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Abstract: A comprehensive evaluation of the performance of satellite-based soil moisture (SM)
retrievals is undoubtedly very important to improve its quality and evaluate its potential application
in hydrology, climate, and natural disasters (drought, flood, etc.). Since the release of the SMAP
(Soil Moisture Active Passive) mission data in April 2015, the associated SM retrieval algorithms
have developed rapidly, and their improvement work is still in progress. However, some newly
developed SM retrievals have not been fully assessed and inter-compared. One such product
is the new multi-temporal dual-channel retrieval algorithm (MT-DCA) SM retrievals, which was
recently retrieved using the so-called MT-DCA algorithm. To solve this, we aim to assess the
MT-DCA SM retrievals along with the SMAP-enhanced level three SM products (SPL3SMP_E,
version 2). More specifically, in this paper we evaluated and inter-compared the two SMAP SM
retrievals with the ECMWF (European Centre for Medium-Range Weather Forecasts) modeled SM and
ISMN (International Soil Moisture Network) in situ observations by applying four statistical scores:
Pearson correlation coefficient (R), root mean square difference (RMSD), bias, and unbiased RMSD
(ubRMSD). It was found that both SMAP SM retrievals can better capture the seasonal variations of
ECMWF-modeled SM and ground-based measurements according to correlations, and MT-DCA SM
was drier than SPL3SMP_E SM by ~0.018 m3/m3 on average on a global scale. With respect to the
ISMN ground-based measurements, the performance of SPL3SMP_E SM compared better than the
MT-DCA SM. The median ubRMSD of SPL3SMP_E SM and MT-DCA SM with ground measurements
computed over all selected ISMN sites were 0.058 m3/m3 and 0.070 m3/m3, respectively.
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1. Introduction

Surface soil moisture (SM) is a key state variable of the hydrological cycle and
land-surface/atmosphere interactions [1–5]. SM controls evaporation, water balance, and profoundly
affects the partitioning of land surface energy [6–10]. All of this relevance makes SM known as one of
the “Essential Climate Variables” [11]. Accurate measurement of SM, hence, has greatly promoted its
application in drought monitoring [12], agriculture applications [13,14], and climate predictions [15,16].

Active and passive microwave satellite-based remote sensing has been considered an effective
instrument for monitoring SM on a global scale because of its unique, strong relationship with the soil
dielectric constant [17]. Passive L-band microwave remote sensing with frequent revisiting time is
recognized as the most promising tool for mapping the regional and global SM distribution [18–20].
The most recent space-borne mission using this technology to monitor SM was NASA’s SMAP (NASA:
National Aeronautics and Space Administration; SMAP: Soil Moisture Active Passive) launched
in 2015 [18]. This mission concept was to obtain a set of SM products with a spatial resolution of
9 km, which is achieved by combining the higher spatial resolution of radar measurements with the
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higher sensitivity to SM of radiometer measurements. However, since the radar instrument stopped
transmission on July 7, 2015, SMAP can only obtain brightness temperatures (TB) collected by the
radiometer. Since the end of 2016, the SMAP team has introduced a series of new SM products
with the aim of compensating for the loss of high-resolution measurement capabilities due to radar
failures, including both level two and level three SMAP-Enhanced Passive Soil Moisture product and
SMAP/Sentinel-1 Active-Passive Soil Moisture Product, etc.

An assessment of the reliability of SMAP soil moisture (SM) retrievals is undeniably essential to
improve its quality and evaluate its potential application in hydrology, climate, and natural disasters
(drought, flood, etc.). A variety of methods or studies, for example, field campaigns, core validation
stations, sparse ground networks, land surface model simulations, and inter-comparisons among
satellites, have been used or conducted for extensive validation/assessment of SMAP SM retrievals since
the relevant products were published in April 2015 [17,21–28]. Recently, the soil moisture information
from the SMAP-enhanced level three and modeled level four, spanning from April 2015 to November
2017, have been assessed against model-based SPoRT-LIS and in situ observations via statistical metrics
over the United States [28]. Zhang et al. (2019) have assessed the accuracy of SMAP-enhanced level
three soil moisture retrieval from April 2015 to March 2018 using extensive in situ observations from
sparse networks covering a wide range of climates and land cover types [17]. By using ground-based
observations from the core validation station, Colliander et al. (2018) have evaluated the accuracy
of SMAP-enhanced level two descending (06:00 local time) retrievals, which were generated by the
Backus-Gilbert interpolation with a spatial resolution of 9 km [24]. H. Kim et al. (2018) have evaluated
the performance of three remotely-sensed retrievals, including SMAP-enhanced level two descending
products, AMSR2 LPRM (Land Parameter Retrieval Model) outputs, and Advanced Scatterometers
(ASCAT) SM products by using modeled SM under different land cover conditions and vegetation
fractions [26].

However, it should be noted that SM retrieval algorithms are rapidly developing, and work on
their improvement is still being carried out using new concepts or implementing new calibration
parameters [20,29]. Therefore, some newly developed SM products have not been fully assessed
and inter-compared. One such product is the new multi-temporal dual-channel retrieval algorithm
(MT-DCA) soil moisture retrievals, which were recently retrieved using the so-called MT-DCA algorithm
(multi-temporal dual-channel retrieval algorithm) developed by Konings et al. (2017) [30]. To our
knowledge, the latest MT-DCA SM product has only been directly evaluated against the baseline
algorithm applied by the SMAP group [30], and the inter-comparison with other auxiliary datasets has
not been carried out. Furthermore, there is very little known about the performance of SMAP-enhanced
level three SM products at different vegetation coverage levels. To solve all of this, the aim of our
work is to assess the MT-DCA SM product along with the SMAP-enhanced level 3 SM product
(SPL3SMP_E, version 2). This was carried out using the “European Centre for Medium-Range Weather
Forecasts” (ECMWF) modeled SM and the “International Soil Moisture Network” (ISMN) [31,32]
in situ measurements from April 2015 to December 2017. Our study is also complementary to the
evaluation of the SPL3SMP_E SM product by Zhang et al. (2019) [17]. The outline of our paper is:
Datasets and methodology are introduced in Sections 2 and 3, respectively, and results and discussion
are given in Section 4. Finally, concluding remarks are described in Section 5.

