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Abstract: The endemic New Zealand kauri trees (Agathis australis) are of major importance for
the forests in the northern part of New Zealand. The mapping of kauri locations is required for
the monitoring of the deadly kauri dieback disease (Phytophthora agathidicida (PTA)). In this study,
we developed a method to identify kauri trees by optical remote sensing that can be applied in an
area-wide campaign. Dead and dying trees were separated in one class and the remaining trees with
no to medium stress symptoms were defined in the two classes “kauri” and “other”. The reference
dataset covers a representative selection of 3165 precisely located crowns of kauri and 21 other canopy
species in the Waitakere Ranges west of Auckland. The analysis is based on an airborne hyperspectral
AISA Fenix image (437–2337 nm, 1 m2 pixel resolution). The kauri spectra show characteristically
steep reflectance and absorption features in the near-infrared (NIR) region with a distinct long descent
at 1215 nm, which can be parameterised with a modified Normalised Water Index (mNDWI-Hyp).
With a Jeffries–Matusita separability over 1.9, the kauri spectra can be well separated from 21 other
canopy vegetation spectra. The Random Forest classifier performed slightly better than Support
Vector Machine. A combination of the mNDWI-Hyp index with four additional spectral indices with
three red to NIR bands resulted in an overall pixel-based accuracy (OA) of 91.7% for crowns larger
3 m diameter. While the user’s and producer’s accuracies for the class “kauri” with 94.6% and 94.8%
are suitable for management purposes, the separation of “dead/dying trees” from “other” canopy
vegetation poses the main challenge. The OA can be improved to 93.8% by combining “kauri” and
“dead/dying” trees in one class, separate classifications for low and high forest stands and a binning to
10 nm bandwidths. Additional wavelengths and their respective indices only improved the OA up to
0.6%. The method developed in this study allows an accurate location of kauri trees for an area-wide
mapping with a five-band multispectral sensor in a representative selection of forest ecosystems.

Keywords: hyperspectral; airborne; optical remote sensing; pixel-based; Random Forest; AISA Fenix;
Waitakere Ranges; kauri dieback disease

1. Introduction

New Zealand kauri (Agathis australis (D.Don) Lindl. ex Loudon) are an important component
of New Zealand’s northern indigenous forests. The overall distribution of kauri is well known [1,2],
but there is an urgent need to locate kauri crowns in more detail for monitoring the deadly kauri
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dieback disease (Phytophthora agathidicida (PTA)). Current methods for mapping of kauri rely on the
manual interpretation of nadir and oblique aerial images and photos taken from a helicopter [3,4].
These manual interpretations of aerial images are elaborate and only suitable for smaller areas. Remote
sensing enables large area coverage in a more objective approach [5]. This study analysed the spectral
characteristics of kauri crowns and developed a method to identify their exact position in an area-wide
pixel based analysis.

1.1. Research Context

Remote sensing technology allows for automatic tree species discrimination based on reflectance
signals with passive optical sensors and structural crown characteristics by active LiDAR sensors [6,7].
Multispectral sensors tend to have a limited number of bands, typically up to six, in the visible (VIS) to
near-infrared (NIR) spectral range with a bandwidth of at least 10 nm, usually broader. Typically, they
use two-dimensional staring arrays that are mounted in the focal plane, such as charge-coupled devise
elements (CCD) [8]. Hyperspectral sensors can cover the whole spectral continuum up to the short
wave infrared (SWIR) range with a high number of narrow bands [9]. The bandwidth of hyperspectral
sensors for airborne acquisitions is typically around 3 nm in the visible (VIS) to first near-infrared
(NIR1) part of the spectrum (Table 1) and around 10 nm in higher wavelengths. Airborne hyperspectral
sensors usually use moving scanner lines in push broom or whiskbroom systems, although first
snapshot hyperspectral cameras with staring arrays for airborne use are coming on the market [8–10].

Table 1. Spectral ranges with wavelengths used in this study (adapted from [11]).

Spectral Range Electromagnetic Wavelengths

Visible (VIS) 437–700 nm 1

1st near-infrared (NIR1) 700–ca. 970 nm 2

2nd near-infrared (NIR2) 970–1327 nm
1st short wave infrared (SWIR1) 1467–1771 nm
2nd short wave infrared (SWIR2) 1994–2337 nm 1

1 The useable bands of the AISA Fenix sensor cover the range between 437 and 2337 nm; 2 The NIR1 range marks
the shift between the two sensor parts at 970 nm.

Airborne hyperspectral remote sensing has proven useful in the analysis and identification of
individual tree crowns in boreal and temperate [12–15] and subtropical to tropical forests [16–20].
The NIR bands from 700 to 1327 nm are important for species classification in tropical forests [16–18],
which are perhaps more similar to kauri forests in terms of structural complexity [7]. The reduction of
dimensionality and correlation in hyperspectral datasets can significantly improve the accuracy [21–23],
as well as the extraction of the sunlit part of the crown [24,25]. An object-based classification
can increase the accuracy by balancing the within crown variation, noise and illumination effects,
and it allows to integrate additional structural and spatial crown statistics [26–28]. However, the
whole processing chain for individual tree crown identification is complex, processing-intensive
and error-prone, which can compromise the advantages of an object-based approach [12,29]. The
importance of additional LiDAR data describing height and structural crown characteristics has been
confirmed in many studies [13,21,30,31]. However, texture measures can also be integrated based on
optical data alone [32].

Airborne multispectral sensors are, for the time being, better suited to cover large areas than
hyperspectral sensors, with a wider field of view, a larger signal to noise ratio and a more robust technical
setup. They are often operated in combination with LiDAR data for tree species classification [33–35].
Fassnacht et al. [34] recommended linking the analytical findings in the hyperspectral space with the
operational advantages of multispectral sensors.

