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Abstract: For aerosol retrieval from multi-angle polarimetric (MAP) measurements over the ocean it
is important to accurately account for the contribution of the ocean-body to the top-of-atmosphere
signal, especially for wavelengths <500 nm. Performing online radiative transfer calculations in
the coupled atmosphere ocean system is too time consuming for operational retrieval algorithms.
Therefore, mostly lookup-tables of the ocean body reflection matrix are used to represent the lower
boundary in an atmospheric radiative transfer model. For hyperspectral measurements such as
those from Spectro-Polarimeter for Planetary Exploration (SPEXone) on the NASA Plankton, Aerosol,
Cloud and ocean Ecosystem (PACE) mission, also the use of look-up tables is unfeasible because
they will become too big. In this paper, we propose a new method for aerosol retrieval over ocean
from MAP measurements using a neural network (NN) to model the ocean body reflection matrix.
We apply the NN approach to synthetic SPEXone measurements and also to real data collected by
SPEX airborne during the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign.
We conclude that the NN approach is well capable for aerosol retrievals over ocean, introducing no
significant error on the retrieved aerosol properties

Keywords: neural network; aerosols; multi-angle; polarimetry

1. Introduction

Aerosols are solid or liquid particles suspended in the air. They can be of natural origin such as
dust particles, volcanic ash and sea spray aerosol, or emitted from anthropogenic sources such as traffic,
industry, biomass burning and cooking. Forest fires can be both natural and anthropogenic. In addition,
aerosol particles may be formed from precursor gases such as volatile organic compounds (VOCs),
NO2 or SO2. Aerosol particles play an important role in the Earth’s radiative balance by scattering
and absorbing solar radiation (direct effect) [1], and by affecting cloud properties such as cloud albedo
and lifetime (indirect effect) [2–4], which in turn may influence the hydrological cycle (e.g., [5,6]).
According to the Intergovernmental Panel on Climate Change (IPCC) assessment report-5 [7], the
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direct and indirect radiative effects of aerosol on the Earth’s climate are recognized as major sources
of uncertainty for the quantification of anthropogenic radiative forcing of climate. Measurements of
aerosol absorption, composition and size distribution are necessary in order to quantify more accurately
the aerosol radiative forcing [1,8,9].

Aerosol properties can be obtained from different sources of information, among which are
satellite remote sensing from space using optical instruments [10–18]. Aerosol retrieval algorithms
have been developed for these sensors, using different approaches depending on the instrument
characteristics. Measurements of the upwelling radiance in several spectral bands at the top of the
atmosphere (TOA) are commonly used (e.g., for the Moderate Resolution Imaging Spectroradiometer
(MODIS)). Other instruments provide multiple views, which help separate surface and atmospheric
effects from the intensity measured at TOA, providing some information on aerosol size and type [19].
A few sensors provide additional information on polarization of the reflected light, such as polarization
and directionality of the Earth’s reflectance (POLDER) [20], the cloud and aerosol polarization imager
(CAPI) [21], the directional polarimetric camera (DPC) [22] and the future sensors multi-viewing
multi-channel multi-polarization imager (3MI) [23], spectro-polarimeter for planetary exploration
(SPEXone) [24–26], hyperangular rainbow polarimeter-2 (HARP-2) [27] and multi-angle imager for
aerosols (MAIA) [28]. Polarized measurements are sensitive to the aerosol size distribution, particle
shape and refractive index, and thus allow us to retrieve such properties with high accuracy [29–33].

Here, we will focus on aerosol retrievals over ocean using multi-angle polarimeter (MAP)
measurements. Aerosol retrievals over ocean from MAP measurements have been performed in a
number of studies [11,34–36]. In these studies, one or more ocean body parameters are being retrieved
in addition to aerosol parameters. To accurately retrieve information on aerosol over the ocean, it is
important to correctly model transport of radiation in the atmosphere–ocean system. Some of the
existing algorithms for aerosol retrieval fully model this radiation transport in the atmosphere and
ocean body. The polarimetric measurements from the airborne NASA research scanning polarimeter
(RSP) were inverted using the microphysical aerosol properties from polarimetry (MAPP) algorithm
to produce both atmosphere and ocean products [37]. An algorithm for the joint retrieval of aerosol
and water-leaving radiance from multispectral, multiangle and polarimetric measurements from
airborne multiangle spectro-polarimetric imager (AirMSPI) [38] over the ocean has been developed
by Xu et al. [34]. Gao et al. developed a retrieval algorithm for coastal waters using an advanced
bio-optical model [35] and applied it to RSP. An accurate radiative transfer model for the coupled
atmosphere-ocean system, including polarization, elastic and inelastic scattering effects has been
developed by Zhai et al. [36,39]. Although fully modeling the radiation transport in the ocean body is
the most accurate approach, it is too time consuming to be used in operational processing of satellite
data. That is why Hasekamp et al. [11] used tabulated values of the ocean body reflection matrix as
function of Chlorophyll-a concentration in their retrieval algorithm for POLDER-3/PARASOL.