2. Datasets

Datasets used in this study spanning from April 2015 to November 2017 are shown in Table 1. These
include soil moisture retrieved by multi-temporal dual channel algorithm (MT-DCA), SMAP-enhanced
level 3 radiometer soil moisture (SPL3SMP_E, version 2), the volumetric soil moisture content in the
top layer (0–7 cm) of ECMWF, and in situ measurements obtained from the ISMN and additional
datasets; details for which are given in the following subsection.
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Table 1. Overview of all datasets used in the current work.

Datasets Data Source Resolution (Spatial/Temporal) Unit

SPL3SMP_E SM SMAP-enhanced level 3 radiometer SM retrievals
(SPL3SMP_E, version 2) 9 km/Daily m3/m3

MT-DCA SM multi-temporal dual channel algorithm retrieved SM 9 km/Daily m3/m3

ECMWF SM ECMWF modeled SM 25 km /Daily m3/m3

In situ SM ISMN ground observations point /Hourly m3/m3

IGBP land cover type MODIS(MCD12Q1) 0.5 km /Yearly -
Leaf Area Index (LAI) MODIS(MOD15A2) 0.1 degree /Monthly m2/m2

2.1. SMAP-Enhanced Level 3 Radiometer Soil Moisture Retrievals

After losing the radar sensor, the SMAP team is committed to using other effective methods to
obtain or compensate for high-resolution observations. This initiative of obtaining high-resolution
information is carried out in two different ways: i) The first method is to combine high spatial
resolution radar observations from other missions with SMAP coarse-resolution passive radiometer
observations [21]. Currently, the most optimal candidate data source is from the Sentinel-1 radar
(a C-band sensor) constellation launched by the European Space Agency (ESA) [33]. ii) The second
method is based on interpolation techniques to improve the SMAP original standard TB data. The best
interpolation technique currently selected is Backus-Gilbert (BG), and it has been successfully used to
generate the SMAP Level 1C Enhanced Brightness Temperature Product (L1C_TB_E) with a resolution
of 9 km [34,35]. The SMAP-enhanced SM was generated from the L1C_TB_E using the Single Channel
Algorithm with the V-polarized channel brightness temperature as input (SCA-V).

The SMAP-enhanced level 3 passive product (SPL3SMP_E, version 2), generated on global
cylindrical Equal-Area Scalable Earth (EASE) Grid 2.0 with a grid resolution of 9 km, was used in our
study. The SPL3SMP_E is a daily composite of SMAP-enhanced passive level 2 half-orbit products,
where the SPL3SMP_E ascending (18:00 local time) and descending (06:00 local time) retrievals are
retrieved separately [17]. We refer readers to O’Neill et al. (2018) for more details on the SPL3SMP_E
soil moisture product [36]. Here, we only used SPL3SMP_E descending SM retrievals as its quality
is better than the ascending SM retrievals due to better thermal equilibrium conditions between
near-surface soil and vegetation layer in the morning [37]. The SPL3SMP_E is currently available
online via https://nsidc.org/data/SPL3SMP_E/versions/2.

2.2. MT-DCA Retrieved Soil Moisture

The multi-temporal dual-channel algorithm (MT-DCA) was developed by Konings et al. (2017)
for simultaneous retrievals of SM and vegetation optical depth (VOD), together with scattering albedo.
The assumption of this algorithm was that the temporal dynamics of VOD are slower than SM and the
VOD difference between every two consecutive observations is almost negligible [30]. In this context,
by applying a moving window of two consecutive observations, the algorithm could add an extra
constraint to the inversion problem. This combination of multiple observation times can reduce the
ratio of the number of unknowns. Over each moving window, the SM at both overpasses was retrieved,
along with a constant VOD. The development of the MT-DCA was initially used only for the satellite
NASA/CONAE Aquarius and was subsequently applied to SMAP [30,38]. The main input of SMAP
MT-DCA SM retrievals is L1C_TB_E in descending orbit; more details about this algorithm can be seen
in Konings et al., 2017 [30].

The SMAP MT-DCA SM retrievals are currently available online via https://koningslab.stanford.
edu/datasets in a binary format (.bin) for descending orbit with a sampling resolution of 9 km.

2.3. ECMWF Modeled Soil Moisture

In this work, the ECMWF SM dataset is used to inter-compare with the SMAP SM retrievals
on a global scale. The ECMWF product comes from the ERA-Interim reanalysis dataset, which is
based on IFS-Cy31r2 (a numerical weather prediction (NWP) system) to solve for several parameters,

https://nsidc.org/data/SPL3SMP_E/versions/2
https://koningslab.stanford.edu/datasets
https://koningslab.stanford.edu/datasets
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including four-layer volumetric soil moisture [39]. Readers are referred to Berrisford et al. (2011)
and Dee et al. (2011) for more specifics about ERA-Interim modeling and the data assimilation
system [39,40]. The ECMWF datasets obtained in this study have the sampling resolution of 25 km
and temporal resolutions (1-day) as SMAP SM retrievals. Soil moisture of the shallower ECMWF
soil layer (first 0–7cm layer) was used to represent the relatively low sampled soil layer of the SM
retrievals obtained from SMAP radiometer sensors (0–5 cm, m3/m3). ECMWF SM has been proved to
well represent soil moisture variability on a global scale [41]. However, it is important to emphasize
that ECMWF SM is not the absolute true value of the surface SM. It was used here as an intermediate
reference due to the fact that it can better capture the global SM dynamics [42,43].

