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Abstract: The application of biochar amendments to soil has been proposed as a strategy for mitigating
global carbon (C) emissions and soil organic carbon (SOC) loss. Biochar can provide additional
agronomic benefits to cropping systems, including improved crop yield, soil water holding capacity,
seed germination, cation exchange capacity (CEC), and soil pH. To maximize the beneficial effects of
biochar amendments towards the inventory, increase, and management of SOC pools, nondestructive
analytical methods such as ground penetrating radar (GPR) are needed to identify and quantify
belowground C. The use of GPR has been well characterized across geological, archaeological,
engineering, and military applications. While GPR has been predominantly utilized to detect
relatively large objects such as rocks, tree roots, land mines, and peat soils, the objective of this
study was to quantify comparatively smaller, particulate sources of SOC. This research used three
materials as C sources: biochar, graphite, and activated C. The C sources were mixed with sand—12
treatments in total—and scanned under three moisture levels: 0%, 10%, and 20% to simulate different
soil conditions. GPR attribute analyses and Naïve Bayes predictive models were utilized in lieu
of visualization methods because of the minute size of the C particles. Significant correlations
between GPR attributes and both C content and moisture levels were detected. The accuracy of two
predictive models using a Naïve Bayes classifier for C content was trivial but the accuracy for C
structure was 56%. The analyses confirmed the ability of GPR to identify differences in both C content
and C structure. Beneficial future applications could focus on applying GPR across more diverse
soil conditions.
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1. Introduction

The transition of global land resources into managed agricultural systems has greatly changed the
terrestrial C balance, and this phenomenon has been accelerated in recent decades by the increase in
human population and demands for food, feed, fiber, and fuel [1,2]. Land use changes into cropland
and grassland systems have resulted in a significant loss of soil organic carbon (SOC), which is the
dominant component of soil organic matter (SOM). An estimated 30 to 60 Pg (Pg = 1 × 10−12 kg =

1 billion metric tons) of SOC has been lost over the past 100 years [3,4], and cumulative historic SOC
losses of up to 230 Pg also have been reported [4,5].
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Due to the importance of SOC in the carbon (C) cycle and its specific capacity for C dioxide
(CO2) sequestration, novel strategies for increasing the SOC pool are critical. Incorporation of stable,
recalcitrant C into soils via biochar amendments is one potential approach. Biochar, made by pyrolysis,
a thermal decomposition process of burning organic materials at high temperatures in the absence
of oxygen, has varied physicochemical qualities that provide differentiated effects upon the soil
environment when applied [6]. Being highly recalcitrant to decomposition, biochar can significantly
decrease the rate at which photosynthetically fixed C is returned to the atmosphere [7,8]. In addition to
CO2, biochar also can offset other greenhouse gases including nitrous oxide and methane [9–11].

To maximize the beneficial effects of biochar amendment applications towards global SOC pools,
a rapid, nondestructive, and inexpensive method to detect and quantify belowground C is needed.
Conventional means used to quantify SOC involve coring and probing for soil samples, followed
by diverse chemical assays to analyze those samples. Significant soil disturbances occur during the
collection and handling of the samples, and oxidation, volatilization, microbial degradation, and other
sampling biases also often occur [12–14]. Ground penetrating radar (GPR) can serve as an alternative to
traditional extraction methods by providing a convenient, nondestructive, and relatively inexpensive
means of determining SOC. Much of the previous GPR research has focused on material identification
spanning civil engineering and archaeology [15,16]. These GPR applications have focused primarily
on relatively large objects such as items at archaeological sites, land mines, rocks, tree roots, and
groundwater [17–22]; however, detecting organic C in the soil profile using GPR will be challenging.
Other research also has shown that soil water content impacts dielectric properties and increasing
water content results in both decreasing radar velocity and increasing attenuation [23,24].

