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Abstract: The rapid growth of satellites orbiting the planet is generating massive amounts of data for
Earth science applications. Concurrently, state-of-the-art deep-learning-based algorithms and cloud
computing infrastructure have become available with a great potential to revolutionize the image
processing of satellite remote sensing. Within this context, this study evaluated, based on thousands
of PlanetScope images obtained over a 12-month period, the performance of three machine learning
approaches (random forest, long short-term memory-LSTM, and U-Net). We applied these approaches
to mapped pasturelands in a Central Brazil region. The deep learning algorithms were implemented
using TensorFlow, while the random forest utilized the Google Earth Engine platform. The accuracy
assessment presented F1 scores for U-Net, LSTM, and random forest of, respectively, 96.94%, 98.83%,
and 95.53% in the validation data, and 94.06%, 87.97%, and 82.57% in the test data, indicating a
better classification efficiency using the deep learning approaches. Although the use of deep learning
algorithms depends on a high investment in calibration samples and the generalization of these
methods requires further investigations, our results suggest that the neural network architectures
developed in this study can be used to map large geographic regions that consider a wide variety of
satellite data (e.g., PlanetScope, Sentinel-2, Landsat-8).
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1. Introduction

The science and technology of remote sensing has reached the era of big data [1]. This imposes a
paradigm change in the way remote sensing data is processed to extract information for a variety of
environmental and societal applications. The proliferation of constellations of compact satellites adds
another level of challenge to processing remote sensing imagery [2]. The extraction of information from
this type of data, regardless of the application category (e.g., global climate change, urban planning,
land-use and land-cover (LULC) monitoring), can be classified as big remote sensing data, while
simultaneously meeting volume, variety, and data growth rates [3]. The challenges involved in this
process have led to the emergence of cloud-based platforms, specifically for remote sensing, that can
perform planetary-scale analysis of massive amounts of data [4–7].

The combination of these factors, i.e., the high availability of satellite data and adequate
analysis platforms, has enabled the emergence of terrestrial coverage mappings on global [8–10],
continental [11–13], and national [14–16] scales, which are useful for supporting decision-making
and broader policy objectives [17]. In general, these mappings were produced with supervised
classifications using conventional machine learning algorithms (e.g., random forest, classification and
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regression tree-CART) implemented on platforms with thousands of processors capable of handling
communication, parallelism, and distributed computing problems [18].

Although the operation of these algorithms for large geographic regions uses cloud-based
platforms, the classification approaches that are implemented generally use a step of feature engineering
to handle and reduce the dimensionality of the input satellite data. In addition to allowing faster
and computationally more efficient execution, this step provides a better understanding of the
features that are most relevant to the training process and that most often impacts the accuracy of the
classification result [19,20]. Typically, feature engineering applied to remote sensing depends on human
experience and domain knowledge, and is time-consuming as it needs to consider a lot of complex
factors simultaneously (e.g., inter-class similarity, intra-class variability, atmospheric conditions [21]).
Furthermore, as we enter a new era of big remote sensing data, this step becomes more arduous
and challenging.

In this scenario, deep learning algorithms (e.g., convolutional neural networks, recurrent neural
networks, semantic segmentation [22]) may be more appropriate as they are able to construct and
select the most relevant features of raw data automatically, without human interference, which can
result in better and more accurate mapping products [23]. In fact, the deep learning approaches have
proven their effectiveness in many application domains, dramatically improving speech recognition,
visual object recognition, health diagnosis, and others applications [24]. However, most studies that
apply deep learning approaches to remote sensing data are restricted to the use of publicly available
benchmark image datasets that involve pre-processed images organized under ideal conditions and
have been previously labeled [25–27], such that research focuses on the comparative analysis of accuracy
gains. Because of that, practical applications of deep learning algorithms for land-use and land-cover
mapping, operationally and for large geographic regions, require further research investigations [22,28].

On the other hand, deep learning algorithms generally require substantially more training
data than conventional machine learning supervised classifications [24]. Acquiring training data
is challenging due to the high costs and difficulties involved in obtaining field data, especially for
past years [29], as well as due to the subjectivity and time-consuming work involved in the visual
interpretation of remote sensing images [30]. In this sense, the feature engineering exemption from
deep learning is likely to be offset by a greater need for samples, a trade-off that should be considered
when designing national, continental, and global mapping products.