With the hyperspectral MAP instrument SPEXone [24] on the upcoming NASA Plankton, Aerosol,
Cloud and ocean Ecosystem (PACE) mission [40], modeling of the ocean body reflection matrix at many
wavelengths is required. This even makes the use of ocean body Lookup Tables (LUTs) unfeasible
because the LUT would become too big to be kept in the computer memory during processing the
algorithm. Therefore, in this paper we propose a new method for aerosol retrievals over the ocean from
hyperspectral MAP measurements using a multi layer perception (MLP) neural network (NN) [41]
to model the ocean body reflection matrix. As discussed in Leshno et al. [42] and references therein,
supervised feed forward NN models such as MLP are capable of approximating any continuous
function on a compact set to an arbitrary accuracy. This makes them well suited to approximate
the input–output function represented by a radiative transfer model. While the training of a NN
may require a significant amount of time and computational resources, a trained NN is capable of
delivering accurate predictions, typically in a fraction of millisecond. The application of NNs to the
emulation of radiative transfer models has been proposed, among others, by Chevallier et al. [43,44],
Cornford et al. [45] and Krasnopolsky [46] and references therein, and has recently gained renewed
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attention from the remote sensing community [47–49]. An additional feature that makes MLP NNs
useful for emulating radiative transfer models for remote sensing applications is that the derivative
of a MLP model with respect to its inputs can be computed analytically [50–52]. This means that a
well-trained MLP can produce, in addition to the approximation of the radiative quantities of interest,
also an estimation of their derivatives with respect to the model inputs, which can then be used in
iterative retrieval schemes to update the state vector and to estimate the retrieval averaging kernels [53].
In this paper, we compute the derivate by numerical perturbation instead of analytical derivatives,
which is faster while ensuring the accuracy.

The paper is organized as follows. Section 2 introduces the overall methodology. Section 3
describes the design of the neural network that is used in the algorithm to simulate the ocean body
reflection matrix and its derivatives with respect to the model inputs. In Section 4 the data are
described. Section 5 describes the synthetic data experiment and corresponding results. Section 6
presents retrieval results from measurements collected by the SPEX airborne instrument during the
Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign. Finally, the last section
summarizes and concludes the paper.

2. Retrieval Method

2.1. Forward Model

The intensity and state of the polarization of light can be described by the intensity vector I
given by:

I =


I
Q
U
V

, (1)

which has as its components the Stokes parameters I, Q, U and V, which are defined with respect to
a certain reference plane. In this paper, we used the local meridian plane as reference plane. Stokes
parameters I represents the irradiance, Q and U describe the linear polarization, while Stokes parameter
V describes circular polarization. We neglect circular polarization in this study so only consider I, Q
and U. The degree of linear polarization (DoLP) is defined as:

DoLP =

√
Q2 + U2

I
. (2)

The inversion approach aims to invert a forward equation:

y = F (x) + ey, (3)

where, y is the measurement vector that contains the multi-angle multi-wavelength measurements of I
and DoLP and ey represents the measurement error. The state vector x contains all the parameters to
be retrieved, which includes the aerosol properties and ocean properties. The forward model F of our
retrieval algorithm, describes scattering and absorption in the atmosphere, reflection and transmission
by the ocean surface, scattering in the ocean body, and interaction between these three components.
The forward model can be divided into two parts, an atmosphere model and an ocean model, which
are described below.

2.1.1. Atmosphere Model

The atmosphere is composed of molecules and aerosol particles. The aerosol optical properties
(scattering and absorption optical thickness, scattering matrix) are calculated from the microphysical
properties (size distribution, refractive index and shape) using the improved geometrical optical
database and the spheroid aspect ratio distribution proposed by Dubovik et al. [54], assuming a mixture
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of spheroids and spheres. The aerosol optical properties depend on the particle size distribution
and the size-dependent complex refractive index. In this paper, we chose the five mode approach
of Fu and Hasekamp [55]. The effective radius re f f and variance ve f f for each mode are listed in
Table 1. We divided the modes into fine (Mode 1–3) and coarse (Modes 4 and 5; denoted by superscript
“f” or “c”). The complex refractive index for each mode is m f ;c = m f ;c

r + im f ;c
i , where m f ;c

r and m f ;c
i

are the real and imaginary part of refractive index. m f ;c values were not directly retrieved but

