RMSE, rRMSE, r and AAD for the red bands of the three object-based methods are
0.0022, 2.9174%, 0.0420 and 0.0016 which are about 10, 9, 2 and 12 times better (smaller for RMSE,
rRMSE and AAD, and larger for r) than the blue and green bands on average; those for the NIR bands
of the three object-based methods are 0.0083, 3.2421%, 0.0509 and 0.0062, which are about 39, 10, 2 and
46 times better than the blue and green bands on average; and those for the NDVI bands of the three
object-based methods are 0.0274, 5.3464%, 0.0493 and 0.0191, which are about 128, 16, 2 and 143 times
better than the blue and green bands on average.
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Table 2. Quantitative assessment of the six spatial and temporal fusion results between Sentinel 2 and
Landsat 8 data. Noted that NIR, NDVI, RMSE, rRMSE, AAD and r represent near-infrared, normalized
difference vegetation index, root-mean-square error, relative root-mean-square error, average absolute
difference and Pearson correlation coefficient, respectively.

STARFM OSTARFM ESTARFM OESTARFM FSDAF OFSDAF

RMSE

B 0.0108 0.0103 0.0183 0.0181 0.0110 0.0108
G 0.0109 0.0106 0.0165 0.0160 0.0111 0.0114
R 0.0151 0.0131 0.0219 0.0186 0.0156 0.0143

NIR 0.0323 0.0273 0.0649 0.0494 0.0326 0.0283
NDVI 0.0822 0.0678 0.1610 0.1144 0.0899 0.0686
Mean 0.0303 0.0258 0.0565 0.0433 0.0320 0.0267

rRMSE

B 21.0596 19.9351 35.4933 35.1258 21.4055 20.9133
G 14.5538 14.1014 21.9743 21.3165 14.7869 15.2283
R 19.6349 17.0154 28.5337 24.1865 20.3467 18.5621

NIR 12.6713 10.7312 25.4851 19.3786 12.7864 11.1068
NDVI 16.1035 13.3362 31.5283 22.4152 17.6032 13.4445
Mean 16.8046 15.0239 28.6029 24.4845 17.3857 15.8510

r

B 0.8767 0.9029 0.8146 0.8429 0.8696 0.8903
G 0.8684 0.8879 0.8194 0.8527 0.8586 0.8664
R 0.8956 0.9270 0.7944 0.8600 0.8848 0.9138

NIR 0.9133 0.9440 0.7033 0.8000 0.9118 0.9372
NDVI 0.9445 0.9666 0.7974 0.8884 0.9296 0.9645
Mean 0.8997 0.9257 0.7858 0.8488 0.8909 0.9144

AAD

B 0.0088 0.0084 0.0150 0.0150 0.0089 0.0087
G 0.0088 0.0086 0.0134 0.0131 0.0089 0.0091
R 0.0112 0.0097 0.0157 0.0135 0.0117 0.0107

NIR 0.0237 0.0201 0.0462 0.0343 0.0241 0.0211
NDVI 0.0627 0.0517 0.1096 0.0791 0.0679 0.0522
Mean 0.0230 0.0197 0.0400 0.0310 0.0243 0.0204

4.2. Fusions Between Landsat 8 and Moderate-Resolution Imaging Spectroradiometer (MODIS) Images

The three optimized segmentation scales derived from the ESP 2 tool for segmenting the Landsat
8 image on 24 April 2018 are 165, 219 and 219, respectively. The three original methods show strong
differences in their fusion results, and those from the STARFM are the visually closest to the reference
datasets (Figure 7a–d). The results from the ESTARFM method present considerable distortions
(Figure 7b) and the results from the FSDAF method show a strong blurring effect at the edges between
vegetation types (Figure 7c). In addition, all three methods generate a large amount of distorted and
noisy pixels at the edges of different vegetation types (Figure 8b,d,f).
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Figure 7. Comparisons of the Landsat 8-MODIS fusion results using different fusion algorithms. (a) The
Red-green-blue composite (left) and NDVI overlaid with Level 1 segmented objects of the reference
Landsat 8 imagery (right). (b–g) The fusion results derived from the STARFM, ESTARFM, FSDAF,
OSTARFM, OESTARFM, and OFSDAF, respectively.
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Figure 8. Comparisons of the Landsat 8-MODIS fused results in the red box area (3 km×3 km) of
Figure 7. (a) The red-green-blue composite (left) and NDVI (right) maps of the reference Landsat 8
image; (b–g) the red-green-blue composite (left) and NDVI (right) maps resulting from the STARFM,
OSTARFM, ESTARFM, OESTARFM, FSDAF and OFSDAF, respectively.