Despite these challenges, researchers have successfully used GPR to estimate C stocks in
wetlands [14]. Zheng et al. [24] proposed that SOC density can be estimated using GPR. Peat
soils also have been evaluated with GPR to determine the C morphology, volume, and thickness [25,26].
These examples provide a rationale and framework to develop novel GPR methods for biochar and
SOC quantification across major soil types worldwide [27–29]. No previous research has focused
on estimating soil organic carbon in a biochar form using GPR. When utilizing artificial soil media
consisting of silicon sand and different C sources as proxies for native soils, the signal return will be
limited to those C sources. Such an experimental environment would provide an opportunity to adapt
identification methodologies to analyze collected data. However, the SOC particle size is considerably
smaller than most experimental objects targeted by GPR in civil engineering and archaeological studies.
Visualization of such minute objects is debatable; therefore, a quantification tool such as attribute
analysis is needed.

Attribute analysis was first applied by the seismic industry. It extracts features from the signals
received and the signal provides a better interpretation of 2-D and 3-D GPR data [18]. An entire GPR
data set is termed a B-scan, and one column of the data is known as an A-scan. In some cases, an
A-scan is referred to as a trace. Normally, analyses conducted based on A-scans are referred to as
attribute analysis. Some attributes, such as instantaneous amplitude, phase, and frequency, have been
used in seismology [18]. Moreover, when applying attribute analysis on GPR data, more attributes
such as relative reflectivity, phase relationships, complex trace attributes, and amplitude variation with
offset (AVO) are introduced to fit the character of the GPR data [18,30]. Attribute analysis is a potential
quantification method for targeting a subtle object’s, such as organic C, GPR frequency change. For
this study, maximum amplitude, intensity, energy, and area of the GPR data on the A-scan base were
chosen to conduct attribute analysis similar to previous reports [20,30,31].

The Naïve Bayes classifier applies Bayes’ theorem with the assumption that all features are strongly
independent [32,33]. It is a simple probabilistic classifier applied to predictive modeling or machine
learning [34,35]. With assigning training and validation data sets, a predictive model could predict
C content and structure using GPR data as a supervised machine learning model. In this study, our
objectives were to (1) detect underground biochar amended soil C content utilizing GPR, (2) correlate
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soil moisture with GPR data, and (3) develop novel GPR analysis tools to assess SOC quantification
with the use of attribute analysis and the Naïve Bayes predictive model.

GPR visualization methods such as wavelet analysis, in contrast, are based on signal data collected
by variety of sensors. For GPR it is effective at filtering noise and analyzing signals [36,37]. With
wavelet transformation of signals, their time and frequency domain change corresponding to the scale
chosen. With control of the scales, different scales of wavelets will pass through the data collected
while generating a coefficient [36]. There are two types of wavelet transforms, continuous wavelet
transform and discrete wavelet transform. Continuous wavelet transform allows the translating and
scale parameter of wavelets to vary continuously, and discrete wavelet transform allows wavelets
sample discretely [38]. Application of wavelet analysis to GPR data and plotting time–frequency
domain allows the signal change to be visualized. By changing wavelet scale, different time–frequency
plots can be generated [36]. With visualization of the signal change, and the coefficient generated by
different scale, different carbon percentages could possibly be visualized.