constructed using m f ;c(λ) =
n f ;c
α∑

k=1
α

f ;c
k mk, f ;c(λ), where mk, f ;c are standard refractive index spectra from

d’Almeida et al. [56], with the mode component coefficients α f ;c
k

(
0 ≤ α f ;c

k ≤ 1
)

included in the retrieval

state vector. In this study, we set n f ;c
α = 2. For the fine mode particles, we described the spectral

dependence of the refractive index by a combination of the refractive index of inorganic matter and
black carbon. For the coarse mode we used a combination of dust and inorganic matter. By fitting the
coefficients α f ;c

k corresponding to pre-scribed refractive index, we obtained a spectrally dependent
refractive index with a limited number of parameters. A similar method has been proposed by
Wu et al. [57] who used principal components of the standard refractive index spectra instead of the
spectral themselves. The fraction of spheres and the aerosol layer height were assumed to be the same
for all the modes.

Table 1. Effective radius and variance for each mode.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

re f f 0.094 0.163 0.282 0.882 1.759
ve f f 0.130 0.130 0.130 0.284 1.718

2.1.2. Ocean Model

We described the ocean reflection matrix as:

Roc(λ) = Rsur f + Rul(λ) + A(λ), (4)

where Rsurf is the contribution of the ocean surface, which is described by Fresnel reflection on a rough
ocean surface, where we used a wind speed dependent Gaussian distribution of surface slopes [58].
Rul(λ) is the ocean body (underlight) contribution. For the ocean body, we needed a bio-optical model
to compute optical properties of the ocean from bio-physical ocean parameters. We used the bio-optical
model of Chowdhary et al. [59] for case-1 waters (open ocean) that had the chlorophyll-a concentration
as the only bio-physical ocean parameter to compute the ocean optical properties (single scattering
albedo, phase matrix). Using the hydrosol model of Chowdhary et al. [60], the ocean was described
as a mixture of sea-water and a particulate component. The scattering and absorption coefficients
of sea-water were taken from Smith and Baker [61], while the optical properties of the particulate
components were calculated using detritus–plankton (D–P) mixtures. The particulates were assumed
to be spherical, so the scattering phase matrix could be obtained using Mie calculations [62]. The
detritus follows the definition used by Siegel et al. [63] standing for the whole spectrum of non-plankton
particulates. The relative contribution of the detritus and plankton could be parameterized by the
oceanic chlorophyll-a concentration. Here it should be noted that the underlight contribution is
insensitive to the optical depth of ocean when the ocean optical thickness is larger than 10. In this study,
we set the ocean optical depth to 20 and assumed a black ocean bottom surface. This ocean surface/body
system was being solved by the vector radiative transfer model described by Hasekamp et al. [64,65].
However, this model is computationally expensive because of the large ocean optical thickness. As
an alternative, a neural network (described below) has been designed to simulate the ocean body
contribution to the reflection matrix just above the ocean surface, with as input the oceanic chlorophyll-a
concentration. Finally, A(λ) in Equation (4) is a wavelength dependent Lambertian albedo term that
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accounts for oceanic foam but may also correct for errors in Rul(λ). We solved the vector radiative
transfer equation for the atmosphere online as described by Hasekamp et al. and Schepers et al. [65–67]
with the lower boundary of the atmosphere represented by the ocean reflection matrix Roc. Here, the
radiative transfer equation (RTE) was solved per Fourier coefficient, which means that also the Fourier
coefficients of the ocean body reflection matrix Rul are needed [66], where the Fourier expansion of the
intensity vector is given by:

I(µ,ϕ−ϕ0) =
∑
∞

m=0
(2− δm0)

[
B+m(ϕ−ϕ0)I+m(z,µ) + B−m(ϕ−ϕ0)I−m(z,µ)

]
, (5)

where µ is the cosine of the viewing zenith angle, ϕ and ϕ0 are the azimuth angles of the viewing and
solar direction, respectively, δm0 is the Kronecker delta, z describes altitude, I+m, I−m are the Fourier
coefficients of the intensity vector and

B+m(ϕ) = diag[cos mϕ, cos mϕ, sin mϕ, sin mϕ]. (6)

B−m(ϕ) = diag[− sin mϕ,− sin mϕ cos mϕ, cos mϕ]. (7)

The corresponding Fourier expansion of Roc is given by

Roc(µout,µin,ϕ−ϕ0) =
∑
∞

m=0(2− δm0)[B+m(ϕ−ϕ0)Roc
m(µout,µin) + B−m(ϕ−ϕ0)Roc

m(µout,µin)], (8)

where the subscripts ‘out’ and ‘in’ denote the outgoing and incoming direction of radiation, respectively,
and, Roc

m are the Fourier coefficients of Roc.