Most of the kauri in the study area grow in a more diverse second-growth forest [36]. The young
growth form of this evergreen conifer is a conical shape with dense foliage (Figure 1). They often
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develop under the protection of angiosperm nurse trees. Kauri leaves are linear, 2–5 cm long, with a
smooth leather-like surface. They form a spiky foliage surface with single branches protruding. The
leaf colour is less characteristic with variants from yellow- to blue-green [37]. Stressed foliage shows
all stages of decline over yellow to brown and bare branches. The spring aspect features bright green
new-growth of kauri leaves [2] and an asynchronous flowering of other canopy species. The spectrally
more stable summer aspect can be affected in drought years by early aging and dropping of leaves [38].
Dying stands of infected trees, climbers, vines and epiphytes add to the spectral and spatial complexity
of kauri forests, which are more similar to subtropical and tropical forests than to other temperate
forests [11,33].
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Figure 1. Kauri growth classes used in this study, depending on the mean crown diameter (cdm).
(Photos: [39]).

The natural distribution of the endemic New Zealand conifer, kauri, extends over the warm
temperate lowland forests of the upper North Island (Figure 2), although its abundance has been
severely impacted by logging associated with European settlement [2]. In the remaining patches of
mature kauri forest, the upper canopy is dominated by large dome shape kauri with an open crown
structure and scattered foliage (Figure 1).

1.2. Objectives and Approach

The overall aim of this study was to develop a cost-efficient method to identify the location of
kauri trees in New Zealand’s kauri forests based on optical remote sensing. The method should
be applicable for wall-to-wall large area monitoring with multispectral sensors. Dead and dying
trees were mapped in a separate class since it was not possible to define spectrally if these are kauri.
Moreover, the management needs to document the location of dead trees before they are overgrown or
fallen. The resulting “kauri mask” can then be used for further applications such as a detailed analysis
of stress symptoms.

The main objectives of this study were:

• Objective 1: Identify and compare the spectra of kauri and associated canopy tree species with no
to medium stress symptoms and analyse their spectral characteristics and separability.

• Objective 2: Identify and describe the best spectral indices for the separation of the three target
classes “kauri”, “dead/dying trees” and “other” canopy vegetation (see class description below).

• Objective 3: Define an efficient non-parametric classification method to differentiate the three
target classes that is applicable for large area monitoring with multispectral sensors.

We chose a pixel-based approach as it did not require a prior crown segmentation.
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2. Materials and Methods

2.1. Study Area

Three sites in the Waitakere Ranges Heritage Area, northwest of central Auckland (Figure 2),
cover a representative range of kauri stands in all sizes and stages of stress [36]. The Cascade area (10.3
km2) contains patches of old established kauri stands, the Maungaroa area (5.4 km2) includes mainly
second-growth kauri forests, and a diverse selection of mature crowns can be found in the Kauri Grove
Valley (1.1 km2). A rough terrain characterises the ranges with elevations from sea level to a maximum
of 336 m in the study sites and 474 m at the highest peak [40]. The climate is warm-temperate and
influenced by the proximity of the sea [41].
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Figure 2. (a) Location of the Waitakere Ranges on the North Island of New Zealand west of Auckland
City. The general area with naturally occurring kauri in New Zealand [2] is marked as hatched. (b) Study
sites in the Waitakere Ranges with the reference crowns marked in red (background map: [42]).

2.2. Data and Data Preparation

LiDAR data (RIEGL LMS-Q1560 sensor, average 35 returns/m2 with circa 0.5 ground returns/m2)
and RGB aerial images (15 cm) were flown for the three study sites in one acquisition on 30 January
2016. Pit-free terrain model (DTM), surface model (DSM) and crown-height model (CHM) were
generated with LAStools [43]. The aerial image was orthorectified in two versions, on the DTM and
the DSM. An additional 7.5 cm RGB aerial image was acquired in summer 2017 [44].

The airborne hyperspectral image was acquired on 15 March 2017 with an AISA Fenix hyperspectral
sensor at 1 m pixel resolution and was delivered in 23 stripes in radiance units. The sensor features
448 spectral bands with an average bandwidth of 3.6 nm in the VNIR1 region and 10 nm in the
NIR2/SWIR-region. The flight conditions were cloud-free but windy, with a high amount of moisture
in the forest after recent rain. Reflectance measurements with an ASD field spectrometer were taken as



Remote Sens. 2019, 11, 2865 5 of 26

a reference during the flight on homogenous flat areas (grass, gravel, tarmac) and black and white
sheets of 5 m × 5 m.

The atmospheric correction was performed using ATCOR 4 [14] with a variable water vapour
correction on the 1130 nm spectral region and a “maritime” atmosphere setting for the aerosol
parameters. The spectral distortions of the push broom sensor were addressed by developing a sensor
model with an adapted shift in the bandwidths. The parameters for the shift were empirically derived
for each sensor part (VNIR1 and SWIR) from atmospheric gas absorption features on a homogenous
part of the image. The O2 absorption bands at 760 and 820 nm could be sufficiently corrected by
applying the sensor-shift in ATCOR. Remaining spikes and dips in the 940 and 1130 nm regions were
removed by applying a non-linear interpolation. The ASD reflectance field measures were used as a
reference to evaluate the parameters for the atmospheric correction, not for the analysis itself.

The original image showed some distinct non-periodic, single black and white “bad lines” in the
columns of wavelengths at the beginning and end of the spectrum and close to the shift between the
VNIR and SWIR sensors. These lines were identified by their mean value compared to the mean values
of the direct neighbouring lines according to a local approach described in [45]. For the de-striping, the
pixel values in these lines were replaced with the average of the neighbouring pixels.

The geographic distortions were corrected in a two-step approach: First, the basic corrections
for the Global Navigation Satellite System (GNSS) position, altitude, roll, pitch, heading and offset
between the inertial measurement unit and lens were applied in PARGE [46]. In a second step, the
remaining distortions were corrected with an individual polynomial orthorectification per stripe in
ERDAS Imagine based on over 2300 ground control points.

Ninety-six of the 448 bands that were most affected by noise and stripes were removed, leaving
352 useable bands for the analysis. The noisy bands were located in the beginning and end of the
spectrum and in the absorption bands of water.

The 23 corrected stripes were stitched together with “mosaic data seamlines” in ArcGIS to three
smaller mosaics covering the three study areas before they were combined into one large mosaic
covering ca. 9 km2.