Similar to the fusion results between Sentinel 2 and Landsat 8 images, the object-based methods
can improve the spatiotemporal data-fusion results by significantly reducing the distortions and noises
and producing clearer vegetation boundaries than the corresponding original method (Figure 8). The
RMSE, rRMSE, and AAD have a decrease of 0.0038, 1.6025% and 0.0032 for the three object-based
method on average, and the r have an increase of 0.027 on average. The object-based methods have the
most significant improving effect in the NIR and NDVI bands and the smallest improving effect on the
green bands (Table 3). The average improvement of RMSE, rRMSE and AAD for the NIR and NDVI
bands are 0.0080, 1.6465%, and 0.0068 smaller than green bands, and the improvement of average r
values are 0.0142 higher. Moreover, comparing with the fusion results between Sentinel 2 and Landsat
8 images, the improving effect of the fusion results in the blue bands between Landsat 8 and MODIS
images is much stronger. The average decreases of RMSE, rRMSE and AAD in the Landsat 8-MODIS
blue bands are about 2, 3 and 3 times larger than the average decreases in Sentinel 2-Landsat 8 blue
bands (Tables 2 and 3). The Landsat 8-MODIS red band from the OESTARFM method is the only band
showing no improving effect compared with the original method (Table 2).
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Table 3. Quantitative assessment of the fusion methods for Landsat 8 and Landsat-like MODIS data.

STARFM OSTARFM ESTARFM OESTARFM FSDAF OFSDAF

RMSE

B 0.0077 0.0069 0.0075 0.0075 0.0087 0.0074
G 0.0078 0.0073 0.0080 0.0079 0.0080 0.0076
R 0.0155 0.0141 0.0187 0.0196 0.0180 0.0153

NIR 0.0282 0.0253 0.0498 0.0458 0.0330 0.0273
NDVI 0.1096 0.0989 0.1332 0.1318 0.1326 0.1071
Mean 0.0338 0.0305 0.0434 0.0425 0.0401 0.0329

rRMSE

B 18.9576 17.0260 18.4887 18.4586 21.2657 18.1318
G 11.9878 11.2189 12.2045 12.1021 12.2244 11.6395
R 22.0662 20.0732 26.7095 27.8927 25.6980 21.8137

NIR 12.2192 10.9789 21.5547 19.8305 14.3097 11.8348
NDVI 21.4210 19.3331 26.0284 25.7548 25.9235 20.9332
Mean 17.3304 15.7260 20.9972 20.8077 19.8843 16.8706

r

B 0.8398 0.8730 0.8484 0.8487 0.7957 0.8586
G 0.8582 0.8778 0.8472 0.8503 0.8432 0.8650
R 0.8325 0.8636 0.7441 0.7290 0.7663 0.8412

NIR 0.8947 0.9160 0.7264 0.7386 0.8600 0.9022
NDVI 0.8671 0.8925 0.8022 0.8030 0.7960 0.8680
Mean 0.8585 0.8846 0.7937 0.7939 0.8122 0.8670

AAD

B 0.0059 0.0052 0.0058 0.0057 0.0065 0.0054
G 0.0059 0.0055 0.0060 0.0059 0.0061 0.0056
R 0.0121 0.0109 0.0143 0.0147 0.0137 0.0113

NIR 0.0202 0.0197 0.0375 0.0328 0.0246 0.0204
NDVI 0.0861 0.0758 0.1028 0.1007 0.0992 0.0782
Mean 0.0260 0.0234 0.0333 0.0320 0.0300 0.0242

4.3. Fusions Between Sentinel 2 and MODIS Images

The same objects derived from the Sentinel 2 image on 25 April 2018 are used here for the fusion
between Sentinel 2 and MODIS images. By visually comparing with the reference map in Figure 9a,
we can see that the Sentinel 2-MODIS fusion results are not as good as the Sentinel 2-Landsat 8 fusion
results (Figure 9b–d). All three results from original methods look distorted compared to the reference
image, with the most severe distortion results from the ESTARFM method (Figure 9c). Moreover,
all three results from original methods have a large amount of noise at the boundaries between
vegetation types (Figure 10b,d,f). The improvements of the object-based methods for the Sentinel
2-MODIS fusion become less stable. The overall color ramps for the fusion results of the OSTARFM
and the OFSDAF methods look very similar to the original maps, except for the color ramp for the
results of OESTARFM result (Figure 9e–g). The OFSDAF method performs the best in noise reduction
and defines the vegetation type boundaries more clearly (Figure 10g).
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Figure 9. Comparisons of the Sentinel 2-MODIS fusion results using different fusion algorithms. (a) The
red-green-blue composite (left) and NDVI overlaid with Level 1 segmented objects of the reference
Sentinel 2 imagery (right). (b–g) The fusion results derived from the STARFM, ESTARFM, FSDAF,
OSTARFM, OESTARFM, and OFSDAF, respectively.
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Figure 10. Comparisons of the Sentinel 2-MODIS fused results in the red box area (3 km×3 km) of
Figure 9. (a) The red-green-blue composite (left) and NDVI (right) maps of the reference Sentinel 2
image; (b–g) the red-green-blue composite (left) and NDVI (right) maps resulting from the STARFM,
OSTARFM, ESTARFM, OESTARFM, FSDAF and OFSDAF, respectively.