Another trade-off that needs to be considered when using deep learning algorithms concerns the
increased need for computational processing, which is usually met by using graphical processing units
(GPUs) [24]. Although there are initiatives that seek to advance GPU satellite data processing [31,32],
existing solutions are not as operational as cloud-based platforms that make exclusive use of CPUs,
such as the Google Earth Engine [5]. From this perspective, we can state that the next generation of
land surface mappings involves an adequate understanding of the benefits and trade-offs between
conventional (e.g., random forest, CART, support vector machine-SVM) and cutting-edge (e.g., Google
LeNet, U-Net, generative adversarial network-GAN) machine learning algorithms when applied to
remote sensing, as well as a proper definition and evaluation of operational strategies that is capable of
promoting better information extraction.

Aiming to contribute to the next generation of land-cover and land-use maps, we evaluated the
performance of random forest, long short-term memory (LSTM), and U-Net algorithms, which were
applied to a large dataset of PlanetScope satellite imagery, and implemented in the Google Earth
Engine and in a local infrastructure using Tensorflow. Additionally, we present a framework regarding
pre-processing, the preparation of training data, feature engineering, and accuracy assessment, and
discuss the challenges faced in implementing such novel methods to mapping very large areas.

2. Materials and Methods

We focused the implementation of machine learning and deep learning algorithms on the mapping
of pasture areas, one of the most complex LULC classes to map [33], using PlanetScope imagery
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obtained with the Planet Dove constellation. With over 130 commercial CubeSats in orbit, the Planet
constellation enables the monitoring of the entire terrestrial surface with a daily frequency and a spatial
resolution of 3–5m, producing a very large data volume, which fits into the realm of big remote sensing
data, despite not presenting the same radiometric quality and calibration precision of government
satellites (e.g., Sentinel 2 and Landsat 8) [2].

Specifically, we used thousands of PlanetScope images acquired over a one-year period to produce
12 monthly mosaics over a study area located in central Brazil [34]. Based on these mosaics, a specific
training dataset for mapping pasture areas in the region was produced by considering aspects such as
the local variability of LULC classes and potential spectral confusion. The monthly mosaics and
training set were used to build supervised classification models using the random forest [35], LSTM [36],
and U-Net [37] algorithms. In relation to the random forest, a conventional machine learning approach,
a feature engineering step was performed, aiming to improve its performance in the detection of pasture
areas. For LSTM and U-Net, both of which are deep learning approaches, the model building considered
only raw data (i.e., the monthly mosaics). At the end of the process, the three resulting mappings were
evaluated by considering the validation data, previously separated from the training data, and data
obtained via fieldwork in the study area (considered as test data). The datasets and methodological
steps used in this study are presented in Figure 1 and are detailed in the following sections.
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Figure 1. Data and methods used in the generation of pasture mappings for the study area. The random
forest classification approach was performed using the Google Earth Engine, while the deep learning
approaches were implemented on a local server. LSTM: long short-term memory.

2.1. Pre-processing of PlanetScope Images

Our study area was a region of ≈18,000 km2 in area, delimited by the topographic chart
SD-22-ZC [38], and located in the central portion of the Cerrado biome in the Brazilian state of Goiás
(Figure 2). This region was evaluated using 36,962 PlanetScope images (i.e., four-band PlanetScope
Scenes), acquired between August 2017 and July 2018. We used this large imagery dataset to produce
12 monthly mosaics, which were screened for clouds and/or cloud-shadows contamination. Cloud
and cloud-shadow pixels were identified using histogram slicing, which used empirically defined
spectral thresholds, along with a frequency filter that prioritized pixels with low temporal stability,
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and consequently, had a greater chance of being associated with clouds and/or cloud shadows.
The mosaicking process considered a top-of-atmosphere correction, based on Landsat reference values,
and the normalization of the PlanetScope images with less than 20% cloud coverage in order to
minimize the amount of noise in the final mosaic. The normalization process was based on a histogram
adjustment, using an annual median mosaic (produced with only cloudless images, i.e., cloud-cover
<1%, obtained over 12 months) as a reference. The histogram adjustments were implemented using
statistical regressions (via a random forest) between the cumulative distributions of the PlanetScope
images and the reference mosaic, band by band. Finally, the daily PlanetScope images were stacked
and reduced using the median to generate the monthly mosaics. All of this was implemented on
the Google Earth Engine platform, and the final mosaics, resampled to 4 m, can be accessed at
https://code.earthengine.google.com/bf9fb20125dede14ab0457490a5a8f42 [34]
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Figure 2. Study area, which is 18,000 km2 in area and located in the state of Goiás, Brazil. (a) Spatial
distribution of polygons collected via visual interpretation and (b) field samples in relation to the study
area (the PlanetScope mosaic shown refers to November 2017).