2. Materials and Methods

2.1. Material Preparation and Treatments

The biochar used was produced from pearl millet-Napier grass (Pennisetum glaucum [L.] R. Br. x
Pennisetum purpureum Schumach) culms and leaves pyrolized at 400 ◦C. Other C sources used were
coconut (Cocos nucifera L.) shell granular activated C (psc 1240, Prominent Systems Inc.) and graphite.
In this study, each C-sand mixture represented a treatment for a total of 12 treatments. A mixture of
50% activated C and 50% graphite was made by mixing 1:1 with sand, and this was the same approach
used to make the 100% activated C and 100% graphite. Other treatments were made by mixing sand
and biochar at eight different ratios: 0%, 2%, 4%, 6%, 8%, 10%, 50%, and 100%. Table 1 lists the
summary of the treatments and the C content. The 0% biochar contained pure sand. The C content of
each source material was 54.2% for biochar, 80% for activated C, 100% for graphite, and 0% for sand.
Treatments with less than 10% C–sand mixture were included in the study because they represent the
approximate average belowground organic C percentages. Furthermore, 50% and 100% were chosen
to compare the GPR performance on aggregated C with different C structures. Different percentage
mixtures were made by mixing the corresponding amounts of materials with pure sand by weight and
subsequently filling the mixture into sample containers. Three replications of each treatment were
made where each sample was placed into a container composed of a silicone sandwich bag (Stasher,
Inc.; Emeryville, CA, USA) 19.05 cm x 17.78 cm x 2.54 cm in size. A hole 1 cm in diameter was punched
into the bottom left corner of each bag to allow a 6 cm soft silicone tube to be attached and a silicone
ring was used to secure the tube. This modification provided a means for adding water into the bag
without opening it multiple times. Three moisture levels, 0 %, 10 %, and 20 %, were evaluated. The
water in each moisture level was added to the sample containers 24 h before the data collection. For
each moisture level, the antenna scanned the trough six times.
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Table 1. Summary for 12 treatments and the carbon content both by weight and percentage for
each treatment.

Treatment Number Treatment Carbon Content by
Weight Per Sample (g)

Carbon Content by
Percent Per Sample (%)

1 0% Biochar 0 0
2 2% Biochar 7.5012 1.0840
3 4% Biochar 13.6150 2.1680
4 6% Biochar 18.7640 3.2520
5 8% Biochar 24.0214 4.3360
6 10% Biochar 28.9428 5.4200
7 50% Biochar 67.7500 27.1000
8 100% Biochar 86.7200 54.2000
9 50% Graphite 250 50
10 100% Graphite 430 100
11 50% Activated Carbon 200 40
12 100% Activated Carbon 256 80

2.2. Data Collection

Data collection was conducted at the Texas A&M Agricultural Research Farm in Snook, Texas (30◦

35' 49.74'' N, 96◦ 20' 52.44'' W) on a 20 m x 2.75 m x 1.5 m aboveground trough filled with dry, pure
quartz sand (Figure 1). Three replications were used in a randomized complete block design. Every
treatment was buried under 100% sand at a depth of 5.08 cm and spaced 25.4 cm apart along a single,
medial line in the trough. Due to repeated radar cart traffic across the trough during the experiment,
some sample bags’ burial depth varied slightly. In addition, retaining the exact same start point across
successive scans was difficult and required only a central subset of three A-scans within each sample
to be analyzed.
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Figure 1. The experiment sand trough illustration diagram. All the treatments (samples) were buried
5.08 cm in depth and 25.4 cm apart. The dimensions of each sample are 19.05 cm x 17.78 cm x 2.54 cm.

The GPR antenna system utilized in this study was developed by IDS GeoRadar. The system and
antenna alignment were developed based on previous preliminary research results [21]. The system is
a down-looking 7-channel multiarray. The channel configuration consists of four transmitting and four
receiving antenna separated at 4 cm intervals as seen in Figure 2. This spacing fulfills the Nyquist
criterion for data acquisition, utilizing this sensor with the central frequency of 1.8 GHz. This dense
array allows for imaging underground objects and potentially identifying subtle features such as
soil C. The antenna was assembled to a scanning cart (Figure 3). Each channel generated one B-scan
with 1 cm x 1 cm pixel resolution following a transect of the trough. Each scan gave seven B-scans of
all 36 plots, out of three replications for twelve treatments. A processed B-scan and a raw B-scan in
heat-map form was used to help visualize the collected data (Figure 1).
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represent receivers. The antenna used contains seven channels with each channel consisting of one
transmitter and one receiver.
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Figure 3. The scanning cart prototype equipped with Ground Penetrating Radar (GPR).