The quantitative assessments also confirm the above results. As can be seen from Table 4,
the average RMSE, rRMSE and AAD are the largest among the three experimental results, and the
average r values are the lowest. Moreover, the OSTARFM method shows no significant improvements
in all bands. Its RMSE, rRMSE, r and AAD vales are almost the same as the STARFM method (Table 4).
The OESTARFM method has no significant improvements in the blue, green, and red bands as well
(Table 4). Although it has a 2.2868% improvement in rRMSE in the NIR and NDVI bands on average,
their RMSE, rRMSE and AAD values are still the largest among all three object-based methods (Table 4).
The OFSDAF method is the only object-based method that can still significantly improve the fusion
results in the blue, red and NIR and NDVI bands. It has a decrease of 0.0012, 0.0046, 0.0052, and 0.0489
in RMSE in the blue, red, NIR and NDVI bands, respectively, which are also the smallest among all
three object-based methods.
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Table 4. Quantitative assessment of the fusion methods for Sentinel 2 and Landsat-like MODIS data.

STARFM OSTARFM ESTARFM OESTARFM FSDAF OFSDAF

RMSE

B 0.0125 0.0126 0.0205 0.0207 0.0131 0.0119
G 0.0128 0.0129 0.0174 0.0176 0.0124 0.0125
R 0.0201 0.0201 0.0269 0.0268 0.0223 0.0177

NIR 0.0416 0.0414 0.0765 0.0707 0.0441 0.0389
NDVI 0.1215 0.1217 0.1898 0.1630 0.1483 0.0994
Mean 0.0417 0.0417 0.0662 0.0598 0.0480 0.0361

rRMSE

B 24.2959 24.3215 39.6935 40.0359 25.3375 23.0448
G 17.0554 17.1338 23.1439 23.4031 16.5104 16.5717
R 26.0844 26.1027 34.9109 34.8233 28.9996 22.9375

NIR 16.3927 16.2887 30.1336 27.8528 17.3534 15.3110
NDVI 23.9152 23.9491 37.3573 32.689 29.1889 19.5576
Mean 21.5487 21.5592 33.0478 31.7608 23.4780 19.4845

r

B 0.7950 0.7970 0.7360 0.7294 0.7660 0.8380
G 0.8000 0.8006 0.7365 0.7313 0.7801 0.8184
R 0.7930 0.7945 0.6191 0.6313 0.7421 0.8527

NIR 0.8369 0.8392 0.5349 0.6089 0.8140 0.8638
NDVI 0.8549 0.8525 0.6364 0.7228 0.7813 0.9063
Mean 0.8160 0.8168 0.6526 0.6847 0.7767 0.8558

AAD

B 0.0100 0.0100 0.0170 0.0171 0.0103 0.0094
G 0.0101 0.0101 0.0141 0.0142 0.0097 0.0097
R 0.0159 0.0158 0.0205 0.0202 0.0176 0.0133

NIR 0.0322 0.0320 0.0585 0.0502 0.0338 0.0295
NDVI 0.0966 0.0957 0.1459 0.1250 0.1162 0.0764
Mean 0.0330 0.0327 0.0512 0.0453 0.0375 0.0277

4.4. Results of Vegetation Mapping

Table 4 reports the statistical results of the vegetation classification results using the fused
images from both object-based methods and original methods. Although the STARFM outperformed
the ESTARFM and FSDAF methods in the fusion of Sentinel 2 and Landsat 8 images (Table 2),
the classification of the STARFM fused image shows the lowest accuracy. Overall, the classification
accuracy of the fused images from original fusion methods do not show correlation with their
fusion accuracy.