2.2. Inversion Methodology

The state vector contains the following aerosol parameters: aerosol column number of each
mode, refractive index coefficients of the fine and coarse mode (two for fine and two for coarse mode
particles), the fraction of spheres and the aerosol layer height, where the latter two were assumed to be
the same for all modes. In addition to these aerosol properties, we included as ocean properties: the
oceanic chlorophyll-a concentration, wind speed and the Lambertian albedo term A (see Equation (4))
at each wavelength. In total there were 13 + nwave state vector elements shown in Table 2, of which
11 correspond to aerosol properties and 2 + nwave corresponded to ocean properties, nwave being the
number of wavelengths.

Table 2. State vector for parametric 5-mode retrieval.

Parameter in the State Vector Parametric 5-Mode Retrieval

Aerosol properties

Aerosol loading N j, ( j = 1, 2, . . . , 5)
Spherical index f c

sphere

Refractive index coefficients α f
k , αc

k, (k = 1, 2)
Aerosol layer height z

Surface properties
Wind speed v

Chlorophyll-a concentration X_chl
Lambertian albedo term A Ai, (i = 1, 2, . . . , nwave)

Number of aerosol parameters 11
Number of surface parameters nwave + 2

Length of the state vector nwave + 13

To retrieve this state vector from the satellite measurements, we used a damped Gauss–Newton
iteration method with Phillips Tikhonov regularization [11,68,69]. The inversion method finds the
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solution x̂ by minimizing a cost function, which is the sum of the least squares cost function and a side
constraint weighted by the regularization parameter γ according to

x̂ = min
x

(
‖S
−

1
2

y (F(x) − y) ‖2 + γ2
‖W−

1
2 (x− xa) ‖

2
)
, (9)

where, W is a weight matrix, which ensures that all state vectors parameters are within the same
order of magnitude [11] and that can be used to give more freedom in the inversion to some fit
parameters than to others. Sy is the diagonal measurement error covariance matrix, which contains
the measurement error estimate. Since the forward model F(x) is nonlinear with respect to x, the
inversion is performed iteratively [70]. For each iteration step, the forward model is replaced by its
linear approximation:

F(x) ≈ F(xn) + K(x− xn), (10)

where, K is the Jacobian matrix, which contains the derivatives of the forward model with respect to
each variable in the state vector x. Then the optimization problem Equation (9) for each iteration step
can be simplified to

x̃n+1 = min
x̃

(
‖ K̃(̃x− x̃n) − ỹ ‖2 + γ2

‖ x̃− x̃a ‖
2
)
, (11)

where K̃ = S
−

1
2

y KW
1
2 , x̃ = W−

1
2 x, ỹ = S

−
1
2

y [y− F(xn)]. The solution of Equation (11) is given by

x̃n+1 = x̃n + Λ[
(
K̃

T
K̃ + γ2I

)−1[
K̃

T
ỹ− γ2 (̃xn − x̃a)

]
], (12)

with a filter factor Λ between 0 and 1, which limits the size of each iteration step of the state vector.
The step size reduction by means of Λ aims to avoid diverging retrievals [11]. The regularization
parameter and filter factor in Equations (11) and (12) were chosen optimally for each iteration from
different trial values for γ (5 values from 0.1 to 5) and for Λ (10 values from 0.1 to 1) by evaluating the
goodness of fit using a fast approximate forward model, where the single scattering contribution was
computed exactly and the multiple scattering contribution was computed by the linear approximation.
We used a LUT based forward model based on five modes, described by Fu and Hasekamp [55], to
obtain a suitable first guess state vector for aerosol and ocean properties for the iterative retrieval
procedure. The LUT for this first-guess retrieval stores Radiative Transfer (RT) multiple scattering
calculations, separately for the different modes, where the mode contributions were combined using
the method of Gordon and Wang [71]. Single scattering was computed exactly as its computational
cost was negligible. Using the approximate forward model, a retrieval was performed using the same
inversion method as for the full retrieval (Equations (10)–(12)). The fit parameters were the aerosol
column numbers of the five modes and the ocean parameters. The retrieved parameters that result in
the best fit yield the first guess state vector, which was also used as a prior.