2.4. ISMN Ground-Based Soil Moisture

SMAP SM retrievals were also evaluated on a local scale against in situ SM datasets obtained
from the ISMN network (International Soil Moisture Network) [44]. ISMN is an international initiative
of GEWEX (Global Energy and Water Cycle Experiment) and ESA, aiming at the establishment and
maintenance of a global in situ SM database. This database aims at promoting scientific studies on
the validation and improvement of global satellite-based measurements and land surface modeling.
Currently, the ISMN database hosts 2439 ground stations from ~60 networks (products are available
at https://ismn.geo.tuwien.ac.at/). To ensure the accuracy of the ground-based observations and to
minimize systematic discrepancies between in situ measurements and the SMAP SM retrievals, only
SM observations of the top 0–5 cm soil layer flagged as “Good” were considered [45,46]. Consequently,
717 sites from 17 networks over the USA, Europe, Canada, China, and Africa were used. The spatial
distribution of the in situ stations applied in our study are displayed in Figure 1 with a background of
the International Geosphere-Biosphere Programme (IGBP) land cover classification.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 22 

 

2.3. ECMWF Modeled Soil Moisture 

In this work, the ECMWF SM dataset is used to inter-compare with the SMAP SM retrievals on 
a global scale. The ECMWF product comes from the ERA-Interim reanalysis dataset, which is based 
on IFS-Cy31r2 (a numerical weather prediction (NWP) system) to solve for several parameters, 
including four-layer volumetric soil moisture [39]. Readers are referred to Berrisford et al. (2011) and 
Dee et al. (2011) for more specifics about ERA-Interim modeling and the data assimilation system 
[39,40]. The ECMWF datasets obtained in this study have the sampling resolution of 25 km and 
temporal resolutions (1-day) as SMAP SM retrievals. Soil moisture of the shallower ECMWF soil layer 
(first 0–7cm layer) was used to represent the relatively low sampled soil layer of the SM retrievals 
obtained from SMAP radiometer sensors (0–5 cm, m3/m3). ECMWF SM has been proved to well 
represent soil moisture variability on a global scale [41]. However, it is important to emphasize that 
ECMWF SM is not the absolute true value of the surface SM. It was used here as an intermediate 
reference due to the fact that it can better capture the global SM dynamics [42,43]. 

2.4. ISMN Ground-Based Soil Moisture 

SMAP SM retrievals were also evaluated on a local scale against in situ SM datasets obtained 
from the ISMN network (International Soil Moisture Network) [44]. ISMN is an international 
initiative of GEWEX (Global Energy and Water Cycle Experiment) and ESA, aiming at the 
establishment and maintenance of a global in situ SM database. This database aims at promoting 
scientific studies on the validation and improvement of global satellite-based measurements and land 
surface modeling. Currently, the ISMN database hosts 2439 ground stations from ~60 networks 
(products are available at https://ismn.geo.tuwien.ac.at/). To ensure the accuracy of the ground-based 
observations and to minimize systematic discrepancies between in situ measurements and the SMAP 
SM retrievals, only SM observations of the top 0–5 cm soil layer flagged as “Good” were considered 
[45,46]. Consequently, 717 sites from 17 networks over the USA, Europe, Canada, China, and Africa 
were used. The spatial distribution of the in situ stations applied in our study are displayed in Figure 
1 with a background of the International Geosphere-Biosphere Programme (IGBP) land cover 
classification. 

 
Figure 1. The spatial distributions of the different in situ stations (pink circles). The International 
Geosphere-Biosphere Programme (IGBP) land cover type is represented in the background. 

2.5. Additional Datasets 

Several additional datasets were used to interpret the results, including the International 
Geosphere-Biosphere Programme (IGBP) land cover classification scheme and MODIS leaf index area 
(LAI). Earlier studies have shown that the performance of the satellite-based SM products may vary 

Figure 1. The spatial distributions of the different in situ stations (pink circles). The International
Geosphere-Biosphere Programme (IGBP) land cover type is represented in the background.

2.5. Additional Datasets

Several additional datasets were used to interpret the results, including the International
Geosphere-Biosphere Programme (IGBP) land cover classification scheme and MODIS leaf index area
(LAI). Earlier studies have shown that the performance of the satellite-based SM products may vary
as a function of vegetation density and land cover class [29,42,47]. Here, we used the IGBP land
cover classification scheme and LAI data to account for the different land cover types and vegetation
conditions when comparing the SM retrievals. In this study, the global land cover classification map is a
500 m resolution dataset obtained by overlapping the 10 years (2001–2012) standard MODIS land cover

https://ismn.geo.tuwien.ac.at/
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type product (MCD12Q1) using the IGBP schema [7,48]. It is generated, for each pixel, by choosing
the highest overall confidence land cover classification from 2001 to 2010; more details are given in
Broxton et al., 2014 [49]. The MODIS LAI product, over 2015–2017, was downloaded from NASA Earth
Observations (NEO) websites (https://neo.sci.gsfc.nasa.gov/); it is a monthly LAI product calculated
from MOD15A2 product and has a spatial resolution of 0.1 degrees. The global LAI map is obtained by
the maximum value composite (MVC) method proposed by Holben [50]. All the additional data sets
were rescaled to the resolution of 25 km, to ensure that all spatial data had the same spatial resolution.

3. Methodology

In our work we evaluated and inter-compared the performances of two SMAP SM retrievals
against ECMWF modeled SM (global scale) and ground-based measurements (local scale) following
three main rules: i) using a long period (i.e., April 2015–December 2017) of SM retrievals of each
SMAP product as much as possible (until November 2019, MT-DCA was only updated to the end
of 2017); ii) strictly using the same number of pixels (and thus of dates) between the two SMAP SM
retrievals; iii) doing same data filtering, i.e., not recommended by the SMAP retrievals quality flag,
SM values outside the range 0–0.6 m3/m3 [46], and temporal series of SMAP data pairs (i.e., number of
observations available for validation) lower than one month (~31) were filtered out [51]. Four metrics,
which are widely used in the soil moisture community [45,47], were used to compare the SMAP
SM retrievals with the reference data (i.e., modeled ECMWF and in situ measurements): (Pearson)
correlation coefficient (R; Equation 1) to assess the performance of SMAP retrievals to capture the
seasonal variations of the reference SMs, bias (m3/m3; Equation 2) to measure the wetness or dryness
of the SMAP SM compared to the reference SMs, root mean square difference (RMSD; m3/m3; Equation
3), and the ubRMSD (m3/m3; Equation 4) [18]. It should be noted that R and ubRMSD were considered
as first-order criteria in comparison to Bias and RMSD, as the reference soil moisture datasets do not
represent the value as “observed” by the SMAP measurement, considering the different “sampling”
depths of simulated, retrieved and in-situ SM data.