As for the classification results of the fused images from object-based fusion methods, the visual
differences between them and those from original fusion methods are not obvious (Figure A1), but
their overall accuracy and kappa coefficient are all increased by 2% (Tables 5 and A1, Tables A2–A6).
After zooming in, the visual inspection results show that the vegetation maps using images from
the object-based fusion algorithms have less “pepper-salt” effect (Figure 11). The misclassified cold
temperate coniferous forest close to the boundary of meadow-steppe in Figure 11a–d can be reduced
by using the object-based framework, and the cash crop boundary in Figure 11e–h is closer to the real
boundary by using the object-based framework.

Table 5. Accuracy assessment of the vegetation mapping results.

STARFM OSTARFM ESTARFM OESTARFM FSDAF OFSDAF

Overall accuracy 0.68 0.70 0.71 0.73 0.69 0.71
Kappa coefficient 0.59 0.61 0.62 0.64 0.60 0.62
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Figure 11. Examples (a–d: example 1; e–h: example 2) of the vegetation mapping results using different
image inputs. Subfigures (a) and (e) are the reference Sentinel 2 images (left) and the corresponding
ground truth vegetation maps (right); subfigures (b) and (f) are the vegetation mapping results using
the fused Sentinel 2 images from the STARFM (left) and OSTARFM (right); subfigures (c) and (g) are the
vegetation mapping results using the fused Sentinel 2 images from the ESTARFM (left) and OESTARFM
(right); subfigures (d) and (h) are the vegetation mapping results using the fused Sentinel 2 images
from the FSDAF (left) and OFSDAF (right).

5. Discussion

5.1. Improvements of the Proposed Object-Based Data-Fusion Framework

Generation of unified high-resolution time-series images from different remote-sensing sensors
can provide support for vegetation mapping and monitoring [32,33]. However, the high spectral
similarity in the reflectance spectrum of different vegetation types may bring many misidentified
similar pixels, which can disturb spectrum property of vegetation in fused images and thereby cause
uncertainties in subsequent applications.

This demonstrates that the proposed framework shows the potential to improve the similar
pixel selection results in areas with high spectral similarity. By taking texture information into the
similar pixel selection, the reflectance spectral value is not the only parameter in determining similar
pixels of a target pixel. With the help of texture information, each segmented object can be treated
as a homogenous vegetation patch [34], which can help reduce wrong similar pixels with similar
spectral characteristics but different vegetation types. Therefore, the object-based fusion framework
can delineate the boundaries between vegetation types more clearly and reduce the “pepper-salt” effect
of the original algorithms (Figures 6, 8 and 10).

The object-based spatiotemporal data-fusion framework can be adapted to various vegetated
areas under different vegetation covers. Regardless of whether there are significant spectral differences
among vegetation types, the proposed method is always beneficial to improve the fusion accuracy.
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For areas with high inter-vegetation spectral differences, although the spectrum-based similar pixel
selection can obtain accurate similar pixels in the interior of each vegetation areas, boundaries between
vegetation types might be changed after the spatiotemporal fusion because of the mixed pixels in the
junction areas of different vegetation types. In that case, delineated boundaries between vegetation
types can ensure the consistency of vegetation types before and after fusion (Figures 6, 8 and 10).

The object-based constraint can further increase the homogeneity within similar pixels to improve
the fusion accuracy. In medium NDVI areas, which are mixed with grasslands and forests in this
study, three modified algorithms perform better than their original algorithms (Figure 12). As for
areas with similar spectral vegetation, the proposed object-based framework can use the texture and
shape information to differentiate vegetation types to reduce the wrong similar pixels. For example,
the low NDVI areas in this study are mainly composed of grasslands and croplands, which are all
covered by bare soil at the acquisition time of the input fine imagery (Figure 3a). Since croplands
usually have a regular shape with distinct boundaries [35], the proposed object-based framework have
well identified boundaries between grasslands and croplands from a single imagery and, therefore,
increase the similar pixel selection accuracy.

Figure 12. The Sentinel 2-Landsat 8 data-fusion accuracy denoted by rRMSE in low NDVI (<0.3),
medium NDVI (0.3–0.7) and high NDVI areas (>0.7).

Except for texture information, some spatiotemporal fusion methods use temporal changes
to address the high spectral similarity problem in similar pixel selection [36]. This strategy has
been adopted in the ESTARFM algorithm, which uses two input fine images to select the similar
pixels. Taking low NDVI areas in this study as an example, phenological changes between grasslands
and croplands can ensure the high accuracy of the similar pixel selection through the ESTARFM
algorithm [37], which might be the reason of why the modified ESTARFM has smaller improvements
than the modified STARFM and FSDAF. However, temporal changes might not be useful in areas
with similar phenological changes but different vegetation types such as the high NDVI areas in
this study, which are covered by broadleaf deciduous forests and coniferous forests. The broadleaf
deciduous forests are composed of birch trees and aspen trees that have similar phenological changes
in the timespan between the input image date and targeted data-fusion date, and the coniferous
forests have smaller phenological changes [38]. The similar or small phenological changes might
reduce the effectiveness of similar pixel selection using multiple input fine images. Moreover, the long
timespan between the targeted data-fusion date and posterior input image date might bring nonlinear
phenological changes and, therefore, lead to larger uncertainties in the ESTARFM fused results [39,40].
Under these circumstances, the proposed framework is still effective to improve the data-fusion results
of the ESTARFM algorithm.