3. Neural Network Design

3.1. Training Set Generation

Our aim was to create an NN that provided the Fourier coefficients of the ocean body reflection
matrix Rul for a given chlorophyll-a concentration, angle of incident radiation and angle of outgoing
radiation. In order to train this NN, a training dataset was calculated using the ocean model described
above in Section 2.1.2. For creating the training set, the chlorophyll-a concentration was randomly
chosen between 0.001 and 10 mg/m3, which was typically the range in which the chlorophyll-a
concentration varied [37,72] The sine of the incoming and outgoing angles was randomly chosen
between 0 and 1. Here we chose to use a uniform statistical distribution for the sine of these angles
(rather than for the angles themselves) to give more weight to smaller angles than to larger ones
because of the more frequent occurrence of smaller angles (<60◦) in satellite observations.
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For each of the nine elements of Rul the ocean body reflection matrix, we trained a separate NN.
Here we used an expansion with eight Fourier coefficients for each wavelength from 350 nm to 800 nm
with steps of 5 nm. In total simulations for about 2 × 106 combinations of the three input parameters
were produced. The majority of the simulated data was used for training the NN; and a small fraction
(20%) was used to verify the NN performance during the training phase to ensure that no overtraining
had taken place [73].

Typically, the different elements of the NN output vector (eight Fourier coefficients for 91
wavelengths are 728 elements for a given element of Rul) do not all represent independent information
but are strongly correlated. To reduce the size of the output vector, prior to the NN training, the
multispectral Fourier coefficients were preprocessed by a linear principal component analysis (PCA)
as explained by Di Noia et al. [73]. In this study, we selected the number of principal components
(PCs) based on relative error of the reconstruction. Figure 1 shows the reconstruction mean relative
absolute error (ME) versus the number of principal components for the element R11 of Rul for different
chlorophyll-a concentrations from 0.001 to 10 mg/m3. As can be seen from the figure, the ME had a
steep decrease with increasing number of PCs until the number of PCs was 100–300. We chose 100 PCs
because it was a good balance between the output vector dimension and the reconstruction accuracy
(for the majority of cases, ME < 0.1%).
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Figure 1. Reconstruction mean relative error versus number of principal components for the radiance.
Since the relative errors at different wavelengths are quite different, we chose the average values
of relative errors instead of root-mean-square error (RMSE). Different lines correspond to different
chlorophyll-a concentrations.

3.2. Neural Network Training

For the training, we used an NN based on normalized input and output data, where we applied
the normalization procedure proposed by Di Noia et al. [74]. The input of the NN consisted of the
normalized chlorophyll-a concentration, ingoing angle and outgoing angle. The output of the NN
consisted of the 100 normalized principal components as described above. The NN has been trained
with an online error back propagation algorithm [75]. The training was accelerated by means of a
learning rate annealing technique [76], which reduces the learning rate while the NN training proceeds.
In this study, the learning rate was halved every 250 iterations. We selected a network architecture
with three hidden layers, consisting of 20, 30 and 20 neurons respectively, because it resulted in the
lowest root-mean-square error (RMSE) on the validation data set compared to a number of other trials.
The independent simulations have been used to monitor the generalization ability of the NN during
training via cross-validation, and no overfitting has been observed

In order to verify the performance of the NN, we tested it on 200 combinations of input values
not used during the training phase. Figure 2 shows the relative difference of the elements R11 of Rul
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simulated by the NN and the true values provided by the forward model, at the nine angles used by
SPEX-Airborne. The difference was mostly below 2% except for very small reflectivity values, which
would have very little effect on the top-of-atmosphere radiance. For nadir view, the errors were larger
than for the other angles, possibly because this viewing angle was at the boundary of the training
data range.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 20 
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4. Data

4.1. SPEX Airborne Data

The primary measurements used in this study were obtained by the SPEX airborne
spectropolarimeter [31,77–80]. SPEX airborne has nine fixed viewing angles ranging from −57◦

to +57◦ along the ground track. Each viewport has a swath of 7◦, and a spectral range from 400 to
800 nm. The SPEXairborne instrument is capable of measuring the radiance and DoLP at multiple
viewing angles and at multiple wavelengths. SPEX airborne was mounted on the high altitude ER-2
aircraft to participate in the ACEPOL campaign in October–November 2017 (Supplementary Materials
https://www-air.larc.nasa.gov/cgi-bin/ArcView/acepol). The main objective of the ACEPOL campaign
was to compare the capabilities of different polarimeters for determining aerosol microphysical and
optical parameters and to explore the possibility of performing retrievals using combined polarimeter
and lidar data. The campaign included nine flights, mainly over the south-western part of the United
States. Here, we focused on the SPEX airborne data obtained on 23rd and 25th October 2017 over
ocean. The spatial sampling of the data used in this study was 1 km.

https://www-air.larc.nasa.gov/cgi-bin/ArcView/acepol
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4.2. HSRL-2 Data