During fieldwork in the 2015/2016 and 2016/2017 summer months, the reference crowns in denser
stands were located with a mapping grade GNSS (Trimble-GeoXH-3.5G) with distance and bearing
in circular sampling plots of 20 and 30 m diameter. In open stands, crowns were edited directly on
aerial images and a CHM layer on a field tablet. Table A1 gives an overview of the reference data with
scientific names and the priority of neighbouring canopy species, according to their resemblance to
and association with kauri. A threshold of at least 40% dead branches visible in the crown area in the
2017 aerial image was defined to identify the class “dead/dying trees”. The sunlit parts were identified
with a threshold on the average of the RGB-NIR bands [47]. The challenge was to define a brightness
threshold that removes the core shadow areas without useful spectral information and keep the partly
shaded inner-crown pixels that still contribute to the species identification. The threshold on the RGB
average was defined by comparing the resulting areas with manually identified sunlit parts of the
crown. A brightness threshold was also calculated on the NIR band, to match reduced band selections.
Edge effects were reduced by removing an internal buffer of 10% crown diameter. The final reference
set includes 3165 crowns with a total of 95,194 sunlit pixels in 1 m2 resolution (Table A1 and Figure 3).

The crown size classes used in this study refer to the mean crown diameter. It was defined as the
average of the maximum and the minimum diameter based on the “minimum bounding geometry
– rectangle by width” in ArcGIS. The thresholds for the size classes were empirically defined from
the field measurements to mark the transition from small kauri crowns (>3 m to 4.8 m diameter) to
the more open medium crown sizes (>4.8 m to <12.2 m diameter) and the large dome shape crowns
(>12.2 m diameter) (Figure 1). In addition, the minimum object size for a 1 m pixel resolution was
marked in a class of very small crowns of <3 m diameter. The information about the crown size was
used to interpret results of the pixel-based classification, not as an attribute in the classification.
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As a preparation for a separated analysis for different forest types, two forest stand categories
“high” and “low” were segmented on the CHM in eCognition (scale 15 m, shape 0.3 and compactness
0.9 [48]) and defined by a mean height threshold of 21 m.

The crowns and thereby the reference pixels were sorted in three target classes for the analysis:

• “dead/dying trees” with a minimum of 40% visible dead branches in the aerial image;
• “kauri” that were not classified as “dead/dying”; and
• “other” canopy vegetation that was not classified as “dead/dying”.

The crowns in the classes “kauri” and “other” showed no to medium stress symptoms with an
intact crown architecture.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 29 
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2.3. Extraction and Analysis of Spectra and Spectral Separabilities

Outliers that were caused by mixed pixels, single dead branches or patches of deviant plant
material could be visually identified in Envi’s n-D Visualizer with the bands 1, 3 and 5 of a Minimum
Noise Transformation (MNF) on all 352 bands [49]. These outlier pixels were removed for each class
for test purposes. The mean signatures of kauri and associated tree species, the standard deviation and
Jeffries–Matusita separability were calculated both with and without the removal of outlier pixels.

A Random Forest classification of kauri and 10 neighbouring tree species was calculated with
a 10-fold cross-validation in 10 random repetitions. Only crowns larger than 5 m diameter with no
or slight stress symptoms were included, to reduce the confusion with mixed pixels and declining
foliage. A randomly spread subsample was extracted from the more frequent classes to match the
species distribution in the study areas. The results were presented in a confusion matrix.

2.4. Band and Indices Selection

The aim of the selection process was to identify a set of 4–8 wavelengths and derived indices to
distinguish the three target classes. Multispectral sensors usually feature up to six bands, but since an
eight-band multispectral sensor was available, a maximum of eight bands for the index combinations
was included in the analysis. This objective has two tasks:

1. separate “dead/dying trees” from less symptomatic “kauri” and “other” canopy vegetation; and
2. distinguish “kauri” from “other” canopy vegetation.

Initially, 52 indices were calculated on the 352 selected hyperspectral bands. In noisy areas of the
spectrum, the values of three neighbouring bands were averaged. Indices with a high correlation (>0.98
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or <-0.98) were removed by reducing the number of bands and keeping the best performing indices.
For the attribute selection, several ranker methods (Correlation, GainRatio, InfoGain, Symmetrical
Uncertainty and Principal Component) were combined in WEKA [50] by applying a weight according
to the ranking results. The final combinations with 4–8 bands were identified with a Wrapper Subset
Evaluator and the attribute importance for a Random Forest classification. The same selection process
was repeated with indices in only the visible to NIR1 spectral range (VNIR1), up to 970 nm.

2.5. Selection and Parametrisation of the Classifier

Random Forest (RF) and Support Vector Machine (SVM) have been used successfully for tree
classification in several studies [51–54]. As non-parametric classifiers, they do not require a normal
distribution of the reference data and are well suited to handle a large number of attributes and high
variability in the classes [55,56]. The SVM separates the classes by constructing a hyperplane based on
support vectors at the outer class edges [57]. The parameters (cost: 1000, gamma: 0.1) were defined in
WEKA with the GridSearch package [58]. The Sequential Minimal Optimization function in WEKA for
the SVM analysis could handle the three target classes by using pairwise classification.

The RF classifier combines a large number of decision trees based on bootstrap samples with an
ensemble learning algorithm [51]. A random selection of a given number of features is used to split
each node in the RF implementation in WEKA. The final model is based on the number of similar
outcomes (“votes”) from all decision trees [59]. The parameters were systematically tested, and the
highest accuracies could be achieved with 500 trees, two attributes per node and a maximum tree
depth of 40. The performances of both classifiers with the defined parameters were tested in a five-fold
random split of all sunlit pixels with 20 repetitions. As expected, the use of alternative classifiers
(Maximum Likelihood, J48 decision tree) yielded inferior results in comparison to RF and SVM.

2.6. Tests to Further Improve the Accuracy

The default classification was calculated on the defined band selections and parameters. Several
tests were conducted to improve the accuracies:

• resampling of the original bandwidths to 10 nm, 20 nm and 30 nm;
• addition of three selected texture values on the 800 nm band (data range (7 kernel (k)), variance

(7 k) and second moment (3 k)), following the procedure for the indices’ selection;
• addition of a LiDAR CHM as a layer for the classification;
• separate classifications for low and high stands; and
• removal or reclassification of outlier pixels in the training set.

The final accuracies were calculated pixel-based with test pixels in all crowns. Producer’s and
user’s accuracies were determined for the three target classes as the mean values from all repetitions in
the RF classifications.