2.3. Data Processing and Analyses

No standard procedure has been reported or developed to preprocess GPR data for non-visualized
quantification of small targets such as organic C. Because of this, preprocessing procedures were
reduced to a minimum, including automatic surface removal and fast Fourier transform bandpass
filtering. This was performed in GPRLib, which is a custom Python library still under development.
This process removed the noise of the data above the sand surface and was followed by sub-setting
the bottom of the B-scan by adding 50 rows from the sand surface. This was required due to small
variations in sample bags burial depth in the trough. Sub-setting the data with a wider range of rows
ensured inclusion of all of the samples. Bandpass function was conducted after surface removal, while
the Fourier transfer bandpass filter set the lower band frequency to 1.0 GHz and higher band frequency
to 3.2 GHz to block signals out of this frequency range. After preprocessing, attribute analysis was
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performed using a novel Python script where maximum amplitude, intensity, energy, and area were
calculated. All attributes were transformations of the signals’ amplitudes on the central three A-scans
of each sample based on location. The A-scans were selected for the middle three columns of each
sample, which possibly represent the most precise location of the samples. After computing the
attributes on the three columns, we averaged the three and got the final attribute value. The reason
is that the location of each sample is very hard to tell on the B-scan, so the location of samples was
estimated based on where the samples were buried. To avoid the error of picking wrong A-scans, the
central three A-scans were computed and averaged. Maximum amplitude was computed by finding
the maximum value of the A-scan amplitude. Intensity was computed by finding the maximum value
of the squared amplitude on the A-scan, while area was computed by finding the maximum value of
the integrated amplitude on the A-scan. Lastly, the equation (1) denoted how to calculate the energy.
Energy was computed by determining the maximum value of the integrated squared amplitude as
suggested in [30]. ∫ tend

0
A2dt (1)

After completing this workflow, the data set was exported to a spreadsheet for statistical analyses
and predictive modeling. Continuous wavelets analysis was conducted on the data, with 150 scales
from 1 to 150 passed to PyWavelets package on Python v. 3.6.5 (Python Software Foundation, 2018).
Wavelet coefficients were generated for the 150 scales and 12 treatments as well as the p-value.

2.4. Statistical Analysis

A total of 3868 data points were collected, although the total number should be 4536 calculated
by 12 treatments, three replications, seven channels, three moisture levels, and six times scan per
each moisture level. There were 668 data points missing because a few scans failed to collect data
through the end of trough. The mean differences among the seven channels, moisture levels, and
treatments were analyzed based on the attributes. The four attributes were the four variables, while
the C content in percentages and moisture levels were the responses. A Naïve Bayes predictive model
also was developed and validated based on the entire data set. To determine the performance of
the seven channels, analysis of variance (ANOVA) and interquartile range (IQR) were conducted.
Spearman’s rank correlation tests and Pearson correlation tests were conducted to explain the moisture
level differences and treatment differences. For moisture levels, Spearman’s rank correlation analyses
were conducted to assess the relationship between two variables using a monotonic function since
moisture level was a categorical variable and the attributes were continuous variables. As for treatment
differences, the three C sources were separated and recombined together, and a Pearson correlation
test was conducted to determine the linear relationship between C content and attributes.

To further assess the ability of GPR to identify different C contents and C structures, two Naïve
Bayes predictive models were constructed on data collected by channel 4 to prevent data overlapping
between channels during machine learning. The Naïve Bayes model uses Bayes’ theorem with an
independence assumption between features to construct a classifier. If a large amount of data for
different percentages of organic C is collected, the predictive model can develop a baseline for those C
percentages and can predict C content of an in situ field. The same procedure also can be applied to
differentiate C structures. To classify the different C contents, classification of the model was: 0%, 2%,
4%, 6%, 8%, 10%, 50%, and 100% biochar, 50% and 100% activated C, and 50% and 100% graphite. To
classify the different carbon structure, the data was divided by two classes: Biochar and Non-Biochar.
The parameter used to construct the model was energy because the assumption of a Naïve Bayes
classifier requires non-dependent variables. Since all the attribute variables were dependent with
each other, only one attribute was put into the model. To validate the accuracy of the model, the data
was separated into a 75:25 ratio as a training and validation set. This ratio was used because the data
set sample size was not large enough to support a 50:50 ratio for the 12 classifiers. The same model
procedure was iterated 1000 times for each model, and the data was split differently for every iteration.
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The confusion matrix and the accuracy computed from the confusion matrix were used to estimate the
ability of the model to distinguish different classes. Usually accuracy under 50% (random guess) was
considered trivial.