In addition, vegetation spectral characteristics in different bands can also lead the performance of
the proposed framework on bands sensitive to vegetation information (e.g., NIR band) to be better than
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on other bands (e.g., blue band). This might be mainly because the reflectance differences in vegetation
sensitive bands are greater than in other bands due to the control of chlorophyll [41]. Moreover,
the bandwidth differences in the red and NIR bands are generally larger than in the blue and green
bands [42], and this can cause larger reflective differences in vegetation-sensitive bands as well. For
example, the absolute bandwidth difference in the near-infrared band between Sentinel 2 and Landsat
8 images is around 5 and 3 times larger than those in the blue and green bands. Large reflectance
differences can make the selection of similar pixels more challenging [43]. The proposed object-based
framework can effectively reduce the wrong similar pixel selection by using texture information and,
therefore, improve the fusion results of vegetation-sensitive bands.

5.2. Sensitivity of the Proposed Object-Based Framework

The proposed framework can be applied to any spatiotemporal data-fusion algorithm based on
similar pixels. Since the proposed framework is implemented based on the principle of the original
algorithm by revising the similar pixel selection procedure, the accuracy of the revised object-based
method is greatly influenced by the original method. Overall, in this study, the OSTARFM method
outperformed the OESTARFM and OFSDAF methods, which is generally consistent with the original
methods but with improvements. The improvements on the ESTARFM and FSDAF methods are more
obvious than on the STARFM method across different sensor combinations. The different improvements
of these three modified algorithms might be related to the differences in the principle of how the similar
pixels are used to predict the value of a fused pixel. Most of the spatiotemporal data-fusion algorithms
has two components in the final prediction of a fused pixel, i.e., the temporal change predicted from
the coarse pixel and the weighted prediction value from similar pixels [9]. In the STARFM method,
the temporal change calculated from a coarse pixel is directly added to the predicted fine pixel within
it without using the similar pixels. On the other hand, the ESTARFM method uses the similar pixels
to calculate a linear conversion coefficient to predict the temporal change from the coarse pixel [12].
Therefore, the highly accurate similar pixels provided by the proposed framework may result in greater
improvements on the ESTARFM method. As for the FSDAF method, it calculates the temporal change
of a predicting fine pixel by assuming that the temporal change of the corresponding coarse pixel can
be distributed to the fine pixels within it based on an auxiliary classification map [14]. In this study, we
replaced the classification map with the segmented objects and treated them as the local vegetation
units. It has been shown that segmented objects might reflect the vegetation units at a local scale more
accurately than an unsupervised pixel-based classification map [44], which therefore might help to
increase the fusion accuracy. Due to the influence of similar pixels on the fusion procedure vary in
spatiotemporal data-fusion algorithms, it should be mentioned the current study does not focus on the
comparisons of different spatiotemporal fusion algorithms, but evaluates their improvements when
incorporating an object-based framework. The performance of the object-based methods may vary
with different land-surface types and data inputs [45,46].

In addition to the principle of original algorithms, the resolution difference between the input fine
and coarse images is another factor that may influence the performance of the proposed framework.
The Sentinel 2-Landsat 8 combination has less resolution difference than Sentinel 2-MODIS combination.
As can be seen from Tables 3 and 5, the performance of the object-based methods decreases with the
increase in resolution difference. The larger unmixing uncertainty in the fusion of two sensors with
the large resolution differences might be the main reason leading to this phenomenon [47]. However,
one exception to this trend is the OFSDAF method, this might be caused by the fact that the FSDAF
algorithm has better ability to unmix the mixed pixel than STARFM and ESTARFM algorithms.