2.2. Training, Validation, and Test Data

Based on the PlanetScope of the study area, we collected pasture and non-pasture samples in
order to build the training, validation, and test datasets. Considering the monthly mosaics, as well
as having prior knowledge of the region, image interpretation experts collected 1326 regular and
homogeneous polygons (i.e., with pixels of only one LULC class), well-distributed throughout the
study area and covering, as much as possible, all the LULC class variability (Figure 2a). For the
pasture class, we collected polygons of “regular pasture,” “wet pasture,” “pasture with bare soil,”
and “pasture with shrubs”; for the not-pasture class, we collected polygons of “crop,” “deforestation,”
“forest formation,” “other land-use,” “planted forest,” “sand bank,” “savannah formation,” “urban
area,” and “water.” These polygons were used to generate point and segment samples, which were

https://code.earthengine.google.com/bf9fb20125dede14ab0457490a5a8f42
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used for the classifier training and validation. For the test set, fieldwork data obtained from the study
area were used.

2.2.1. Sampling Points

Aiming to minimize the spatial autocorrelation of the point samples, a minimum distance between
samples located within the same polygon was established, which varied according to the LULC classes
defined by the interpreters. These distances were calculated according to Equation (1) (defined using
the relation between the number of pixels and the area of a perfect square polygon), which considered
the same number of samples for pasture subclasses and non-pasture subclasses (Table 1):

d =


√

N
n
− 1

× s (1)

where for each LULC class: d is the minimum class distance, N is the total of pixels in the class, n is the
number of desired samples in a given class, and s is the pixel size.

At the end of the process, 30,000 point samples were generated, with balanced amounts between
pasture and non-pasture (Figure 3) that was representative of the study area and large enough to
accommodate the increasing number of data dimensions in order to meet best training practices for
supervised classifiers [19]. Considering the generated samples, 90% of the points were used for training
and 10% were used for validation of the random forest and LSTM algorithms (the utilized datasets are
available at: https://www.lapig.iesa.ufg.br/drive/index.php/s/DE3vjlUugyhEOwD).

Table 1. Number of polygons, collected by specialists via visual interpretation, with their respective
classes and subclasses. Based on these polygons, we calculated the total amount of PlanetScope pixels,
accounting for a 4-m spatial resolution, and the minimum distance necessary to generate 30,000 training
samples according to Equation (1). LULC: land use and land cover.

LULC Class Polygons Pixels (4 m) Min.
Distance

Point Samples

Class Subclass Quantity Percent Quantity Percent Subclass Class

Non-pasture

Sand Bank 50 3.77% 9764 1.04% 6.205 1500

15,000

Planted Forest 36 2.71% 32,871 3.51% 14.725 1500
Water 89 6.71% 36,684 3.92% 15.781 1500
Urban Area 143 10.78% 55,839 5.97% 20.405 1500
Deforestation 145 10.94% 69,821 7.46% 23.290 1500
Others 85 6.41% 131,552 14.06% 33.460 1500
Forest Formation 111 8.37% 116,957 12.50% 31.321 1500
Savannah Formation 140 10.56% 131,422 14.04% 33.441 1500
Crop 234 17.65% 178,509 19.07% 39.636 1500

Pasture

Regular Pasture 42 3.17% 42,213 4.51% 9.420 3750

15,000Wet Pasture 87 6.56% 52,951 5.66% 11.031 3750
Pasture with bare soil 39 2.94% 33,226 3.55% 7.906 3750
Pasture with shrubs 125 9.43% 44,034 4.71% 9.707 3750

Total 1326 100.00% 935,843 100.00% 30,000

2.2.2. Sampling Segments

The generation of segment samples, necessary for the training of semantic segmentation algorithms
(e.g., U-Net), considered a regular grid over the study area that was composed of ≈14,300 cells with
a cell size defined by a function of the established input for the U-Net in this study (i.e., 286 × 286
pixels; Figure 3). Referring to this regular grid, all cells containing at least one polygon collected by
the experts were selected, resulting in 1440 cells. The area delimited by these cells (i.e., ≈1800 km2)
was segmented via the mean shift algorithm and the Orfeo Toolbox/Monteverdi framework [39], and
classified via visual interpretation in the Quantum GIS software [40], using the PlanetScope Mosaic of
November 2017 as a reference.

https://www.lapig.iesa.ufg.br/drive/index.php/s/DE3vjlUugyhEOwD
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In order to generate pasture segments capable of aggregating visible objects in very high-resolution
images (e.g., isolated trees, patches of bare soil), the following parameters were defined for the mean shift
algorithm: tile size of 286 × 286, spatial radius of 24, range radius of 128, and a minimum segment size
of 4 (all in pixel units). The choice of the November 2017 mosaic was justified by the greater vegetative
vigor of the pasture areas due to the beginning of the rainy season, and the presence of bare soil in the
agricultural areas due to the beginning of the cropping cycle, factors that generally facilitate classification
based on segmentation and visual interpretation. This process resulted in ≈937,000 segments, with
36% of the segments classified as pasture, which were converted to a raster format compatible with the
PlanetScope mosaics (i.e., same pixel size and geographic coordinate system; Figure 3). Considering
the total number of selected cells and their respective segments in the raster format, 90% of the cells
were used for training and 10% were used for validation of the U-Net algorithm (the utilized datasets
are available at https://www.lapig. iesa.ufg.br/drive/index.php/s/DE3vjlUugyhEOwD).
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Figure 3. Examples of homogeneous polygons (i.e., with pixels of only one LULC class) and reference
samples used in this study. It is noteworthy that point and segment samples have very different
data structures.