The High-Spectral-Resolution Lidar (HSRL-2) instrument is a successor to the airborne HSRL-1
instrument, which was described by Hair et al. [81], Burton et al. [82] and validated by Rogers et al. [83].
The HSRL-2 uses the HSRL technique to independently measure aerosol extinction and backscatter at
355 nm and 532 nm and the standard backscatter technique to measure aerosol backscatter at 1064
nm. For the ACEPOL flights on the ER-2, the aerosol backscatter coefficient is derived using the HSRL
technique at 355 nm and 532 nm and the elastic backscatter technique at 1064 nm and reported at
a vertical resolution of 15 m and a horizontal/temporal resolution of 10 s (approximately 1–2 km at
ER-2 cruise speeds). The aerosol depolarization ratio at all three wavelengths was reported at the
same resolution. For ACEPOL, the extinction products from the HSRL method were reported at 150
m vertical resolution and at temporal resolution of 60 s generally and 10 s. Additionally the aerosol
extinction products at 355 nm and 532 nm were also provided based on the aerosol backscatter and
an assumed lidar ratio of 40 sr, and reported at the backscatter resolution. During ACEPOL. HSRL-2
experienced an interference that appeared to be related to atmospheric turbulence. This interference
impacted the ability to use the 532 nm and 355 nm molecular channels to derive aerosol extinction and
aerosol optical depth (AOD) from the usual HSRL method. Therefore, we used the AOD derived using
the assumed lidar ratio, which is more accurate than the one derived using the HSRL method for the
low AOD situations investigated here. This AOD product from HSRL-2 was found to agree well with
AOD derived from AERONET measurements, with a MAE, bias, standard deviation of 0.028, −0.014
and 0.029 at 355 nm and 0.012, −0.005 and 0.014 at 532 nm [84].

4.3. Aeronet Data

The multispectral aerosol optical depth (AOD) from SPEX airborne was also compared with
AERONET (aerosol robotic network) level 1.5 data [85,86] (version 3.0). The data was cloud cleared.
In this study, we focused on aerosol retrievals over ocean. There was only one AERONET station
“USC-SEAPRISM” available during the flight legs over ocean during the campaign, for 23rd and
25th October.

4.4. Re-Analysis Data

Some atmospheric and meteorological inputs data are needed to be interpolated to the specific
time and geo-location of the SPEX airborne measurements. In this study, we obtained the humidity,
temperature, pressure and height from National Centers for Environmental Prediction (NCEP)
reanalysis data (Supplementary Materials http://www.cdc.noaa.gov/) [87]. The ozone data was from the
Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) (Supplementary
Materials https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/) [88].

5. Synthetic Retrieval

To investigate the ability of the neural network algorithm to retrieve properties of aerosols over
the ocean, we first carried out the inversion of synthetic measurements, which were computed for
the SPEXone instrument [24]. Here, we did not use all SPEXone wavelengths but defined 33 spectral
bands representing roughly the actual spectral resolution of SPEXone.

The synthetic measurements were created based on five aerosol modes consisting of 1000
combinations of aerosol and ocean parameters. Each mode has a fixed effective radius and effective
variance as described in Section 2.1.1. The assumed true aerosol properties (column number of each
mode, fine- and coarse-mode refractive index coefficients, fraction of spheres and aerosol layer height)
and chlorophyll-a concentration for each combination were generated stochastically in the ranges
shown in Table 3. For AOD we used a random variation of the logarithm so that more weight was
given to small values. The solar zenith angle was set at 40◦. We created synthetic measurements using
an exactly computed ocean body reflection matrix using our RT code and put a random error on the

http://www.cdc.noaa.gov/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
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measurements representative for SPEXone (2% radiance, 0.003 DoLP). We then performed retrievals on
these synthetic measurements using the NN approach for computing the ocean body reflection matrix.
We also performed retrievals using the exact ocean body reflection matrix in order to evaluate the error
introduced by the NN approach. Each set of synthetic measurements contained 1000 different ground
pixels with randomly varying aerosol and ocean properties as described above.

We applied the NN algorithm to the synthetic measurements and used the goodness of fit (χ2) in
Equation (13) to decide whether the retrievals had successfully converged, considering retrievals with
χ2 < 1.5 as successful. Based on the threshold of the goodness of the fit (χ2

max), we defined the pass
rate as rpass =

npass
ntotal

to indicate the percentage of successful retrieval (npass) of the total number of pixels
(ntotal = 1000 here).

χ2 =
1

nmeas

∑nmeas

i=1

(Fi − yi)
2

Sy(i, i)
, (13)

where, nmeas is the total number of measurements (multi-angle and multispectral radiance and DoLP)
for each pixel.