The proposed object-based framework shows smaller sensitivity to the resolution differences in all
three tested algorithms. Here, we used the FSDAF method as an example to evaluate the sensitivity of
the proposed object-based method with different resolution combinations, because the FSDAF method
showed the largest variations in the three experiments of this study (Tables 3–5). As shown in Figure 13,
the Sentinel 2 images were used as the fine image, and coarse images with different resolutions were
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simulated by interpolating the Landsat 8 images using a similar method of generating MODIS images.
Overall, the rRMSE of the OFSDAF is much smaller than FSDAF across all resolution combinations,
and its increase in rRMSE from a resolution ratio of 5 to 50 is around 4%, which is much smaller than
that of the FSDAF (around 10%) (Figure 13). Nevertheless, we still suggest that choosing two sensors
with smaller differences in spatial resolutions might be beneficial for spatiotemporal data fusion using
the object-based framework.

Figure 13. Changes of rRMSE in NDVI fusion results with different spatial resolution combinations
using the FSDAF and OFSDAF methods. The resolution ratio is calculated as the ratio between the
coarse image and the fine image. Sentinel 2 is used as the fine image here, and the coarse image with
different spatial resolutions are simulated from Landsat 8 using a similar interpolating method as
generating MODIS images.

The scale of segmentation is also critical to the performance of the proposed framework, especially
the baseline segmentation scale. The baseline segmentation scale determined the minimum size of
the objects and thereby decided the quantity and homogeneity of the similar pixels. Under the same
baseline segmentation scale, a bigger search window size might also result in more similar pixels with
less with the changes of baseline scale and search window size (Figure 14a,c). With the increase of the
homogeneity. Here, we evaluated the performance of the three object-based methods with variations
in the baseline scale and search window size (Figure 14). In general, the OSTARFM and OFSDAF
methods showed the same pattern in accuracy baseline segmentation scale and search window size,
the accuracy of the OSTARFM and OFSDAF decreases significantly. This might be caused by the
“restrict-and-select” similar pixel selection approach used by these two methods, which aims to find
N similar pixels with the smallest spectral distance. The heterogeneity among pixels decreased with
the increase of the baseline segmentation scale and search window size, and the matter of “same
spectral from different materials” may lead the selected similar pixels from the OSTARFM and OFSDAF
method to have larger heterogeneity from different vegetation types, which therefore reduces the
data-fusion accuracy. The accuracy of the OESTARFM method has an opposite changing trend with
the variations of baseline segmentation scale and search window size (Figure 14b). This might be
caused by the fact that the number of similar pixels becomes insufficient with the reduction of the
baseline segmentation scale and search window size. The OESTARFM method adopts a much tighter
rule to select similar pixels than the OSTARFM and OFSDAF method. The spectral distance between
the similar pixel and targeted pixel should be smaller than the thresholds determined by the standard
deviation of each band, and only the common similar pixels selected from the two input fine images are
retained [12]. The decreases in baseline segmentation scale and search window size can further reduce
the number of selected similar pixels and lead to low data-fusion accuracy. Therefore, we suggest
that the combination of baseline segmentation scale and search window size should be determined
based on the similar pixel strategy of the original data-fusion algorithm. If the original method uses a
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loose “restrict-and-select” approach, the baseline segmentation scale and search window size should
be relatively small to find similar pixels with heterogeneous vegetation types; if the original method
uses a tight “select-and-restrict” approach, they should be set large enough to find a sufficient number
of similar pixels.

Figure 14. The changes of rRMSE of the derived NDVI from (a) OSTARFM, (b) OESTARFM and (c)
OFSDAF fused results with the baseline scale (Level 1) and search window size (noted as w in the
figure) in the fusion of Sentinel 2 and Landsat 8 images.

5.3. Influences on Vegetation Mapping

Times-series high-resolution remote sensing images are beneficial for vegetation mapping [48].
The proposed object-based framework can increase the accuracy of spatiotemporal data fusion, which
should be able to improve the vegetation mapping accuracy. In this study, the overall accuracy of the
vegetation classification results using the fused images from the object-based methods showed a ~2%
improvement than that from the original methods (Table 4) and showed less “pepper-salt” effect at
the boundaries between vegetation types (Figure 11). The clearer vegetation boundary and shape
preserved in the time-series images from the object-based fusion framework can help better identifying
the boundaries between vegetation types.

However, the vegetation classification accuracy in the present study is still relatively low, and
the results using the fused images from the object-based framework cannot largely resolve the
misclassification issue. This might be caused by two factors. First, this study only used images from
two time stamps, and one of the images was in the early growing season without strong vegetation
signals. Moreover, this study simply used the SVM algorithm without tuning its parameters. If the
spectral differences among vegetation types become larger or the capability of the classifier is improved,
the spatiotemporal data-fusion results might have a greater impact on vegetation mapping [49].