R =

∑n
i = 1

(
SMest(i) − SMest

)(
SMref(i) − SMref

)
√∑n

i = 1

(
SMest(i) − SMest

)2 ∑n
i = 1

(
SMref(i) − SMref

)2
, (1)

Bias = (SMest − SMref), (2)

RMSD =

√
(SMest − SMref)

2, (3)

ubRMSD =
√

RMSD2 − Bias2, (4)

where n is the number of SM data pairs, SMest is SMAP SM estimates (i.e., either SPL3SMP_E or
MT-DCA SM), SMref is the reference SM (i.e., either ECMWF SM or ISMN in situ SM), and overbar
represents the temporal mean of the entire time series. It should be noted that when comparing
retrieved SM with in situ observations, the time series of satellite-based retrievals of SM were extracted
from the original SMAP pixels covering each site (based on latitude and longitude of the site) to
obtain values corresponding to the field measurements, and only the in situ data matching with the
instantaneous overpass of the SMAP observation within a time window of 1 hour were selected. In our
analysis, as done by Al-Yaari et al. (2019) [29], we accounted only for SM retrievals where p-value
< 0.05 and R > 0.4 when comparing to in situ data sets (this condition only applies to the local scale
evaluation). As correlation coefficients (R) cannot be simply averaged, we computed the median of R.
In our analysis, in addition to the median skill metrics, we considered the spatial standard deviation.

https://neo.sci.gsfc.nasa.gov/
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4. Results

In the following parts, we described the validation results for two SMAP SM products on a global
scale in Section 4.1. This involved directly interpreting the validation results compared to the ECMWF
reanalysis SM and analyzing the effects of LAI and land cover types on the validation. Section 4.2
presents the validation results using the ground-based measurements.

4.1. Evaluation on a Global Scale

4.1.1. Validations Based on ECMWF Reanalysis SM

The results of comparing (i) SPL3SMP_E and (ii) MT-DCA SM retrievals with the modeled SM
product obtained from the ECMWF reanalysis are shown in this part. The comparison was conducted
spanning from April 2015 to December 2017 on a global scale. Figure 2 shows maps of the temporal
mean SM values for the three SM datasets considered in this work. As mentioned in Section 2.3,
the ECMWF modeled SM used here represents shallower soil surface (first 0–7 cm layer), and the
inherent nature of this simulated SM is different from that observed by the SMAP satellite sensors.
In contrast, the latter is more sensitive to soil surface depths of ~0–5 cm [18,23]. Hence, it should be
mentioned that the ECMWF SM in Figure 2c must be interpreted according to spatial patterns rather
than in terms of absolute values. As seen in Figure 2a,b, the spatial patterns of SM obtained by the
MT-DCA have some differences with those obtained by SPL3SMP_E, although both are consistent with
the spatial pattern of the ECMWF SM over most regions of the globe. The spatial patterns displayed
by the ECMWF modeled SM are more consistent with SPL3SMP_E SM in some regions than with
MT-DCA SM. For instance, MT-DCA SM shows to be relatively dry in some parts of the eastern US,
while SPL3SMP_E SM is closer to ECMWF, as previous studies have indicated, these regions are wetter
than the west and mid-west regions [52,53]. Some other regions (e.g., Amazon, Congo Basin) also
present this similar spatial pattern. On the other hand, SPL3SMP_E SM was found to be relatively dry
in the northern regions of China and the eastern regions of Russia, where MT-DCA SM is closer to
ECMWF SM than SPL3SMP_E SM.

The metrics (i.e., R, ubRMSD, Bias, and RMSD) obtained from the direct comparison between
MT-DCA and SPL3SMP_E with ECMWF SM are presented in Figure 3. In terms of correlation (R;
Figure 3a,b), R values were found to be lower in forests than in other regions for both SMAP SM
retrievals, and the two SMAP SM retrievals were negatively correlated with ECMWF SM over some
specific forests, for instance, over the Congo and Amazon basins. Based on the values of ubRMSD and
RMSD, large differences could be found. Specifically, the median ubRMSD (RMSD) computed on a
global scale between MT-DCA and SPL3SMP_E SM retrievals against ECMWF SM were 0.056 m3/m3

(0.103 m3/m3) and 0.049 m3/m3 (0.093 m3/m3), respectively. Moreover, lower values were obtained
for the SPL3SMP_E SM retrievals, especially over the tropical areas and western China (according
to ubRMSD) and the eastern US (according to RMSD). ECMWF SM, in terms of Bias, is generally
much wetter than SPL3SMP_E and MT-DCA SM retrievals, except for some arid and semi-arid regions
(Sahara over northern Africa, and deserts over central Asia and Australia). However, SPL3SMP_E
SM retrievals show a dry bias over some regions of the Amazon and Congo basin, which is opposite
for MT-DCA SM retrievals. This can be explained in part by the discrepancies between the sampling
depth of the modeled ECMWF SM data (0–7 cm top soil layer) and the SMAP SM data (~0–5 cm top
soil layer) [47,52]. With this in mind, the different soil moisture Bias patterns presented in Figure 3e,f
should be interpreted carefully.



Remote Sens. 2019, 11, 2891 7 of 19
Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 22 

 

 
Figure 2. Averaged soil moisture (m3/m3) during April 2015–December 2017: (a) multi-temporal dual-
channel retrieval algorithm (MT-DCA); (b) SPL3SMP_E; (c) European Centre for Medium-Range 
Weather Forecasts (ECMWF) modeled soil moisture (SM). White values indicate “no valid Soil 
Moisture Active Passive (SMAP) data”. 