2.2.3. Field Data

Field data were obtained for three different periods between 2017 and 2018, comprising pasture and
non-pasture regions. This study considered a total of 262 samples containing geographic coordinates,
LULC classes (i.e., “regular pasture,” “well-managed pasture,” “pasture with bare soil,” “pasture with
shrubs,” “forest formation,” “savannah formation,” “crop,” “sugarcane,” “planted forests,” “urban
area,” and “water”), area characterization information, and field pictures. These data, relatively
concentrated in the southwestern portion of the study area (Figure 2b), were used as test data in the
accuracy analysis of the produced mappings.

2.3. Random Forest Classification

The random forest training utilized a set of texture-spectral and temporal metrics generated from
the monthly mosaics and 27,000 point samples to build 100 statistical decision trees. The growth

https://www.lapig
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of each tree considered 50% of the training samples as a bag fraction, six random spectral metrics
to be selected in the definition of the best split node (Mtry), and one sample as a minimum leaf
population of a terminal node. Considering its low sensitivity to overfitting, the most common
recommendation for a random forest is to set a large number of trees and the square root of the
feature space size as the number of variables for splitting [19]. The set of metrics was defined using
a feature engineering strategy, which evaluated different time windows and opted for the one that
produced the best pasture mapping of the study area according to the validation samples. All of
these processing steps were implemented on the Google Earth Engine platform and are available at:
https://code. earthengine.google.com/2bf9aebba03eac0d1e55d79731847cff.

Feature Engineering

The feature engineering used all the spectral information available on the PlanetScope images
(i.e., the blue, green, red, and near-infrared bands), as well as the normalized difference vegetation
index (NDVI) [41], the photochemical reflectance index (PRI) [42], and the normalized difference
water index (NDWI) [43] to generate a set of spectral-temporal metrics, an approach that is already
consolidated in pasture operational mappings with Landsat [15] and MODIS [44] satellite data. The
temporal aspect was incorporated via statistical operations that reduced multiple monthly mosaics to
a single spectral value in order to capture the seasonal aspects of pasture and non-pasture pixels. This
process used the median and three other statistical reducers derived from the standard deviation (i.e.,
+2σ to obtain maximum values, −2σ to obtain minimum values, and 4σ to obtain the amplitude of the
spectral variation), yielding 28 spectral-temporal metrics overall.

Aiming to improve the classification efficiency of very high spatial resolution pixels, the feature
engineering also considered texture metrics capable of capturing spatial and topological aspects.
We applied these metrics on the green, red, and near-infrared spectral bands using the gray-level
co-occurrence matrix (GLCM) method and a 3 × 3 pixel spatial window [45]. Based on the assessment
of the GLCM result, we opted for the use of contrast, second angular momentum, and entropy metrics,
which are capable of highlighting transition zones, homogeneous regions, and the degree of disorder
in the land-use and land-cover classes in the landscape, respectively. The application of these metrics
was done for multiple monthly mosaics, and at the end of the process, a median reducer was used in
each spectral band to generate nine texture metrics.

The feature space, composed of these 37 variables (i.e., 28 spectral-temporal metrics and 9 texture
metrics), was generated for 9 distinct time windows, considering only one month (i.e., November
and March); every quarter (i.e., August–October, November–January, February–April, and May–July);
two semesters (i.e., August–January and February–July); and 12 months (i.e., August–July) of the
analyzed period. Specifically, for the one-month classifications, 16 metrics were considered (i.e., four
spectral bands, three spectral indices, and nine texture metrics). This process generated nine feature
spaces, and consequently, nine classification results, which were evaluated through the validation set
derived from the point samples. The result that presented the highest F1 score, which was a metric
capable of simultaneously considering omission and commission errors [46], was considered as the
best mapping produced with the random forest, which was used in the accuracy analysis and in the
comparison with the other pasture mappings (i.e., produced via deep learning approaches).