5.4. Limitations of the Current Study

Overall, the proposed object-based spatiotemporal data-fusion framework shows great potential
to increase the spatiotemporal data-fusion accuracy in vegetated areas by improving the similar
pixel selection results. Although the increase in accuracy is limited, it is comparable to other similar
spatiotemporal data-fusion works [25,50]. More importantly, the proposed framework can greatly help
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to preserve vegetation boundary and shape, which therefore can significantly reduce the “pepper-salt”
effect in vegetation mapping.

However, there are still limitations that need to be further studied. First, the present study only
evaluates the improvements of the proposed framework on the STARFM, ESTARFM and FSDAF
methods with a limited number of vegetation types (e.g., grasslands, coniferous forests, broadleaf
forests, meadow steppes, and croplands) under three senor combinations. The applicability of the
proposed object-based data-fusion framework on different spatiotemporal data-fusion algorithms
with more remote sensing datasets needs to be further studied. A more complete evaluation can
provide guidance on how to choose the appropriate spatiotemporal data-fusion algorithm to be
incorporated with the proposed object-based framework. Second, the proposed framework may
result in an insufficient number of similar pixels for the methods using tight rules for similar pixel
selection. The strategy of how to coordinate the segmentations scale with the search window size to
ensure a sufficient number of similar pixels with high quality still needs to be further studied. Third,
the present study only evaluates influence of the proposed framework on vegetation mapping using
images from two time stamps and using a simple SVM classifier. Further studies are still needed
to evaluate whether the vegetation mapping accuracy can be further improved by including more
time-series high-resolution images and using more advanced machine learning classifiers (such as
deep learning) [51]. Last but not least, the proposed object-based framework only used segmented
objects to improve the similar pixel selection results. Some spectral measure methods such as spectral
angle measure [52] and spectral correlation measure [53] also can be used to find the similarity among
the pixels. How to integrate the present object-based framework with these spectral measure methods
to better improve the fusion accuracy needs to be further studied.

6. Conclusions

This study proposed a general object-based spatiotemporal data-fusion framework to improve the
data-fusion accuracy in complex vegetated areas. It can be based on any spatiotemporal data-fusion
algorithms by replacing their original similar pixel selection method with an object-restricted method.
Here, we modified the STARFM, ESTARFM and FSDAF algorithms to evaluate the performance of the
proposed framework. The results show that the object-based framework can improve the performance
of all three methods by significantly reducing the “salt and pepper” effect in the fusion result and
delineating the vegetation boundaries more clearly. Overall, the three object-based methods perform the
best in the fusion of Sentinel-2 and Landsat images. The improvements in the vegetation-sensitive bands
(e.g., red and NIR bands) are stronger than in other bands (e.g., blue and green bands). The baseline
segmentation scale and the search window size are the two major factors influencing the performance
of an object-based spatiotemporal data-fusion algorithm, and users should select the optimal values
based on the similar pixel selection method. If an algorithm adopts a loose “select-and-restrict”
similar pixel selection strategy, a relatively small baseline segmentation scale and search windows size
should be used; if an algorithm adopts a tight “restrict-and-select” strategy, a relatively large baseline
segmentation scale and search windows size should be used. Overall, the proposed object-based
framework shows great potential for generating time series of remote-sensing images with high spatial
resolutions in complex vegetated areas and, therefore, provides useful data sources for mapping
vegetation attributes and monitoring vegetation changes accurately.

Author Contributions: Data curation, T.H.; Funding acquisition, Q.G.; Investigation, H.G.; Methodology, H.G.
and Y.S.; Resources, T.H. and J.C.; Writing—Original draft, H.G.; Writing—Review and editing, Y.S. and J.C.

Funding: This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences
(XDA19050401), the National Key Research Program of China (2016YFC0500202), and the CAS Pioneer Hundred
Talents Program.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2019, 11, 2927 25 of 29

Appendix A

Figure A1. Comparisons of the vegetation mapping results using different image inputs. (a–f) The
vegetation mapping results using the fused Sentinel 2 images from the STARFM, OSTARFM, ESTARFM,
OESTARFM, FSDAF and OFSDAF method, respectively. (g) The reference vegetation map.

Table A1. Confusion matrix of the vegetation mapping results using the fused images from the
STARFM algorithm.

Food Crop Cash Crop Meadow
Steppe

Cold Temperate
Coniferous Forest

Cold Temperate Broadleaf
Deciduous Forest

User
Accuracy

Food crop 0.64 0.36 0.03 <0.01 <0.01 0.51

Cash crop 0.18 0.57 0.02 <0.01 <0.01 0.78

Meadow steppe 0.17 0.06 0.84 0.13 0.07 0.83

Cold temperate
coniferous forest <0.01 <0.01 0.11 0.63 0.34 0.21

Cold temperate
broadleaf deciduous

forest
<0.01 <0.01 0.01 0.23 0.58 0.90

Producer accuracy 0.64 0.57 0.84 0.63 0.58

Overall accuracy 0.68

Kappa coefficient 0.59
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Table A2. Confusion matrix of the vegetation mapping results using the fused images from the
OSTARFM algorithm.