The metrics (i.e., R, ubRMSD, Bias, and RMSD) obtained from the direct comparison between 
MT-DCA and SPL3SMP_E with ECMWF SM are presented in Figure 3. In terms of correlation (R; 
Figure 3a,b), R values were found to be lower in forests than in other regions for both SMAP SM 
retrievals, and the two SMAP SM retrievals were negatively correlated with ECMWF SM over some 
specific forests, for instance, over the Congo and Amazon basins. Based on the values of ubRMSD 
and RMSD, large differences could be found. Specifically, the median ubRMSD (RMSD) computed 
on a global scale between MT-DCA and SPL3SMP_E SM retrievals against ECMWF SM were 0.056 
m3/m3 (0.103 m3/m3) and 0.049 m3/m3 (0.093 m3/m3), respectively. Moreover, lower values were 
obtained for the SPL3SMP_E SM retrievals, especially over the tropical areas and western China 
(according to ubRMSD) and the eastern US (according to RMSD). ECMWF SM, in terms of Bias, is 
generally much wetter than SPL3SMP_E and MT-DCA SM retrievals, except for some arid and semi-
arid regions (Sahara over northern Africa, and deserts over central Asia and Australia). However, 
SPL3SMP_E SM retrievals show a dry bias over some regions of the Amazon and Congo basin, which 
is opposite for MT-DCA SM retrievals. This can be explained in part by the discrepancies between 
the sampling depth of the modeled ECMWF SM data (0–7 cm top soil layer) and the SMAP SM data 
(~0–5 cm top soil layer) [47,52]. With this in mind, the different soil moisture Bias patterns presented 
in Figure 3e,f should be interpreted carefully. 

Figure 2. Averaged soil moisture (m3/m3) during April 2015–December 2017: (a) multi-temporal
dual-channel retrieval algorithm (MT-DCA); (b) SPL3SMP_E; (c) European Centre for Medium-Range
Weather Forecasts (ECMWF) modeled soil moisture (SM). White values indicate “no valid Soil Moisture
Active Passive (SMAP) data”.

As mentioned in Section 3, correlation and ubRMSD were regarded as primary quality criteria in
this study. Thus, Figure 4 focuses on the spatial distribution of pixels with the best (highest) temporal
correlation (R) and best (lowest) ubRMSD values attained when comparing ECMWF modeled SM either
with MT-DCA SM (red) or SPL3SMP_E SM (blue) during April 2015–December 2017. The pixels where
the result between MT-DCA SM and SPL3SMP_E SM differs by less than 0.02 in terms of correlation
and less than 0.005 m3/m3 in terms of ubRMSD are indicated by a green color [52]. It was found that
the red color is mainly distributed in the high latitudes of the northern part of the globe, meaning
that MT-DCA is generally closer to ECMWF SM in regard to the time dynamics (R) in these regions.
However, over most of the globe, SPL3SMP_E SM retrievals (blue areas) are performing better in terms
of ubRMSD. It should also be mentioned that, in this figure, we only presented pixels with significant
correlation (i.e., p < 0.05 and temporal series of data pairs >30).
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Figure 3. Pixel-based statistics during April 2015–December 2017 calculated between the ECMWF
reanalysis SM and: MT-DCA SM (left); and SPL3SMP_E SM (right) products: (a,b) correlation coefficient
(R); (c,d) unbiased root mean square differences (ubRMSD, m3/m3); (e,f) bias (m3/m3); and (g,h) root
mean square differences (RMSD, m3/m3).

The spatial distribution discrepancies between SPL3SMP_E and MT-DCA SM for bias or ubRMSD
are shown in Figure 5. It can be found that the areas with large differences in bias are mainly covered
by forests (e.g., Congo, Amazon Basin, and Boreal forests). In these regions, the difference for ubRMSD
values is also higher, especially in western China.
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4.1.2. Impact of LAI and Land Cover Types

It is generally accepted by the SM community that land cover types affect the quality of
satellite-based SM products [20,54], and earlier studies have shown that the performance of the
satellite-based SM products may vary as a function of vegetation density and land cover type [29,42,47].
Hence, this part aims to evaluate and inter-compare the two SMAP SM retrievals for different vegetation
conditions. The median values of the statistics (i.e., R and ubRMSD) obtained between ECMWF SM
and both SMAP SM retrievals for LAI values ranging from 0 to 7 m2/m2 with an interval of 1 m2/m2

are presented in Figure 6. It can be found that there is a decrease in correlation (R) and an increase in
ubRMSD for both SMAP SM retrievals with the increasing density of vegetation. Overall, SPL3SMP_E
SM is better than (higher R values and lower ubRMSD values) MT-DCA SM for all LAI categories.
According to correlation (R), small differences were obtained for MT-DCA and SPL3SMP_E SM for the
categories 0–1, 1–2, 2–3, but the advantage of SPL3SMP_E SM is more obvious (the difference of R
values > 0.02) when we are going from categories 4–5 to 5–7. According to Figure 6b, the ubRMSD
obtained with SPL3SMP_E SM is lower than that obtained for MT-DCA SM for all LAI categories,
with the category 5–7 being the most obvious (the difference of ubRMSD values > 0.01 m3/m3).Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 22 
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Figure 6. Median metrics (R (a) and ubRMSD (b), m3/m3) of all pixels stratified by LAI for MT-DCA
and SPL3SMP_E SM compared to ECMWF SM. Error bars are represented by the standard deviation
(SD) (median+SD) over each group. Note: specific values are shown in Table A1.