3. Results and Interpretations

3.1. Results Objective 1: Kauri Spectrum

Compared to the mean spectra of other canopy vegetation, the mean spectra of kauri pixels
(Figure 4) show a slightly lower reflectance in the green part of the spectra and lower signals in all
spectral regions. The most distinctive feature in the kauri spectrum is a steep ascend from 1000 nm to
1070 nm with a long descent to the absorption feature at 1215 nm. The bands of the NIR2 range are
the most important for kauri identification, followed by the NIR1 and SWIR1 (Figures 4 and 5). The
spectra of very small kauri crowns (<3 m DM) differ slightly from larger kauri (>4.8 m DM) with a
Transformed Divergence value of 1.95 [60].
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Figure 5. Jeffries–Matusita separability [61] of the three target classes for different spectral ranges.
A value larger than 1.9 indicates a high separability. The analysis was based on MNF transformations
for all bands in the different spectral ranges.

With a Jeffries–Matusita value of over 1.9 [61], the pixel-based spectra of 21 other species can all
well be separated from the pixel-based kauri spectra (Table A2). The separability increases after the
removal of outlier pixels. The main species that are incorrectly classified as kauri are rimu, tanekaha,
rewarewa, tōtara, miro and kawaka (Table A2). These species show similar spectral features to the
kauri spectrum with the long descent in the NIR2 range and lower SWIR values (Figure 6). The spectra
of species with a high spectral separability from kauri, such as flax, kanuka, tree fern and pohutukawa
have higher reflectance features in the VIS, NIR and SWIR range and a lower descent to the 1215 nm
water vapour window (Figure 7).
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Figure 6. Mean spectra of kauri (thick black line) and six selected other canopy species (grey) that got
most easily confused with kauri. The number of pixels (pix) used to generate the mean spectra is given
in parentheses. The spectra of these species show the lowest separability from the kauri spectrum in
this study (see Table A2).
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Figure 7. Mean spectra of kauri (black) and five other canopy species (grey) that have the highest
separabilities from the kauri spectrum in this study (see Table A2). The number of pixels (pix) used to
generate the mean spectra is given in parentheses.

The overall high separability of kauri with neighbouring species could also be confirmed in a
classification of kauri and 10 other tree species on the full spectral range of the AISA image (Table 2).
Only non-symptomatic crowns larger 5 m diameter were chosen to avoid confusion caused by mixed
pixels and declining foliage. The overall accuracy of 94.8% and user’s accuracies from 98.1% for rata to
98.7% for kauri, confirm the high spectral separability of kauri and also between the selected 10 tree
species. Most species show high producer’s accuracies of over 93% with 99.1% for kauri. However,
tōtara, rewarewa, tanekaha and miro have the lowest producer’s accuracies: from 58% for rewarewa to
77% for miro.
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Table 2. Confusion matrix and user’s and producer’s accuracies for a RF classification of kauri and ten neighbouring tree species on the full hyperspectral range of
the AISA image (first 25 bands of a 35 band MNF transformation) evaluated with a 10-fold cross-validation for the seed value 1. Only sunlit pixels of trees with a
minimum diameter of 5 m were chosen to avoid shadows and to reduce the effects of mixed pixels. The selected crowns were either non-symptomatic or showed only
mild symptoms of stress.

Classified

Classified As –> Kauri Kahikatea Totara Kanuka Rimu Rewarewa Tanekaha Rata Miro Puriri Pohutu-kawa Total Producers Accuracy

Reference

Kauri 7412 1 2 0 50 0 1 13 0 0 0 7479 99.1

Kahikatea 4 2043 1 10 65 3 0 11 4 7 0 2148 95.1

Totara 22 11 903 5 49 2 1 182 6 5 8 1194 75.6

Kanuka 3 6 1 3191 21 0 2 65 0 1 17 3307 96.5

Rimu 25 36 6 14 4446 5 0 97 8 7 0 4644 95.7

Rewarewa 13 38 5 7 18 229 0 81 1 6 4 402 57.0

Tanekaha 6 9 11 3 15 0 204 38 0 0 0 286 71.3

Rata 6 7 4 2 41 1 0 4988 15 24 11 5099 97.8

Miro 9 6 21 1 25 3 0 49 381 1 4 500 76.2

Puriri 0 8 0 5 2 3 0 34 1 1440 22 1515 95.0

Pohutukawa 7 0 0 45 3 0 0 46 0 44 1964 2109 93.1

Total 7507 2165 954 3283 4735 246 208 5604 416 1535 2030 28,683

Users Accuracy 98.7 94.4 94.7 97.2 93.9 93.1 98.1 89.0 91.6 93.8 96.7 94.8
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The category “dead/dying” was difficult to define from the classes “kauri” and “other” with user’s
accuracy of 80.3% and a producer’s accuracy of only 52.1% in the final setup. In a test with aggregated
percentages of the classes per reference crown, the producer’s accuracy for the class “dead/dying”
could be improved to 75.5% for a minimum threshold of 15% crown area defined as “dead/dying”. The
main characteristic features of the spectra of dead/dying trees are a lower chlorophyll absorption in the
red region (around 670 nm), a lower reflectance of green leaf scattering in the NIR1 region (around
800 nm), a blue shift of the red edge point and overall high values in the SWIR region (Figure 5). Tests
with separate classes for incorrectly classified pixels as well as the inclusion of shadow pixels gave no
improvement for the “dead/dying” class.

3.2. Results Objective 2: Indices Selection

A preselection of 13 best performing indices over the whole spectrum is described in Error!
Reference source not found., and their position in relation to the mean spectra of the target classes is
illustrated in Figure 8. Figure 9 presents the performance of each index to identify the class “dead/dying”
and to distinguish “kauri” from “other” canopy vegetation, with the best resulting combinations
shown in Figure 10. A paired t-test for the resulting accuracies with a p-value of 0.05 confirmed that
these results and thereby the ranking of index combinations are significant.