All statistical analyses were completed on RStudio v.3.5.2 (RStudio Team, Boston, MA, 2019).

3. Results

Data from channels 1, 6, and 7 were discarded because of the large number of extreme outliers
when compared to the other channels. The extreme outliers were identified as exceeding three times
the IQR. This indicates the border transmitters 1 and 4 (Figure 2) were affected more by their locations.
This resulted in more noise being collected by these channels which produced highly variable data.
The data set after excluding channels 1, 6, and 7 consisted of 2208 data points.

3.1. Moisture Levels

After confirming significant mean differences of attributes for each moisture level, the variance
in the attributes was used to establish a correlation between moisture level and the four attributes
separately since moisture level was a categorical variable and the attributes were continuous variables.
Spearman’s rank correlation analyses were conducted, and they assessed the relationship between two
variables using a monotonic function. With a positive correlation coefficient, the attribute increased
when the moisture level increased. Correlations were considered significant at p ≤ 0.05, 0.01, and 0.001.
The correlation coefficient results (Table 2) showed the coefficients of the association between moisture
levels and the attributes, as well as the p-values. All coefficients were positive but generally low with
significant p-values. The correlation coefficients were low because the data was variable since the
sub-grouping data was from 12 treatments for each moisture level. Therefore, for all attributes, they
increased when the moisture level increased, which indicates that GPR data had a positive relationship
with moisture level. This can be explained by C aggregation. Because water and C aggregate, the
target object became larger at a higher moisture level, which made it easier to detect C with GPR.
Coefficient between energy and moisture levels was the highest, indicating that energy better explained
the correlation between moisture level and GPR data.

Table 2. Spearman’s rank correlation coefficient between attributes and moisture levels at 0%, 10%,
and 20% in 12 carbon–sand mixture samples. All attributes were calculated based on the amplitude of
the received GPR signals.

Attributes Spearman’s Correlation Coefficient p-Value

Maximum amplitude 0.1930 <2.20 × 10−16 ***

Intensity 0.1627 1.456 × 10−14 ***

Area 0.0874 3.912 × 10−5 ***

Energy 0.2278 <2.20 × 10−16 ***

Note: *, **, and *** denote significance at 0.05, 0.01, and 0.001 level of probability, respectively.

3.2. Treatment Differences

The Pearson correlation coefficients between graphite C content and attributes indicated all
attributes had significant linear correlations with graphite with all p-values less than 0.001 (Table 3).
The correlation coefficients between the three attributes (maximum amplitude, intensity, and area)
and graphite C content were all positive, indicating the value of these three attributes increases when
graphite C content increases. Regarding the attribute energy, the correlation coefficient with graphite
C content was negative (−0.4138); therefore, energy decreases when activated C content increases, and
it was the strongest correlation for C content. The negative relationship could be caused by the method
used to calculate energy. The energy was estimated from a squared signal amplitude. Therefore, the
attribute energy contained more information than the other three attributes.
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Table 3. Pearson correlation between attributes and graphite carbon content. All attributes were
calculated based on the amplitude of the received GPR signals.

Attributes Pearson Correlation Coefficient p-Value

Maximum amplitude 0.2822 3.706 × 10−12 ***

Intensity 0.2821 3.803 × 10−12 ***

Area 0.3501 <2.20 × 10−16 ***

Energy −0.4138 <2.20 × 10−16 ***

Note: *, **, and *** denote significance at 0.05, 0.01, and 0.001 level of probability, respectively.