2.4. Long Short-Term Memory Classification

The implementation of the LSTM [36] classification approach considered a neural network
architecture that simultaneously analyzed the spectral, spatial, and temporal dimensions of all monthly
PlanetScope mosaics (Figure 4). The LSTM bidirectional layer processed the spectral and temporal
dimensions by analyzing the two-way time series (i.e., from beginning to end, and from end to
beginning) in order to seek seasonal patterns capable of separating pasture and non-pasture pixels.
The first 3D convolution layer used 256 kernels with a 3 × 3 × 5 size (i.e., a 3 × 3 spatial window over
five months) to process the PlanetScope monthly mosaics, maintaining the same time-series size as the

https://code


Remote Sens. 2019, 11, 2881 8 of 18

output. The second 3D convolution layer used a valid padding strategy to transform the 3D time-series
into a 2D time-series, which was later concatenated with the output of the LSTM layer and processed
using a set of fully-connected layers. Prior to concatenation, a batch normalization operations [47]
was applied, and between the fully-connected layers, a dropout rate of 0.3 [48] was applied, which
generally decreased the chance of overfitting during model training. Because it is a binary classification,
the output layer used the sigmoid activation function, while the other layers used the ReLu function.
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Figure 4. Neural network architecture used to classify pasture areas in the study area. The LSTM layer
was responsible for analyzing the temporal dimension by considering all PlanetScope mosaics, while
the convolutional layers analyzed the spatial dimension through a 3 × 3 pixel window; the spectral
dimension (i.e., blue, green, red, and near-infrared) was analyzed by both layers.

The training of the neural network occurred for 100 epochs with a learning rate of 5 × 10−5,
the binary cross-entropy as a cost function, and the Nadam optimizer, which incorporates the nesterov
momentum in the Adam optimizer [49]. In order to make possible the comparison between the results
produced by this approach and the random forest, we used the same set of training and validation
with, respectively, 27,000 and 3000 point samples, with a mini-batch of size 16. Finally, the trained
model was used to classify all the pixels in the study area and produce a pasture map for the region.

All the processing steps were performed on a local server with an Intel Xeon E5-2620 v2 processor,
48 GB of memory, and two GPU cards (NVIDIA Titan-X and NVIDIA 1080ti). The neural network was
developed in Keras using Tensorflow, with the LSTM implementation in NVIDIA cuDNN [50,51], while
the other operations involving the PlanetScope mosaics (e.g., access and preparation of the time-series)
made use ofGeospatial Data Abstraction Library-GDAL and NumPy libraries [52]. The source code
used by this classification approach can be accessed at https://github.com/NexGenMap/dl-time-series.

2.5. U-Net Classification

We used the original U-Net architecture [37] with some modifications to consider the temporal
dimension and a set of more recent hyperparameters (Figure 5). The incorporation of time occurred by
stacking the spectral bands of the March and November monthly mosaics. The use of the November
mosaic was expected as it was used in the generation of the segment samples, while the option for
the March mosaic was justified by its relevance in the rainy season. In March, the pastures generally
show a higher vegetative vigor and some agricultural areas are at the peak of cultivation, showing
complementary aspects to those observed in November, which can therefore contribute to a better
performance of the U-Net regarding pasture discrimination.

https://github.com/NexGenMap/dl-time-series


Remote Sens. 2019, 11, 2881 9 of 18

With regard to the new hyperparameters, all convolutional layers considered the batch
normalization operation [47] and an L2 regularization of 0.5 [53], while specifically for the penultimate
layer, a dropout rate of 0.5 was utilized [49]. The cost function used was the intersection-over-union,
which is generally better suited to binary semantic segmentation problems [54], and the optimizer
chosen was Nadam [50]. We chose this cost function to minimize the impact of the class imbalance
in the segment samples, which is a common issue of binary semantic segmentation problems, with
the aim of enabling a fair comparison with the other classification approaches (i.e., random forest
and LSTM-based architecture) that used balanced point samples (Table 1). With a learning rate of
5 × 10−5 and a 32-size mini-batch, the neural network training occurred for 100 epochs and considered
all segment samples in raster format to generate the input chips (i.e., a set of pixels with a regular
squared size), which were submitted to two traditional data augmentation strategies, three rotations
(i.e., 90◦, 180◦, and 270◦), and a flip operation (i.e., left–right [55]).
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Figure 5. Semantic segmentation approach used to classify pasture areas in the study area.
This architecture, derived from U-Net, analyzed two images via an early-fusion technique by
simultaneously considering the spatial, temporal, and spectral dimensions.