Figure 3 shows the retrieved AOD versus the truth for both NN retrievals and reference retrievals.
The RMSE was very small in both cases: 0.0077 for the NN and 0.0069 for the reference retrieval.
The most important difference between the NN and the reference retrieval is that the fraction of
successful retrievals was slightly lower for NN retrievals (74.8% versus 83.2%). For the other aerosol
properties, we expected the accuracy to improve if the AOD increased [24]. Therefore, we evaluated
the performance for the retrieval of these properties as a function of AOD threshold, where for a certain
threshold (uniformly-spaced of the logarithm) only cases were included with AOD equal to or larger
than the threshold. Here, for the fine and coarse mode properties we used a threshold for fine and
coarse mode AOD, respectively. Figure 4 shows the RMSE as a function of τ550 threshold for the SSA,
ALH, r f

e f f , m f
r , rc

e f f and mc
r, for both NN and reference retrievals. It can be seen that in general the

difference between the NN retrieval and reference was very small. The AOD threshold for meeting the
SPEXone requirements [24] for retrieval accuracy varied with the aerosol property: τ550 > 0.05 for SSA,
τ550 > 0.2 for ALH, τ f

550 > 0.05 for r f
e f f , τ f

550 > 0.25 for m f
r and τc

550 > 0.05 for mc
r, while the requirement

for rc
e f f could not be met. Figure 5 shows the number of retrievals with χ2 < χ2

max

(
χ2

max = 1.5
)

for

synthetic retrieval as a function of the τ550, τf
550, τc

550. The total time of the reference retrieval for each
pixel was about 9 s, but the total computing time of the NN retrieval for each pixel was about 2.5 s. The
good performance of the NN retrievals and the small difference with the reference retrievals indicate
that the NN approach was well suited for SPEXone aerosol retrievals over ocean.
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Figure 3. Retrievals of the aerosol optical thickness (AOT) at 550 nm for synthetic scenes generated using
the analytical ocean forward model described in Section 2. Left: retrievals performed using the neural
network (NN)-based ocean model. Right: retrievals performed using the analytical forward model.
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Table 3. The range of all parameters.

Parameters Range

AOD_fine/coarse 0.005–0.70
Spherical index 0–1.0

Refractive index coefficients of INOR for fine modes 0.887–0.975
Refractive index coefficients of BC for fine modes 0–0.05

Refractive index coefficients of INOR for coarse modes 0.439–0.512
Refractive index coefficients of DUST for coarse modes 0.439–0.512

Aerosol layer height (km) 1.0–6.0
Chlorophyll-a concentration (mg/m3) 0.001–10.0
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6. Retrievals from SPEX Airborne during ACEPOL

In this section we presented aerosol retrievals using real data collected during the ACEPOL
campaign on 23rd and 25th October, 2017 using the SPEXairborne instrument. For our retrieval using
data from the SPEX airborne measurement, we used the same spectral bands as Fu et al. [84] between
450 and 750 nm. Here, shorter and longer wavelengths were excluded because of lower data quality at
these wavelengths for SPEX airborne. We assumed an intensity error Ierr = 5% and a polarization error
DoLPerr = 0.005 in the diagonal matrix Sy in Equation (11). Here the intensity error was a relative error
and the polarization error was an absolute error. It is important to note that our inversion scheme is
not sensitive to the absolute magnitude of these errors, because of the use of a flexible regularization
parameter, but rather to the ratio between radiance and DoLP errors.

We first compared the SPEX airborne retrievals with HSRL-2. Two types of plots were included in
this paper for comparison. One was the scatter plot with x- and y-axis respectively for two instruments.
The other one was the Bland–Altman [89] plot (difference plot), where the difference between two
instruments was plotted against the averages of the two instruments. Figure 6 shows the comparison
in AOD at 355 and 532 nm between SPEX airborne with the NN retrieval and HSRL-2. Here, χ2

max = 2.0
was used as the filter for the goodness of fit. Overall, the agreement was good, with an RMSE of
0.023/0.017, MAE of 0.019/0.014, a bias of 0.000/0.011 and a standard deviation of the differences of
0.023/0.013 corresponding to 355 and 532 nm. The difference for each matched point as a function of
their averaged AOD is shown in the lower panel of Figure 6. It shows there was a slight trend of the
difference with AOD although the trend was within the standard derivation. These differences were
also within the uncertainty of the HSRL-2 measurements. Figure 7 shows the same comparison but for a
retrieval where a look-up table with exactly computed ocean body reflection matrices at all wavelengths
were used. This retrieval shows an RMSE of 0.023/0.018, MAE of 0.018/0.015, a bias of 0.000/0.011 and a
standard deviation of the differences of 0.023/0.014 corresponding to 355 and 532 nm, respectively. The
fact that the NN retrieval and the retrieval using the lookup-table with exact reflectance matrices show
virtually the same agreement with HSRL-2, is in line with our finding from the synthetic experiment
that the NN approach was suited for aerosol retrieval from MAP measurements over the ocean.