The criteria for grouping biochar and activated C was based on the significance of the paired
Tukey’s honestly significant difference (HSD) test between each treatment (data not shown). For each
attribute, the biochar treatment was selected when it was significantly different from 50% and 100%
activated C. Some biochar treatment attributes were not significantly different from another treatment.
This could be due to the C content of the biochar used in a given treatment being low. For instance, the
C content for 2% biochar was 1.08% and GPR was not able to detect the signal change. The attributes
in such cases could be reflecting the signals from the silicone sample bag or the sand. The Pearson
correlation coefficients between the sub-groups (activated C and biochar C content) and the four
attributes revealed that all attributes had a significant linear correlation with the p-value less than 0.001
(Table 4). The correlation coefficients between attributes, except for the attribute energy and graphite
C content, were negative. This shows that those attributes decreased when the graphite C content
increased. As for energy, the correlation coefficient with graphite C content was 0.1678 and indicated
energy increased when activated C content increased. Note the correlation coefficients strengthened
the negative correlation for the three attributes but reversed the relationship for energy (Table 4).

Table 4. Pearson correlation between attributes and carbon content of biochar-activated carbon
subgroup. All attributes were calculated based on the amplitude of the received GPR signals.

Attributes Pearson Correlation Coefficient p-Value

Maximum amplitude −0.2316 6.911 × 10−15 ***

Intensity −0.2114 1.338 × 10−12 ***

Area −0.2408 5.252 × 10−16 ***

Energy 0.1678 1.378 × 10−7 ***

Note: *, **, and *** denote significance at 0.05, 0.01, and 0.001 level of probability, respectively.

3.3. Naïve Bayes Predictive Model

The predictive accuracy for C content was insignificant. One possible reason for this finding is
that the limited data points for 12 classes, and some classes like 100% biochar and 50% graphite, have
very similar C content and are misclassified by the model.

The predictive accuracy for C structure was 56.12% averaged after 1000 iterations. The confusion
matrix for a single random iteration was displayed to illustrate how to compute the accuracy (Table 5).
The accuracy was calculated by adding the corrected prediction and divided by the total number, which
was 60.29%. Even though 56% was still close to 50%, the accuracy for C structure was more promising
than C content since there were two classes compared to 12. This indicates that within biochar and
non-biochar, while the C content is different, the attribute energy is still capable of identifying the two.
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Table 5. The confusion matrix after one iteration for predicting carbon structure using Naïve
Bayes classifier.

Reference

Prediction
Biochar Non-Biochar

Biochar 64 42
Non-Biochar 12 18

3.4. Wavelet Analysis

No significant wavelet coefficients were found on the entire data set, indicating that carbon was
too small for GPR to visualize.

4. Discussion

The primary purpose of this study was to explore the feasibility of using GPR to detect fine
particles such as SOC. To test this assumption, three different C sources (biochar, activated C, and
pure C structure graphite) were mixed at different percentages with sand and characterized with
GPR. Our results indicated such feasibility. The GPR was able to detect biochar-amended soil and the
predictive model differentiated C structures with approximately 56% accuracy. In somewhat similar
studies [25,26], peat land soil thickness and clay content were evaluated and it was determined that
GPR can be used under different soil conditions. Wavelet analyses were uninformative, suggesting
that the method is likely not an effective strategy to quantify SOC.

The detection of soil moisture variation in our study further indicates the utility of deploying GPR
in more complex soil conditions. The significant correlations between moisture level and attributes
would be important for other research aiming to characterize soil conditions using GPR. Previous
researches have already begun to develop tools towards achieving this goal [39,40]. This indicated that
if we are to further study soil moisture, multidimensional attribute analysis might be more suitable to
display spatial distribution than attribute analysis.