Food Crop Cash Crop Meadow
Steppe

Cold temperate
Coniferous Forest

Cold temperate Broadleaf
Deciduous Forest

User
Accuracy

Food crop 0.64 0.35 0.03 <0.01 <0.01 0.51

Cash crop 0.18 0.59 0.01 <0.01 <0.01 0.79

Meadow steppe 0.18 0.05 0.85 0.11 0.07 0.84

Cold temperate
coniferous forest <0.01 <0.01 0.10 0.67 0.30 0.24

Cold temperate
broadleaf deciduous

forest
<0.01 <0.01 0.01 0.22 0.62 0.91

Producer accuracy 0.64 0.59 0.85 0.67 0.62

Overall accuracy 0.70

Kappa coefficient 0.61

Table A3. Confusion matrix of the vegetation mapping results using the fused images from the
ESTARFM algorithm.

Food Crop Cash Crop Meadow
Steppe

Cold Temperate
Coniferous Forest

Cold Temperate Broadleaf
Deciduous Forest

User
Accuracy

Food crop 0.57 0.33 0.03 <0.01 <0.01 0.49

Cash crop 0.24 0.63 0.02 <0.01 <0.01 0.75

Meadow steppe 0.19 0.04 0.83 0.10 0.08 0.84

Cold temperate
coniferous forest <0.01 <0.01 0.09 0.64 0.25 0.26

Cold temperate
broadleaf deciduous

forest
<0.01 <0.01 0.02 0.25 0.67 0.90

Producer accuracy 0.57 0.63 0.83 0.64 0.67

Overall accuracy 0.71

Kappa coefficient 0.62

Table A4. Confusion matrix of the vegetation mapping results using the fused images from the
OESTARFM algorithm.

Food Crop Cash Crop Meadow
Steppe

Cold Temperate
Coniferous Forest

Cold Temperate Broadleaf
Deciduous Forest

User
Accuracy

Food crop 0.61 0.31 0.03 <0.01 <0.01 0.53

Cash crop 0.22 0.65 0.02 <0.01 <0.01 0.77

Meadow steppe 0.17 0.04 0.85 0.12 0.08 0.84

Cold temperate
coniferous forest <0.01 <0.01 0.09 0.64 0.22 0.27

Cold temperate
broadleaf deciduous

forest
<0.01 <0.01 0.02 0.24 0.69 0.91

Producer accuracy 0.61 0.65 0.85 0.64 0.69

Overall accuracy 0.73

Kappa coefficient 0.64
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Table A5. Confusion matrix of the vegetation mapping results using the fused images from the
FSDAF algorithm.

Food Crop Cash Crop Meadow
Steppe

Cold Temperate
Coniferous Forest

Cold Temperate Broadleaf
Deciduous Forest

User
Accuracy

Food crop 0.64 0.37 0.03 <0.01 <0.01 0.50

Cash crop 0.18 0.57 0.02 <0.01 <0.01 0.79

Meadow steppe 0.18 0.06 0.84 0.12 0.08 0.83

Cold temperate
coniferous forest <0.01 <0.01 0.10 0.61 0.29 0.22

Cold temperate
broadleaf deciduous

forest
<0.01 <0.01 0.02 0.27 0.63 0.90

Producer accuracy 0.64 0.57 0.84 0.61 0.63

Overall accuracy 0.69

Kappa coefficient 0.60

Table A6. Confusion matrix of the vegetation mapping results using the fused images from the
OFSDAF algorithm.

Food Crop Cash Crop Meadow
Steppe

Cold Temperate
Coniferous Forest

Cold Temperate Broadleaf
Deciduous Forest

User
Accuracy

Food crop 0.64 0.35 0.02 <0.01 <0.01 0.52

Cash crop 0.18 0.60 0.01 <0.01 <0.01 0.80

Meadow steppe 0.17 0.04 0.86 0.10 0.07 0.85

Cold temperate
coniferous forest <0.01 <0.01 0.10 0.63 0.28 0.23

Cold temperate
broadleaf deciduous

forest
<0.01 <0.01 0.01 0.27 0.64 0.90

Producer accuracy 0.64 0.60 0.86 0.63 0.64

Overall accuracy 0.71

Kappa coefficient 0.62
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