For a four-band multispectral sensor, the highest performance of 90.1% OA (Figure 10) could
be achieved with four indices, based on bands in the VIS (670 nm), NIR1 (800 nm) and NIR2 region
(1074 and 1209 nm). The combination of three indices on the red and NIR1 bands helped to identify
the class “dead/dying” (Figure 9). The NIR 2 spectral range proved to be the most important for the
identification of kauri followed by the NIR1, SWIR1, VIS and SWIR2 spectral ranges (Figures 4 and 11).
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Figure 11. RGB images of the three first bands of MNF transformations [49] from: (a) the VIS to NIR1
spectral range (431–970 nm); (b) VIS to NIR2 (431–1327 nm); and (c) the full spectral range from VIS to
SWIR (431–2337 nm). The importance of the NIR2 and SWIR spectrum is visible in the higher colour
contrast of kauri crowns compared to the VNIR image. The numbers in the kauri polygons indicate the
stress symptom class for the crown with 1 = non-symptomatic and 5 = dead.

The best distinction between kauri and other canopy vegetation could be achieved with a
normalised index (mNDWI-Hyp, Figure 12) that captures the distinctive long descent in the NIR2
spectrum. It was first described as an alternative to a Normalised Water Index (NDWI) adapted to
Hyperion data [59] and was further modified in this study by using the natural logarithm values to
address outliers (after [60]).
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Figure 12. Histograms for selected indices on sunlit pixels for all crown diameters, with the class
“kauri” marked in light blue, the class “dead/dying” in red and the class “other” in dark blue. (a) The
histogram for the mNDWI-Hyp index, which performed best to separate the class kauri from other
vegetation by capturing distinctive features in the NIR2 region, is shown. For the separation of the
class “dead/dying”, indices in the RED/NIR1 region are better suited, such as (b) the SR800 and (c) the
NDNI index (see Table A3 for descriptions of these indices).

Other indices that are useful to identify kauri like the Moisture Stress Index (MSI), NDWI and
Water Band Index (WBI) (Figure 9) also include bands in the NIR1 and NIR2 spectral range. However, in
combination with the best performing mNDWI-Hyp index, they did not increase the overall accuracy.

For a five-band sensor, an additional Simple Ratio Index with an extra Red Edge band at 708 nm
(SR708) increased the OA to 90.8% for all classes on all crown sizes. The combination of the SR708 with
the other three indices on the RED to NIR1 bands performed best to distinguish the class “dead/dying”
Figure 9. This five-band combination was considered the best trade-off between the number of bands
and the resulting accuracy. It was therefore used as the default combination for the development of the
finale classification method. The inclusion of further bands and respective indices only resulted in
slight improvements in the accuracy.

An additional band at 970 nm for a six-band sensor allows including a further Normalised
Difference Index (ND970) and resulted in an OA of 90.9% (Figure 10). This index was developed in
this study to describe the characteristically steep ascend in the kauri spectra from the first NIR water
vapour window at 970 nm to the reflectance feature on 1074 nm (Figure 5, Table A3).
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With seven multispectral bands, the best results of 91.3% OA could be achieved by adding the
Normalised Difference Nitrogen Index (NDNI) with two bands in the SWIR1 region (Figure 9, Table A3).
It describes the leaf nitrogen concentration in the 1510 nm band in relation to the canopy foliar mass
measured at 1680 nm, which again depends on the absorption by leaf and canopy water [62]. The kauri
spectrum shows a lower magnitude in the slope between the 1510 nm band versus the reflectance
feature at 1680 nm compared to the mean spectrum of the two other target classes (see Figure 5).

As an alternative for a seven-band sensor, the addition of a Photochemical Reflectance Index
(PRI) [63], with two bands in the green region, results in an OA of 91.2% (StD 0.19). This index
describes the photosynthetic light use efficiency by carbon dioxide uptake. It captures the slightly
lower green reflectance feature in the kauri spectrum. A test confirmed its usability on a resampled
10 nm bandwidth.

With eight spectral bands available, the highest OA of 91.3% (StD 0.2) could be achieved by
adding both the 970 nm band for the ND970 index and the two SWIR1 bands for the NDNI index to
the five bands of the default setup.

In general, the NIR2 Indices are more important to distinguish kauri than indices in the visible to
NIR1 (VNIR1) range. The best performing VNIR1 index combination for an eight-band sensor includes
bands in the 550–970 nm spectral range (Table 3). This combination resulted in 84.6% OA to distinguish
the three target classes (Figure 13). If only six bands are available, three indices on red to NIR1 bands
(675–970 nm) classified the three target classes with an OA of 78.4%.

Table 3. Overview of selected indices for the identification of the three target classes in the visible to
NIR1 spectral range (448–970 nm).

Index Abbrev. Name Equation Wavelengths Literature

RDVI (1) (2) Renormalised Difference
Vegetation Index

RDVI = (R800-R675)/
√

(R800+R675) 675 800 [64]

GM1 Gitelson and Merzlyak
Index 1 GM1 = R750/R550 550 750 [65]

SRb2 (2) Simple Ratio
Chlorophyll b2 SRchlb2 = R675/R710 675 710 [66]

LCI (1) (2) Leaf Chlorophyll Index LCI = (R850-R710)/
(R850+R675) 675 710 850 [65]

WBI (1) Water Band Index WBI = 900/970 900 970 [67]

(1) Selection with three indices; (2) The original wavelengths of the index was slightly modified to reduce the
number of bands.
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Figure 13. Overall accuracies for two selected sets of six and eight bands in the visible to NIR1 range.
The accuracies are calculated for two and three target classes both with and without an additional CHM
layer. The results are based on an RF classification with a three-fold split in 10 repetitions on 94,971
pixel values, including small crowns (<3 m diameter). The standard deviations vary from 0.12 to 0.2.
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3.3. Results Objective 3: Method Development

The final accuracies are based on an image with five wavelengths (10 nm bandwidth) and five
derived indices including the NIR2 bands, according to the recommended index selection for the whole
spectrum in the previous sections. It enabled the distinction of “kauri and dead/dying trees” from
“other canopy vegetation” (two classes) with a pixel-based overall accuracy (OA) of 93.4%. The three
classes with “dead/dying crowns” as a separated category could be identified with 91.3% OA (Table 4,
Test E). The separation of the class “dead/dying” from the class “other” poses the main challenge, while
the pixel-based user’s and producer’s accuracies for the class “kauri” are close to 95% (Table 4). These
results are based on a RF classification. The RF classifier performed with 90.9% OA for the default
setup slightly better than the SVM classifier (89.5% OA), at half of the processing time and it was easier
to optimise. The resulting maps for the final setup that was applied to independent test crowns for
the three study areas are shown in Figure 14. Crowns that were not chosen as test crowns in the 10
repetitions are marked as “unclassified”.