Our findings also provide a framework for predicting and quantifying soil C content. By
successfully differentiating soil amendments in sand, these findings could facilitate further research to
combine remote sensing tools, like GPR, with agriculture to better understand and utilize belowground
resources. This research can serve as a framework for future efforts to predict and quantify C.

Pearson correlation significantly correlated attributes with C content, but the highest correlation
was a negative correlation between graphite and energy. The negative correlation might be the result
of error during data collection or the fact that subgroup treatments based on Tukey’s HSD test would
bring the most potentially different combinations which resulted in the most significant and precise
correlation. Moreover, since the attribute energy was transformed the most from the original data, it
might possess some unwanted data which could affecting the results. But for biochar and activated C,
energy was the only attribute that had a significant Tukey’s HSD test (data not shown), indicating
energy could be a useful predictor as long as redundant data is removed. Among all the correlation
coefficients, the coefficient between graphite C content and energy was the highest. This indicates the
energy of GPR data responded stronger to graphite than the other C sources.

Because the C content would not be as high as graphite in either in situ soil conditions or
biochar-amended soils, the Pearson correlations might not be effective indicators when C content
is low. Utilizing machine learning models like the Naïve Bayes predictive model is a promising
alternative approach. The Naïve Bayes Classifier did not reach a high accuracy, but other classifiers can
be considered in the future. With GPR application on a larger scale across a range of diverse soil types,
moisture levels, and cropping systems, larger data sets could also help calibrate models and raise the
predictive accuracy. The model for predicting C structure could also benefit characterizing soil textures
in the model. Extensive calibration and validation would thus improve mapping belowground C in
more complicated conditions.
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Limitation of This Study

As more experience is obtained from using GPR and better technology is developed, findings
from studies similar to this investigation should provide better information pertaining to organic C in
a variety of soil types. Scanning an empty sand trough before burying samples would further help
identify sample locations. Additionally, having the samples buried 25.4 cm apart from each other
complicated their positional separation in the data analysis. Lastly, the relatively shallow depth of
sample placement in the trough affected the identification of the samples and also the sand surface on
the B-scan images.

Moreover, the transmitters’ and receivers’ layout also significantly affected the results.
Collaboration with scientists having an engineering background and experience would benefit
future efforts.

Attribute analysis successfully correlated GPR data attributes with moisture levels. The next
step could be to compare the performance of GPR data on different levels of soil moisture and soil–C
mixtures to improve the correlation, as well as collecting 3-D GPR data to incorporate spatial analysis
tools. Additionally, the attribute energy was proven to perform the best out of the four attributes.
A replication of this research across years could further validate the consistency of the correlation
coefficient. This would allow materials to be applied to more complicated soil dynamics to further
assess the performance of the GPR data. Larger sample sizes could be achieved through implementing
more channels as well as conducting multiple scans after adding moisture. After finding ideal attributes
for correlation analyses and predictive modeling, scanning the trough with controlled C content could
help accumulating training data points to build a baseline for each C content and increase accuracy.
Towards scanning uncharacterized fields, GPR data could be able to correlate and predict C content.
Extensive additional GPR screens across a range of diverse soil types would also facilitate in the
development of robust, publicly available training data sets.

5. Conclusions

The Spearman’s rank correlation tests across three moisture levels for all attributes were significant,
indicating the ability of GPR to detect soil moisture content. As all of the coefficients were positive,
this indicated that a higher moisture level was easier to be detected. The GPR was able to detect
biochar-amended soil. With non-significant result from wavelet analysis, the Naïve Bayes predictive
model identified C structures with 56% accuracy. The correlation coefficients between attributes and C
content were still relatively small, indicating that quantification of C content is difficult to observe with
varying water content using GPR. As for detecting moisture content and C content, the attribute energy
performed the best among all attributes. This encourages future work to extract more informative
feature like energy. Overall, these findings demonstrated the ability of GPR to detect minute objects
such as organic C. This could extend future GPR applications into more complicated soil conditions
and eventually towards characterizing both unknown soils and belowground biomass.
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