Originally, the U-net was designed to receive, as an input, an image larger than its output layer,
and for the sake of this work, this feature was maintained in the training of the model (i.e., 286 × 286
pixels input chips and 100 × 100 pixels output). By considering pixels adjacent to and external to the
classification area, this strategy can yield more spatially consistent mapping results. In this sense, the
trained model was applied throughout the study area by using a sequential scanning approach and a
floating window of 100 × 100 pixels. For the classification of regions at the borders of the study area
(e.g., upper-left and lower-right corners), the missing pixels needed for the input chip were artificially
filled with a reflect technique implemented by the SciPy library [56]. The other processing steps were
developed with the Tensorflow [51] and GDAL [52] libraries, while the training and classification
were performed in the same hardware environment used by the LSTM. The source code used by this
classification approach can be accessed at https://github.com/NexGenMap/dl-semantic-segmentation.

2.6. Accuracy Analysis

The accuracy analysis was performed for the three pasture mappings produced by considering the
validation samples previously separated from the training samples and the test samples obtained in the
field. For both sample sets, we calculated the producer (i.e., recall) and user (i.e., precision) accuracies,
the F1 score (i.e., a metric calculated as a function of both the producer and user accuracies) [56], and

https://github.com/NexGenMap/dl-semantic-segmentation
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the population estimate of the error matrix [30], calculated according to the pasture area mapped by
each classification approach.

3. Results

In the following sections, we present the results regarding the random forest feature engineering,
the training and prediction stages of the classification models, and the pasture mapping products, with
their respective accuracies.

3.1. Feature Engineering

The feature engineering step revealed that the best pasture area mapping, according to the F1
score, was produced using all the monthly mosaics (Figure 6). In general, this result was expected
because the larger the temporal window used in the construction of the spectral-temporal and texture
metrics, the greater the variability of the feature space analyzed by the random forest, which tends to
increase its ability to discriminate between pasture and non-pasture pixels. On the other hand, it is
worth mentioning that some mappings produced with only three months, particularly with the periods
of November–January and February–April, presented an F1 score of ≈93%, which are very close to the
values obtained with a semester of observations. This was an indication that the most relevant metrics
for pasture mapping depended on images taken in the rainy season months (i.e., October to April),
when pastures showed greater variation in the vegetative vigor and the agricultural areas changed
from bare soil to the peak of the growing season. Finally, the worst mappings were produced with
classifications that considered only one month, which had a feature space with fewer metrics and less
spectral variability; however, March still showed a higher F1 score than November.
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Figure 6. F1 score of random forest pasture area classifications produced with different time windows
and the same set of texture and spectral-temporal metrics. Although the best classification result used
the 12 PlanetScope monthly mosaics, classifications using just three months had a high F1 score.

3.2. Training and Prediction Performance

Considering 100 epochs, LSTM and U-Net training took ≈0.5 and ≈24 hours, respectively.
This large difference between the training of the two models may be related to the larger amount
of data analyzed by U-Net. Because U-Net is a semantic segmentation approach, its samples are
organized into data blocks of 286 × 286 pixels, while LSTM samples are 3 × 3 pixels in size. In this
regard, if we consider the data structure of the training samples (i.e., height, width, spectral band, and
time) and their respective data augmentation cases, U-Net and LSTM analyzed ≈7538 and ≈12 million



Remote Sens. 2019, 11, 2881 11 of 18

pixels, respectively (Table 2). On the other hand, it is interesting to note that in the prediction stage,
this situation was reversed, and LSTM started to analyze more data than U-Net (Table 2). Because
it is a pixel-level time-series analysis approach, LSTM needs to work with more monthly tiles than
U-Net, which ultimately consumes more processing time when sorting all the study area pixels. In this
process, the total prediction times of LSTM and U-Net were, respectively, ≈23 hours and ≈1.2 hours.

Table 2. Total amount of PlanetScope pixels, with a 4-m spatial resolution, analyzed in the training and
prediction stages by the deep learning classification approaches. U-Net analyzed a larger data volume
at the training stage, while LSTM processed more pixels at the prediction stage.

#
Training Data Predicted Data

U-Net LSTM U-Net LSTM

Data chunk 1440 27,000 116,183 1,161,832,926
Augmentation cases 8 - - -
Height 286 3 286 3
Width 286 3 286 3
Spectral Bands 4 4 4 4
Times 2 12 2 12

Total (million pixels) 7538 12 76,027 501,912

Regarding the loss function, the LSTM achieved a loss of 0.0405 for the training data and 0.0395 for
the validation data at the end of the training (Figure 7a), while U-Net obtained 0.0293 and 0.0842 for the
data training and validation, respectively (Figure 7b). The loss curves for LSTM and U-Net presented
decreasing trends, with a relative constancy in the distances between the training and validation over
the epochs, suggesting a generalization capacity of the classification models.
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referring to training and validation data, showed a downward trend along the 100 epochs.