The accuracies for index combinations that include only bands in the visible to NIR1 range are
significantly lower with 84.6% OA for three classes on eight bands and 78% on six bands. Combining
the classes “kauri” and “dead/dying” improved the OA to 86.9% for the eight-band selection (see
Figure 13). Further improvements of about 2% could be achieved by adding a CHM layer.

The full spectral range of 25 MNF bands resulted in overall pixel-based accuracy of 93.9% for
three classes and 96.2% for two classes. Attempts to remove mixed pixels and noise by excluding an
MNF forward and backward transformation did not improve the overall accuracy.

A binning to 10 nm helped to remove noise and redundancies (Table 4, Tests B1 and B2), while
20 and 30 nm resampling proved to be too coarse to capture the small spectral windows of the
selected indices.

A separated classification for low and high stands (Table 4, Test C) improved the accuracy by
1.5%. Adding a CHM layer achieved a similar improvement, but it was not used for the final setups,
because the LiDAR data do not match the hyperspectral image sufficiently for a direct pixel-based
combination. Additional texture features based on the 800 nm NIR band gave a slight improvement in
the classification of small crowns but lowered the overall accuracy in the larger crowns. In addition,
the partial removal of outliers in the training set (Table 4, Test D) resulted in a slightly enhanced OA
of 0.7%. This method was not applied for the final accuracies because it is too elaborate for large
area applications.

Post-processing by reclassifying kauri pixels with a height lower than 4 m to the class “other”
improved wrongly classified lower shrub areas, but it requires a spatially matching CHM. The merging
of singular pixels with a majority kernel according to the stand situation improved the pixel-based
accuracy and should be considered for further analysis.
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Table 4. Overall accuracies with standard deviations of the default, test and final setups. The classifications are pixel-based with training and test data selected on all
crowns (RF, five-fold stratified random split in 10 repetitions).

2 Classes 3 Classes User’s Accuracy Producer’s Accuracy
All DM ≥3 m <3 m All DM ≥3 m <3 m Kauri Dead/Dying Other Kauri Dead/Dying Other

Default

Test A

Training and test: all outliers
included. Image on original
bandwidths for the default

5 indices on 5 bands

92.1
(0.1)

92.5
(0.1)

66.9
(1.7)

89.9
(0.2)

90.3
(0.2)

64.6
(1.7)

93.1
(0.9)

78.7
(1.6)

86.7
(0.8)

94.3
(0.3)

45.0
(1.3)

93.0
(1.0)

Test B1 Resampling to 10 nm 93.0
(0.1)

93.4
(0.1)

67.2
(1.1)

91.0
(0.1)

91.4
(0.1)

65.0
(1.5)

Test B2 Resampling to 20 nm 92.8
(0.2)

93.2
(0.2)

67.0
(2.8)

90.7
(0.2)

91.1
(0.2)

64.7
(3.0)

Test C Separate classification for low
and high stands

93.4
(0.1)

93.7
(0.1)

70.8
(1.9)

91.4
(0.1)

91.7
(0.1)

67.5
(1.8)

Test D

Outliers removed in the
training set that confuse “kauri”

with “other” and pixels that
cause confusion with

“dead/dying” < 3 m diameter

92.6
(0.1)

93.0
(0.1)

68.3
(1.4)

90.6
(0.1)

91.0
(0.1)

65.8
(1.3)

Final

Test E

Training and test: all outliers
included. 5 bands (10 nm),

5 indices; no textures, low and
high stands separated. No

post-processing

93.4
(0.1)

93.8
(0.1)

69.0
(2.1)

91.3
(0.1)

91.7
(0.1)

66.6
(2.0)

94.6
(0.2)

80.3
(0.7)

88.3
(0.3)

94.8
(0.2)

52.1
(1.4)

94.7
(0.3)
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seed values. Overview (left) and detailed maps (right) for the Cascades (a, b), Maungaroa (c, d) and 423 
Kauri Grove area (e, f). The numbers indicate the symptom classes in kauri crowns (1 = non-424 
symptomatic, 5 = dead). 425 

Figure 14. Combined results of 10 RF classifications with a 5-fold stratified random split with different
seed values. Overview (left) and detailed maps (right) for the Cascades (a,b), Maungaroa (c,d) and Kauri
Grove area (e,f). The numbers indicate the symptom classes in kauri crowns (1 = non-symptomatic,
5 = dead).
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4. Discussion and Recommendations for Further Analysis

The use of a multispectral sensor with at least five bands in the VIS to NIR2 range is recommended
for the detection of kauri and dead/dying trees. This study confirms the findings of Asner [68], Clark,
Roberts [69] and Ferreira, Zortea [20] about the importance of the NIR spectrum for the identification
of tree species in a diverse forest environment.

Index combinations with bands only in the visible to NIR1 range (up to 970 nm) perform
significantly lower than index combinations that include NIR2 and SWIR bands. The overall accuracy
was only 84.6% for three target classes on all crown sizes in the visible to NIR1 range, compared to
89.9% accuracy for a similar setup that includes bands in the NIR2 spectrum. If only bands in the
VNIR1 spectral range are available, a combination with LiDAR attributes is recommended, ideally in
an object-based approach according to the authors of [26–28].

The characteristic high reflectance in the kauri spectrum at 1070 nm indicates a particularly high
amount of scattering of radiation at air–cell–water edges in the complex structure of the kauri foliage
and the thick kauri leaves [11,62,70]. The pronounced water vapour window at 1215 nm is caused by
a strong absorption from high leaf, respective crown water content. These results confirm the field
observations that kauri crowns are more distinct in structural features than in colour. Since there was
a lot of moisture in the forest on the flight day of the AISA sensor, the performance of the selected
indices should also be tested under dryer conditions.

Other well-performing indices to identify kauri such as the MSI and NDWI also have bands in the
NIR1 and NIR2 range and confirm the importance of structural features and water content for kauri
identification. The lower reflectance values of kauri in all spectral regions is most likely caused by the
more open crown structure in medium and large kauri compared to neighbouring species.