Figure 7 shows the same median metrics (R and ubRMSD) for MT-DCA and SPL3SMP_E SM,
for all pixels stratified with the IGBP land cover type. In terms of correlation, it was found that
the R values obtained with both retrieved SMAP SM retrievals over forest categories (except for
“Deciduous broadleaf forests”) are lower than the R values over non forest categories (e.g., “Woody
savannas”, ”Savannas”, and “croplands”). Except for “Mixed forests”, “Evergreen needleleaf forests”,
and “Deciduous needleleaf forests”, the R values obtained with SPL3SMP_E SM are higher than that
obtained for MT-DCA SM for all other land cover types, with results over the land type “Woody
savannas” being the most obvious. In terms of ubRMSD, both MT-DCA and SPL3SMP_E SM have
relatively low values over the “Shrublands” and “Barren or sparsely vegetated” compared to the other
land surface types. It can be noted that SPL3SMP_E SM performs better (with lower ubRMSD) than
MT-DCA SM for all land cover types, with best results (the difference of ubRMSD values > 0.01 m3/m3)
over the land types “Evergreen broadleaf forests”, ”Mixed forests”, and “Deciduous needleleaf forests”.
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network SOILSCAPE, while the lowest ones were found over the iRON network, with both R values 
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Figure 7. Same as Figure 6, except that here, we show the metrics stratified by IGBP land cover
types. With, ENF (Evergreen needleleaf forests), DNF (Deciduous needleleaf forests), EBF (Evergreen
broadleaf forests), DBF (Deciduous broadleaf forests), SH (Shrublands), MF (Mixed forests), WS (Woody
savannas), G (Grasslands), S (Savannas), C (Croplands), CNVM (Cropland/natural vegetation mosaics),
BSV (Barren or sparsely vegetated). Note: specific values are shown in Table A2.

4.2. Evaluation at the Local Scale

As a complement to Section 4.1 (i.e., compared to the ECMWF global reanalysis SM),
the performance of MT-DCA SM and SPL3SMP_E SM was also compared to SM observed at 717 in situ
sites from the ISMN networks during April 2015–December 2017. An overview of the performance of
MT-DCA SM and SPL3SMP_E SM over the selected networks is presented in Table 2. In the latter table,
the median values of all metrics are given for each measurement network. From the table, we found
that the highest correlation values (R) for both MT-DCA and SPL3SMP_E SM obtained for network
SOILSCAPE, while the lowest ones were found over the iRON network, with both R values lower than
0.50. For the other networks (except the FMI, TERENO, and iRON), SPL3SMP_E SM performs better
than MT-DCA SM in terms of correlation. Being consistent with the results of the previous sections,
according to the values of ubRMSD, SPL3SMP_E SM performs better than MT-DCA SM for all networks
except in the iRON network where both MT-DCA and SPL3SMP_E SM retrievals are comparable.
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Table 2. Statistical comparison between MT-DCA SM and SPL3SMP_E against in situ SM measurements
for April 2015–December 2017. The correlations shown here are all significant, i.e., p < 0.05. “No. of
stations” indicates the number of stations after data filtering for the network.

Network (No. of Station)
R Bias (m3/m3) RMSD (m3/m3) ubRMSD (m3/m3)

MT-DCA SPL3SMP_E MT-DCA SPL3SMP_E MT-DCA SPL3SMP_E MT-DCA SPL3SMP_E

BIEBRZA-S-1 (6) 0.54 0.58 −0.181 −0.137 0.197 0.156 0.077 0.072
CTP-SMTMN (2) 0.65 0.67 0.112 0.091 0.127 0.119 0.059 0.068

FMI (11) 0.56 0.55 0.110 0.182 0.120 0.186 0.046 0.038
FR-Aqui (4) 0.54 0.72 0.107 0.074 0.128 0.083 0.080 0.044
HOBE (24) 0.63 0.68 −0.013 0.043 0.072 0.064 0.063 0.049

MySMNet (2) 0.63 0.69 0.085 0.247 0.102 0.250 0.053 0.037
PBO-H2O (3) 0.69 0.83 0.019 0.016 0.064 0.061 0.061 0.058

REMEDHUS (20) 0.67 0.70 0.019 0.028 0.082 0.078 0.063 0.049
RISMA (20) 0.46 0.59 −0.085 −0.006 0.108 0.083 0.074 0.060
RSMN (16) 0.61 0.65 0.077 0.091 0.110 0.109 0.074 0.056
SCAN (148) 0.64 0.71 −0.011 0.008 0.090 0.069 0.065 0.052

SMOSMANIA (22) 0.59 0.78 −0.014 −0.012 0.097 0.073 0.068 0.051
SNOTEL (248) 0.57 0.63 −0.004 −0.032 0.104 0.098 0.080 0.073

SOILSCAPE (89) 0.79 0.87 0.039 0.032 0.098 0.073 0.068 0.045
TERENO (5) 0.68 0.67 −0.059 −0.008 0.082 0.072 0.057 0.055
USCRN (94) 0.68 0.74 −0.016 0.008 0.084 0.074 0.059 0.049

iRON (3) 0.49 0.42 0.014 −0.027 0.096 0.073 0.067 0.068
All (717) 0.63 0.70 −0.002 0.000 0.095 0.083 0.070 0.058

According to median values calculated for all sites (“all” items in the last row of Table 2), a lower
value of ubRMSD and a higher value of correlation was obtained for SPL3SMP_E SM (median ubRMSD
of 0.070 m3/m3 for MT-DCA SM and 0.058 m3/m3 for SPL3SMP_E SM; median correlation of 0.63 for
MT-DCA SM and 0.70 for SPL3SMP_E SM). Previous studies have shown that the Single Channel
Algorithm using the V-polarized TB orbit (SCA-V) performed best in five alternative algorithms for
SMAP soil moisture retrieval (the other four are SCA-H (using the H-polarized TB orbit as input),
dual-channel algorithm(DCA), extend-DCA, and land parameter retrieval model) [21]. We have
confirmed this again in this study, although it is MT-DCA, an improved DCA algorithm. MT-DCA
SM and SPL3SMP_E SM had biases (remotely sensed data minus in-situ data) with the same sign
(either positive or negative) over all networks except over the HOBE, SCAN, USCRN, and iRON
networks. It should also be noted that the comparison with in-situ is carried out on the 9 km satellite
footprint that covers a wider range of land cover types over the globe, which is very close to the overall
validation results of Zhang et al. (2019) for SPL3SMP_E SM using ground measurements under various
landscapes, and their reporting accuracy (i.e., unbiased RMSD) was equal to 0.055 m3/m3.