Specifically for the random forest, the amount of pixels analyzed in the classification of the entire
study area was equivalent to 42,987 million (i.e., 37 metrics × 1161 million pixels), such that the Google
Earth Engine performed the training and prediction steps together in ≈3 hours. However, it makes little
sense to compare the random forest runtime with LSTM/U-Net since the models ran in very different
computing environments, with the implementation of random forest on a cloud-based platform and
the other models on a single local server.

3.3. Pasture Area Mapping

The three mappings over an area of 18,000 km2, using the random forest (i.e., 12-month
classification), LSTM, and U-Net algorithms identified ≈7700, ≈8700, and ≈11,141 km2 of pasture area,
respectively (Figure 8). Thus, it is clear that the U-Net semantic segmentation method mapped a larger
pasture area than the other approaches. As the mappings were produced with very high-resolution
images (i.e., 4 m), this result was relatively expected as random forest and LSTM do not map pixels with
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the presence of, for example, isolated trees and patches of bare soil. On the other hand, the segment
samples contained pasture areas with these characteristics, which allowed the U-Net to analyze the
spatial context of these pixels and map them correctly according to the land use class and surrounding
land cover. Specifically for the random forest, it was observed that several agricultural regions
were erroneously classified as pasture (Figure 8b), while LSTM identified pasture pixels located in
savannah vegetation areas (Figure 8c). These two commission errors were generally not observed
in the U-Net result, which, on the other hand, erroneously mapped gallery forest regions bordering
pasture paddocks and pixels located in the urban area (Figure 8d).
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Figure 8. The monthly PlanetScope mosaic for November 2017 (a) and the pasture maps produced
with random forest (b), LSTM (c) and U-Net (d). In the region of interest 1 (ROI 1), U-Net was better at
separating agricultural areas, while in region 2 (ROI 2), LSTM and random forest distinguished urban
area pixels the best. In region of interest 3 (ROI 3), U-Net better filled the pasture areas, but mis-mapped
some gallery forest pixels.
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Based on the validation set, producer and user accuracies presented close values in all pasture
mappings, with the highest F1 score value of 98.83% for the LSTM result (Figure 9a). Assuming that
the random forest and LSTM accuracy analyses used exactly the same samples, obtained under the
same conditions, we can infer that for pasture mapping, LSTM is an approach with better classification
efficiency. Although the U-Net and LSTM validation samples consisted of distinct and therefore not
equivalent data structures, the fact that they were obtained under the same conditions (i.e., random
selection prior to model training) allowed for some level of comparison between their respective F1
scores, which also revealed a better classification efficiency by LSTM.

In contrast, the accuracy analysis with the test set (Figure 9b) indicated a higher F1 score for the
U-Net classification, equivalent to 94.06%, and did not present balanced values between producer and
user accuracies, with a prevalence of commission errors for the results generated by the LSTM and
random forest. These differences may be justified by the fact that the test set was obtained in the field,
and consequently had a smaller representation than the validation samples, which was obtained by
visual interpretation and was better distributed over the study area. On the other hand, relatively
close F1 score values in both assessment sets may indicate a better generalization capacity of U-Net in
relation to the other classification approaches.Remote Sens. 2019, 11, 2881 13 of 17 
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(b) obtained in the field. The highest F1 score values were obtained using LSTM in the validation data
and by U-Net in the test data. Relatively close F1 score values in both assessment sets may indicate a
better generalization of U-Net.

4. Discussion

Given the possibility of applying conventional and state-of-the-art machine learning algorithms
to large volumes of satellite data, this study used different classification approaches to produce and
evaluate three pasture maps for an area of 18,000 km2. The use of images obtained by the PlanetScope
constellation required a sampling strategy compatible with very high spatial resolution data that was
representative for the study area. Given the classification results obtained, we can assume that the
chosen strategy was adequate since the mapping products achieved F1 scores greater than 95% for
the validation data and 82% for the test data. We believe that part of the success of these results can
be attributed to the representativeness of the LULC classes and subclasses, defined by experts with
knowledge of the study area, which eventually allowed for the algorithms to generate more generic
and comprehensive classification rules to separate between pasture and non-pasture pixels. In this
sense, we assume that the classes and subclasses identified by visual interpretation could also be
differentiated by some machine learning approach.

On the other hand, the need for knowledge regarding the mapping region for the definition of
classes and subclasses can be considered a limitation of this sample collection strategy, especially with
regard to large-scale mappings. The use of an unsupervised classification approach [57] could be a
possible solution to this lack of knowledge, allowing specialists to define regular and homogeneous
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polygons within a set of automatically defined classes. Another possible modification would be to
include samples with some level of LULC class mixing, as conventional classification algorithms can
handle different levels of heterogeneity in training samples, although this practice does not bring
significant accuracy gains [58,59].