The main species that are incorrectly classified as kauri tend to have a similar “rough” foliage
or needle-like leaves such as rimu, tanekaha, rewarewa, tōtara, miro and kawaka (Table 4, Test B1).
Species with similar conical shapes in smaller growth stages such as tanekaha, rimu, kahikatea and
rewarewa are easily confused with small kauri. They show low producer’s accuracies from 58% for
rewarewa to 77% for miro in the individual species classification (Table 2). While rata has overall high
user’s and producer’s accuracies of 89.0% and 97.8%, it has wrongly classified pixels with all other tree
species, including kauri. This confusion is most likely caused by the fact that rata starts its growing
cycle as an epiphyte and occurs therefore as part of the foliage on other trees.

The category “dead/dying” is difficult to define because of the graded transition from the two
other classes for trees with declining foliage and a higher amount of shadow and mixed reflectance with
understory layers. In addition, canopy vegetation with a high amount of carbon fibre such as flax and
cabbage trees, wooden seed capsules on kānuka and older dry foliage on rimu were wrongly classified
as “dead/dying”. In addition, specular reflections on the smooth waxy surface of kahikatea trees and
the shiny leaves of tree ferns cause confusion with the class “dead/dying”. Higher producer’s accuracy
in a test with a crown-aggregated setup revealed that misclassification of the class “dead/dying” is
partly caused by single pixels on dead branch material in otherwise less symptomatic crowns. While
the classification of these pixels is correct, they appear as wrongly classified in the confusion matrix
because the reference is crown based.

A separated classification for low and high stands (Table 4, Test C) improved the OA about
1.5%. This can be explained by a reduced variability in the dataset after separating young trees with
dense foliage and lower shrub layers from the mature trees in the higher stands. An alternative to
consider different size classes is the direct inclusion of a CHM as an additional layer. For a pixel-based
classification, this requires a sub-pixel matching between the optical data and the CHM, which is
difficult to achieve in a varied topography with large trees.

The partial removal of outliers in the training set (Table 4, Test D) reduced the effect of mixed
pixels, especially for small crowns and resulted in a slightly enhanced OA by 0.7%. However, this
analysis is elaborate and should only be considered if it is not possible to include LiDAR data or obtain
optical data in a higher spatial resolution, which will reduce the number of mixed pixels.
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The 1 m pixel size of the AISA Fenix image put some constraints on the analysis of crowns with a
diameter smaller than 3 m, with an overall accuracy of 66.6% in the final setup (Table 4, Test E). The
identification of small crowns requires a higher spatial resolution, ideally ≤30 cm, to avoid the effect of
mixed pixels.

While some spaceborne hyperspectral sensors cover the recommended bands in the NIR2, their
spatial resolution of, e.g. 30 m for the Prisma [71] and the EnMAP mission [72] is too coarse for
individual tree crown identification. For larger pixel sizes, also in Landsat and Sentinel satellite images,
the detection of stands with younger kauri trees should be further investigated with a spectral unmixing
approach for homogenous stand units in combination with LiDAR attributes. The potential of the
bright green spring aspect for kauri identification could be analysed in a time series of high-resolution
satellite data.

The Random Forest classifier is very efficient to handle classes with a high spectral variability;
however, the resulting model is difficult to understand. The clear separation of the “kauri” class in the
histogram of the mNDWI index (Figure 12) indicates that a manual decision tree can be developed,
which would be easier to understand and to implement.

While the large reference dataset of kauri in different growth and symptom stages is representative
for the Waitakere Ranges, the indices and model for kauri identification should be tested and if necessary
readjusted in other kauri forests with a different amount and composition of neighbouring species.

5. Conclusions

This study is the first to analyse the spectra of kauri and the main neighbouring canopy tree species
with an airborne hyperspectral sensor on the full VIS to SWIR spectral range. The main objectives were:
(1) to describe the kauri spectra and analyse its separability from other neighbouring tree species; (2) to
identify the best spectral indices to separate the class “kauri” from “other” and “dead dying” canopy
vegetation; and (3) to define a method for classification of the three target classes that is applicable for
large area monitoring with multispectral sensors.

Kauri crowns have characteristic spectra with a steep reflectance feature in the NIR2 spectral
region at 1070 nm and a distinct descent to the water vapour windows at 1215 nm and lower
reflectance features in the green and SWIR spectral region than other canopy vegetation. The spectral
characteristics indicate that kauri crowns are more distinct in their structural than biochemical features.
The high separabilities of the kauri spectra from 21 other tree species and canopy vegetation with a
Jeffries–Matusita separability larger 1.9 could be confirmed with a high OA of 94.8% for the classification
of non-symptomatic crowns larger 5 m diameter of kauri and 10 other tree species.

For the use on a five-band multispectral sensor, five indices (Table A3) in the VIS to NIR2 range
performed best to distinguish the three target classes “kauri”, “dead/dying trees” and “other canopy
vegetation”. They are suitable for multispectral area-wide forest mapping.

The Random Forest classifier performed slightly better than Support Vector Machine. The final
results with 91.7% OA are based on a separated Random Forest classification of low and high forest
stand, a binning to 10 nm bandwidth and the removal of very small crowns (<3 m diameter). The class
“kauri” could be discriminated with high user’s and producer’s accuracies of 94.6% and 94.7% from
other canopy vegetation by using the selected five bands from the red spectrum at 670–1215 nm in the
NIR2 spectrum. The main challenge was the confusion between the classes “dead/dying” and “other”
canopy vegetation. A further improvement to 93.8% OA could be achieved by combining “kauri” and
“dead/dying” trees in one class as a “kauri mask” for the further analysis, e.g. of stress symptoms.
Additional indices enhance the overall accuracy only slightly, up to 0.6% for an eight-band sensor.

The method for accurate, cost efficient, wall-to-wall mapping of kauri trees presented in this study
has important implications for the monitoring of kauri dieback disease and the implementation of
measures to control disease over the entire distribution of New Zealand’s native kauri forests.
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Appendix A

Table A1. Number of crowns and sunlit/shadow pixel for all reference data used in the analysis sorted
according to the main classes and species resp. vegetation groups.