As in Section 4.1.2, in this part, we also evaluated (mainly based on R and ubRMSD) the two
SMAP SM retrievals under different vegetation conditions (based either on LAI or IGBP land cover
types). Figure 8 shows the median temporal correlation and unbiased RMSD computed between
both SMAP SM products and in situ measurements, stratified based on LAI categories. It can be seen
that, unlike the trend observed in Figure 6, both SMAP SM retrievals performed better even in the
high LAI value category when compared to in situ measurements (both R and ubRMSD). In terms
of temporal correlation (R), we found that the highest R values for both MT-DCA and SPL3SMP_E
SM obtained for the category 3–4, the values are 0.68 and 0.73, respectively, of which SPL3SMP_E is
higher. When compared to Figure 8a,b, SPL3SMP_E SM performs better than MT-DCA SM for all
LAI categories. Specifically, the R value of SPL3SMP_E SM is higher than 0.6 (and close to 0.7) for all
categories, while MT-DCA is close to or lower than 0.6. When focusing on ubRMSD, SPL3SMP_E SM
yields the lowest value in category 0–1, while MT-DCA is in category 5–7. Except for LAI category 5–7,
the ubRMSD values of MT-DCA SM are all higher than 0.06 m3/m3, while SPL3SMP_E SM is basically
lower or close to this value. In contrast, SPL3SMP_E SM is closer to the SMAP soil moisture mission
requirement [18].
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MT-DCA SM fluctuates around ~0.6 for all land cover types. In terms of ubRMSD, both MT-DCA and 
SPL3SMP_E have relatively low values over the “Evergreen broadleaf forests”, “Shrublands”, and 
“Barren or sparsely vegetated” categories compared to the other land surface types. It can be noted 
that the ubRMSD obtained with SPL3SMP_E is lower than that obtained with MT-DCA for all land 
cover types, with results over the land types “Evergreen broadleaf forests”, “Shrublands”, 
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Figure 8. Box plots of R and ubRMSD (m3/m3) for (a,c) MT-DCA; and (b,d) SPL3SMP_E SM stratified
by LAI when compared to in situ SM. Number of sites (n) per class: 0–1 (n = 188 sites), 1–2 (n = 275
sites), 2–3 (n = 163 sites), 3–4 (n = 57 sites), 4–5 (n = 29 sites), 5–7 (n = 5 sites).

Another insight into the effect of vegetation on the assessment of remotely-sensed soil moisture
products using field measurements is shown in Figure 9. According to correlation, it was found
that the temporal correlation of both SM retrievals showed the worst performance over “Deciduous
broadleaf forests”, and their values are all lower than 0.60. Conversely, they performed best over
“Savannas”, with R values approaching 0.90. The R values obtained with SPL3SMP_E are better
than that of MT-DCA for all land cover categories, with best results (the difference of R values is
greater than 0.1) over the land covers “Mixed forests”, “Evergreen needleleaf forests”, and “Barren or
sparsely vegetated”. From Figure 9a,b, R of SPL3SMP_ES M generally fluctuates around ~0.7, while
MT-DCA SM fluctuates around ~0.6 for all land cover types. In terms of ubRMSD, both MT-DCA
and SPL3SMP_E have relatively low values over the “Evergreen broadleaf forests”, “Shrublands”,
and “Barren or sparsely vegetated” categories compared to the other land surface types. It can be noted
that the ubRMSD obtained with SPL3SMP_E is lower than that obtained with MT-DCA for all land
cover types, with results over the land types “Evergreen broadleaf forests”, “Shrublands”, “Savannas”,
and “Barren or sparsely vegetated” being the most obvious.
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the same as that of Figure 7.

5. Discussions

Based on the evaluation results shown above in Figures 6–9, it was found that comparing
satellite-based SM retrievals to reference SMs (i.e., modeled ECMWF and in situ measurements) under
different LAI classes or IGBP land cover types can impact the evaluation scores and the ranking of the
two SMAP SM retrievals, due to different vegetation conditions. This is in line with previous evaluation
studies on other satellite (e.g., SMOS (Soil Moisture and Ocean Salinity)) SM products [29,42,47] or other
SMAP SM products [17,26,28]. On the one hand, considering different levels of LAI values compared
to the reference SMs, SPL3SMP_E SM gave the best performance in terms of both correlations and
ubRMSD, while on the other hand, MT-DCA SM performed better than SPL3SMP_E SM over “Mixed
forests”, “Evergreen needleleaf forests”, and “Deciduous needleleaf forests” in terms of correlations
when considering different IGBP land cover types compared to ECMWF modeled SM.

The performance, particularly in terms of temporal dynamics (R) and ubRMSD, of both SMAP
SM retrievals, is better in low vegetation coverage areas (with higher R values and lower ubRMSD)
than in high vegetation coverage areas (with lower R values and higher ubRMSD). This is probably
due to the fact that SMAP operates at L-band [18]. In contrast, this band is more likely to penetrate
areas with low vegetation coverage than areas with high vegetation coverage. It should be noted that
the results obtained when comparing SMAP SM retrievals with ECMWF reanalysis SM and in situ
observations are not the same, which does not mean that the results in our paper are contradictory.
For instance, the rankings of the two SMAP SMs over “Mixed forests” and “Evergreen needleleaf
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forests” are opposite when compared with different reference SMs. This can be explained by the
representative error of the sparse network. In addition, the sampling depth of reference SMs (0–7 cm
top soil layer for the modeled ECMWF SM data; 0–5 cm top soil layer for in situ observations) and SM
retrievals obtained from SMAP radiometer sensors (~0–5 cm top soil layer) is also different.

Although the absolute of bias between remotely-sensed SM products and in situ SM is very
common due to many factors (e.g., representativeness errors between the point-scale in situ observations
and coarse-resolution satellite-based products, spatial heterogeneity, different sensing depths (and
thus observed volume), in situ sensor uncertainties, and even the auxiliary variables used in the SM
inversion models) [29,55–57], this bias problem is not very obvious in this study when we look at “all”
items in the last row of Table 2. However, this issue is very prominent (|Bias| even > 0.1 m3/m3) when
doing an evaluation against sparse networks (the “Bias” column in Table 2), and the corresponding
unbiased RMSD value is also larger than the target uncertainty of 0.04 m3/m3, which is mainly caused
by representativeness errors [29].