Specifically in terms of the feature engineering, the relationship between the best classification
results with random forest and the monthly mosaics obtained in the rainy season was an interesting
finding. This was because, in general, the images have a high cloud coverage during this period, and we
can say that the high temporal resolution of the PlanetScope data was crucial for obtaining full coverage
and therefore cloud-free mosaics for every month. Regarding the spectral resolution, we recognize that
despite the low radiometric quality and lack of calibration of the PlanetScope constellation, a common
characteristic in CubeSats, the four spectral bands were sufficient at generating satisfactory mapping
products, as revealed by the accuracy analysis, which is an indication that the spectral and radiometric
limitations were offset by the very high temporal and spatial resolutions.

Among the classification approaches evaluated, U-Net was the one that best used the spatial
resolution of the PlanetScope data. Because it is a semantic segmentation approach, it was able to better
populate the regions that were effectively pastures, in general producing a more spatially consistent
mapping than the other methods. On the other hand, its use depended on segment samples for the
totality of the input data, which usually required a greater effort of visual interpretation and generation
compared to the point samples.

Specifically regarding the modifications we implemented in the U-Net, we believe that
incorporating the temporal dimension with early-fusion and simultaneously analyzing two images
contributed to a better identification of pasture pixels since the images used (i.e., November and
March) contained complementary spectral data related to the seasonal and occupation dynamics
of the study area. As the selection of these images made use of knowledge of the mapping region,
for a scenario of application in large geographic regions, the input images could be automatically
defined using statistical criteria (e.g., variation of NDVI values over a temporal window [33], or all
available images could be effectively used as input [28]). However, the use of all images obtained in,
for example, 12 months could increase the cost of segment sample generation as it would be necessary
to consider their respective spatial variations during this period due to landscape dynamics and LULC
changes [60,61].

In this scenario, the classification approach with the LSTM might be more appropriate because
using a 3 × 3 pixel window and all available images, it considers both the spatial and temporal
dimensions, such that its training samples were less affected by landscape dynamics and LULC changes.
In this sense, our implementation allowed for the spatial window to be expanded to better consider
the geographical context of the analyzed pixels. In fact, for this modification to improve the spatial
consistency of the pasture classification results, our point sample set would have to be expanded
beyond pure pixels (i.e., unmixed LULC class pixels).

Of all the evaluated approaches, the LSTM was the least dependent on some prior knowledge of
the region and/or mapping classes, characteristics that make it very suitable for large-scale operational
mappings. It is noteworthy that its classification efficiency has the potential to improve with a larger
number of training samples, something that could be investigated by future studies. Because it is a
per-pixel time-series approach, this classification model analyzed a data volume substantially larger
than U-Net in the prediction step. Since, within the scope of satellite data classification, this step
is embarrassingly parallel [62], its execution time could be dramatically reduced through a high
performance processing solution (e.g., in-house grid computing, Google Earth Engine).

5. Conclusions

The rapid growth of satellites orbiting the planet was responsible for generating a massive
volume of data on the earth’s surface with the most varied scales and characteristics. At the same
time, new deep-learning-based classification algorithms have been developed and are considered
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the state-of-the-art in many application domains. Given the possibility of using these algorithms
on this growing volume of satellite data, this work evaluated three classification approaches based
on PlanetScope images and the operational generation of mapping products for the pasture class.
Our results indicated a better classification efficiency using deep learning approaches (i.e., LSTM
and U-Net) over random forest, a conventional machine learning approach. However, additional
comparison among these approaches are necessary, involving other studies areas and LULC classes.
Nevertheless, considering the difficulty involved in the identification of pasture areas and the results
obtained, we can infer that these classification approaches could be used to map other LULC classes
(e.g., crops, planted forest, forest formations, water), taking into account new efforts to collect reference
samples and training specialized models according to the classes of interest.

Likewise, and despite the fact that the generalization of these approaches to other geographic
regions and/or mapping periods requires further investigations, the neural network architectures
developed in this study could be used to map large geographic regions (e.g., the entire Brazilian
territory), considering private (e.g., PlanetScope) and public (e.g., Sentinel 2, Landsat 8) satellite
data. In this scenario, the strategy that we defined could be used to generate samples for the entire
region and/or mapping period, allowing the training of classification models to use some level of
temporal and/or geographic stratification, which is a procedure previously used to map pastures with
random forest [15,33]. Finally, the effective rationalization of such classification approaches depends
on high-performance processing solutions capable of combining GPU processing and access to a
large volume of satellite data, which is likely to be available to governmental, private and research
organizations in the next few years.
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