It should be noted again that for the HSRL-2 data a lidar ratio of 40 was used to convert integrated
backscatter coefficient to AOD. This means that the absolute scaling of the HSRL-2 AOD was quite
uncertain (as the true lidar ratio could be in the range 20–60). The standard deviation of the differences
was much less affected by this scaling as it is reasonable to assume that the lidar ratio was constant
for the two flight legs over the ocean. There were overpasses over the AERONET USC-SeaPrism
station on the 23rd and 25th October. The result of the NN retrieved AOD comparison is shown
in Table 4. SPEX airborne retrieved a τ550 of 0.0554/0.0331 corresponding to the 23rd and 25th of
October while AERONET measured 0.0282/0.0326 on these two days. This agreement was in line with
the SPEX airborne–HSRL-2 comparison. Overall, the retrieval on real measurements confirmed our
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finding from synthetic retrievals that the NN approach was well suited for aerosol retrieval from MAP
measurements over the ocean.

Table 4. The τ_380, τ_550 and τ_670 comparison between the AERONET and SPEX on the 23rd and
25th October 2017. Retrievals within 5 km around AERONET station were selected and averaged. The
AERONET data were averaged within 1 hour around the time of the ER-2 overpass (the two difference
sides of “/” represent USC-SEAPRISM and SPEX airborne).

USC-SEAPRISM/ SPEX Airborne τ380 τ550 τ670

Mean AOD(23rd) 0.0300/0.0631 0.0282/0.0554 0.0234/0.0487
Mean AOD(25th) 0.0431/0.0432 0.0326/0.0331 0.0260/0.0263
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Figure 6. (Upper panel) Comparison of SPEX-retrieved aerosol optical depth (AOD) vs. AOD obtained
from HSRL-2 measurements integrated over the atmospheric column at 355 nm and 532 nm on 23rd
Oct 2017. The line is the equality line, the red points represent the 355 nm and the blue points represent
the 532 nm. The data within a circle with a diameter of 5 km from the center of the HSRL-2 pixel
is averaged and then compared. (Lower panel) The difference between the AOD retrieved by SPEX
airborne and HSRL-2 as function of the average AOD of the two instruments.
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7. Conclusions

In this paper, we investigated the use of a neural network (NN) in aerosol retrieval over ocean
from multi-angle spectra-polarimetric measurements. The NN has been developed to replace a LUT
with pre-calculated ocean body reflection matrices, because for hyperspectral measurements as will be
provided by SPEXone, the use of a LUT will become unfeasible. In order to evaluate the NN retrieval
capability, we performed both synthetic SPEXone retrievals and real data (SPEX airborne) retrievals.

For the synthetic retrieval, we showed that the NN approach did not introduce significant errors
on the retrieved aerosol parameters, as applying the NN approach on synthetic measurements created
using exactly calculated ocean body reflection matrices, yield very similar results as the reference
retrieval using exactly computed ocean reflection matrices.

For the retrieval on real SPEX airborne data obtained during the ACEPOL campaign, we compared
the retrieved AOD at 355 nm and 532 nm with HSRL-2 data as a reference. The results show a good
agreement with an MAE of 0.019 and 0.014 at 355 and 532 nm respectively, and a bias of about 0.01. We
thus concluded that the NN approach was a good way to model the ocean body reflection matrices at
many wavelengths in an efficient way, which is required for the upcoming NASA PACE emission.

Supplementary Materials: The ACEPOL data from MAPs and lidar can be downloaded from the website:
https://www-air.larc.nasa.gov/cgi-bin/ArcView/acepol. The meteorological NCEP data can be accessed through
the website: http://www.cdc.noaa.gov/. The MERRA2 data can be accessed through the website: https://gmao.gsfc.
nasa.gov/reanalysis/MERRA-2/data_access/.

Author Contributions: C.F. and O.P.H. designed the retrieval experiments, C.F. and G.F. performed the synthetic
and real retrieval. C.F. and A.D.N. designed the neural network. M.S. and J.H.H.R. ensure the correct use of SPEX
airborne data. S.B. and R.A.F. ensure the correct use of HSRL-2 data. C.F. and O.P.H. analyzed the results and
finalized the paper. G.F., A.D.N, M.S., J.H.H.R., R.A.F., S.B., Z.L. gave useful comments which improved the paper.
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