In fact, not only the vegetation conditions, but also other factors including soil types, climatic
zones, soil properties, VOD, surface roughness, and even different continents, are all worth analyzing
in terms of their effects on soil moisture assessment [17,29,47]. However, we cannot solve all
problems in one manuscript. The ultimate goal of this paper is to achieve the evaluation of the
three-parameter inversion algorithm MT-DCA soil moisture products because although this algorithm
uses multi-temporal observations and dual-polarized SMAP TB to achieve the simultaneous inversion
of SM and VOD, due to too many unknown parameters (another parameter is effective scattering
albedo), it also increases the uncertainty of the results [20]. Therefore, reducing the number of inversion
parameters and replacing them with optimized parameters as the input should be a priority for future
generations of MT-DCA retrieval algorithms.

6. Conclusions

The evaluation and inter-comparison of two SMAP SM retrievals (i.e., SPL3SMP_E and MT-DCA)
were conducted in this work. We inter-compared the SMAP SM retrievals against the ECMWF modeled
SM and ISMN ground-based measurements for different vegetation conditions at both global and
local scales. The evaluation and inter-comparison were based on the correlation coefficient (R), RMSD,
bias, and unbiased RMSD (ubRMSD) metrics. The results presented above can lead to several main
conclusions:

(i) Both SPL3SMP_E and MT-DCA SM retrievals are generally found to be drier than ECMWF
modeled SM, while MT-DCA SM was found to be drier than SPL3SMP_E SM by ~0.018 m3/m3

on average on a global scale. However, the different sampling layers considered for ECMWF
modeled SM, in situ SM, and for the SMAP SM retrievals, makes it difficult to accurately evaluate
the performance of the SMAP retrievals based on bias [52].

(ii) Both SPL3SMP_E and MT-DCA SM retrievals can better capture the seasonal variations of ECMWF
SM and in situ measurements. Specifically, the median R values computed on a global scale
between SPL3SMP_E and MT-DCA SM against ECMWF SM were 0.69 and 0.67, respectively, while
the median correlation of SPL3SMP_E and MT-DCA SM with in situ measurements computed
over all ISMN sites were 0.70 and 0.63, respectively.

(iii) The ubRMSD obtained with SPL3SMP_E is always lower than that obtained with MT-DCA.
Specifically, the median ubRMSD values computed on a global scale between SPL3SMP_E and
MT-DCA SM against ECMWF SM were 0.049 m3/m3 and 0.056 m3/m3, respectively, while the
median ubRMSD of SPL3SMP_E and MT-DCA SM with in situ measurements computed over all
ISMN sites were 0.058 m3/m3 and 0.070 m3/m3, respectively.

(iv) The R values (ubRMSD) obtained with SPL3SMP_E is always higher (lower) than that obtained
with MT-DCA over all LAI categories or IGBP land cover types when compared either to the
ECMWF modeled SM or in situ SM measurements.
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As summarized above, retrieved SM achieved with the SPL3SMP_E (SCA-V) is always better
than that achieved with MT-DCA according to temporal correlations and ubRMSD, which were
regarded as primary quality criteria in this study. It is one of the first times a study has shown that the
SCA-V algorithm delivered better retrieval performance than MT-DCA, an improved DCA algorithm.
It also fills the gap in understanding whether MT-DCA SM meets the accuracy requirements of the
SMAP mission (i.e., 0.04 m3/m3). Furthermore, there is very little known about the performance of
SMAP-enhanced level three SM products at different vegetation conditions. Thus, our study is also
complementary to the evaluation of this soil moisture products by Zhang et al. (2019) [17].
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Appendix A

Table A1. Specific values of median metrics (R and ubRMSD, m3 / m3) in Figure 6.

LAI Classes
R(SD) ubRMSD(SD) (m3/m3)

MT-DCA SPL3SMP_E MT-DCA SPL3SMP_E

0–1 0.71(0.162) 0.72(0.161) 0.046(0.019) 0.042(0.019)
1–2 0.74(0.213) 0.76(0.229) 0.057(0.017) 0.051(0.016)
2–3 0.73(0.203) 0.74(0.219) 0.060(0.017) 0.054(0.016)
3–4 0.63(0.231) 0.67(0.247) 0.064(0.018) 0.055(0.016)
4–5 0.57(0.216) 0.61(0.236) 0.065(0.017) 0.055(0.015)
5–7 0.34(0.392) 0.36(0.400) 0.075(0.028) 0.061(0.026)

Table A2. Specific values of median metrics (R and ubRMSD, m3/m3) in Figure 7.

IGBP
Classification

R(SD) ubRMSD(SD) (m3/m3) IGBP
Classification

R(SD) ubRMSD(SD) (m3/m3)

MT-DCA SPL3SMP_E MT-DCA SPL3SMP_E MT-DCA SPL3SMP_E MT-DCA SPL3SMP_E

ENF 0.39(0.213) 0.37(0.251) 0.063(0.017) 0.059(0.018) WS 0.72(0.239) 0.77(0.233) 0.061(0.017) 0.052(0.014)

EBF 0.31(0.407) 0.34(0.415) 0.077(0.029) 0.062(0.027) SH 0.79(0.122) 0.80(0.106) 0.056(0.015) 0.054(0.014)

DNF 0.31(0.164) 0.28(0.152) 0.067(0.012) 0.053(0.012) G 0.74(0.171) 0.75(0.175) 0.056(0.020) 0.047(0.017)

DBF 0.61(0.150) 0.62(0.168) 0.07(0.018) 0.064(0.017) C 0.76(0.137) 0.76(0.142) 0.058(0.016) 0.053(0.015)

MF 0.50(0.208) 0.47(0.249) 0.065(0.018) 0.054(0.016) CNVM 0.71(0.165) 0.73(0.154) 0.06(0.016) 0.054(0.015)

SH 0.68(0.212) 0.70(0.236) 0.05(0.016) 0.044(0.018) BSV 0.58(0.203) 0.58(0.208) 0.026(0.019) 0.022(0.016)

Note: the abbreviation of the IGBP classification is the same as that of Figure 7.
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