Common Name Scientific Name Crowns Pixels (1)

kauri
kauri Agathis australis (D.Don) Lindl. ex Loudon 1483 57,700

kauri group/stand Agathis australis (D.Don) Lindl. ex Loudon 9 850

dead/dying
kauri dead/dying Agathis australis (D.Don) Lindl. ex Loudon 326 5329

unknown dead/dying NN 91 1937
other dead/dying NN 22 839

other 1. priority

kahikatea Dacrycarpus dacrydioides (A.Rich.) de Laub. 87 2932
kanuka Kunzea spp. 218 4224

miro Prumnopitys ferruginea (D.Don) de Laub. 21 780
pohutukawa Metrosideros excelsa Sol. ex Gaertn. 52 2273

puriri Vitex lucens Kirk 40 1741
rata Metrosideros robusta A.Cunn. 102 6504

rewarewa Knightia excelsa R.Br. 93 1082
rimu Dacrydium cupressinum Sol. ex G.Forst 226 10,841

tanekaha Phyllocladus trichomanoides G.Benn ex D.Don 126 964

taraire Beilschmiedia tarairi (A.Cunn.) Benth. &
Hook.f. ex Kirk 11 253

taraire/puriri NN 3 79
tōtara Podocarpus totara D.Don 37 1761

other 2. priority

broadleaf mix NN 16 370
cabbage tree Cordyline australis (G.Forst.) Endl. 25 302
coprosma sp. Coprosma spp. 56 790

flax Phormium tenax J.R.Forst. & G.Forst. 3 91
karaka Corynocarpus laevigatus J.R.Forst. & G.Forst. 4 73
kowhai Sophora spp. 5 119
kawaka Libocedrus plumosa (D.Don) Sarg. 4 84
matai Prumnopitys taxifolia (Sol. ex D.Don) de Laub. 3 103
nikau Rhopalostylis sapida H.Wendl. & Drude 27 431

other pine trees NN 4 360
pukatea Laurelia novae-zelandiae A.Cunn. 8 215

shrub mix (nikau, tree fern,
cabbage . . . ) NN 13 1346

tawa Beilschmiedia tawa (A.Cunn.) Benth. & Hook.f.
ex Kirk 23 965

tree fern Cyathea spp. 20 294
other species (not kauri) NN 7 406

Total 3165 106,028

(1) In total, 10,834 shadow pixels, 95,194 sunlit pixels.
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Appendix B

Table A2. Spectral separability and confusion of the class “kauri” with “other tree species”. The
Jeffries–Matusita separability is given both for all sunlit pixels and a pixel set with removed outliers. A
value over 1.9 indicates a high spectral separability.

“Other”
Classified as

“Kauri”

Jeffries–Matusita
Separability to the Kauri

Spectrum
Confusion of Kauri with other Species (2)

Outliers
Removed

All Sunlit
Pixels

Mean No. of
Confused Pixels

Mean Percent
Confused

Mean No. of
Test Pixels

rimu (1) 1.948 1.995 73.3 0.2% 1821.1

totara (1) 1.929 1.979 50.3 1.1% 321.6

other pine
species (1) (3) 1.997 2.000 34.2 4.3% 88.6

tanekaha (1) 1.860 1.992 27.7 2.1% 169.5

rata 1.989 1,998 25.9 0.3% 1189.3

rewarewa (1) 1.968 1.995 8.8 2.1% 175.6

miro 1.960 1.995 8.4 2.6% 139.8

kahikatea 1.983 1.993 6.4 0.7% 530.5

pohutukawa 1.997 1.999 4.6 0.8% 441.8

coprosma sp. NN NN 4.3 3.4% 143.3

kawaka 1.999 2.000 3.6 4.1% 709

tawa 1.996 2.000 1 1.6% 114.9

puriri 1.990 1.999 0.9 0.9% 235.7

scrub mix 1.988 1.997 0.9 4.9% 62.6

karaka 2.000 2.000 0.7 15.8% 9

nikau 1.998 2.000 0.6 1.6% 28.1

pukatea NN NN 0.6 3.9% 18.4

tree fern 2.000 2.000 0.3 2.1% 8.7

taraire 1.990 1.999 0.2 2.1% 7.7

broadleaf mix NN NN 0.1 0.2% 5.8

other (not
kauri) NN NN 0.1 0.4% 2.6

kanuka 1.996 2.000

no confusion of kauri
with these species

flax 2.000 2.000

kanuka
flowering 2.000 2.000

kowhai 2.000 2.000

(1) Main species that were confused with kauri; (2) Mean values of a Random Forest classification in a five-fold split
in 10 repetitions; (3) Planted pine trees close to the Piha settlement, without species identification.
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Appendix C

Table A3. Selected indices for the detection of kauri and dead/dying trees.

Name Equation Name, Description
(Sensitive to . . . ) Literature

Selected indices for a 5-band sensor

SR800 (1) = R800
R670

Simple Ratio 800/670
. . . chlorophyll concentration and Leaf

Area Index (LAI)
[73]

SR708 = R670
R708

Simple Ratio 670/800
. . . chlorophyll concentration and LAI

[66]
(modified)

RDVI (1) = R800−R670
√

R800+R670

Renormalised Difference Vegetation
Index

. . . chlorophyll concentration and LAI
[64]

NDVI (1) = R800−R670
R800+R670

Normalised Difference Vegetation Index
. . . chlorophyll concentration and LAI [74]

mNDWI-Hyp =
log(R1074)−1

− log(R1209)−1

log(R1074)−1+ log(R1209)−1

Modified Normalised Difference Water
Index – Hyperion

. . . vegetation canopy water content
and canopy structure

[75]

Additional indices for a 6–8-band sensor

ND970 = R1074−R970
R1074+R970

Normalised Difference 1074/970
. . . vegetation canopy water content

and canopy structure
This study

PRI = R531−R570
R531+R570

Photochemical Reflectance Index
. . . photosynthetic light use efficiency of

carotenoid pigments
[63]

NDNI =
log(R1510)−1

− log(R1680)−1

log(R1510)−1+ log(R1680)−1
Normalised Nitrogen Index
. . . canopy nitrogen [76]

Other selected indices

WBI = R970
R900

Water Band Index
. . . relative water content at leaf level [67]

MSI = R1599
R819

Moisture Stress Index
. . . moisture stress in vegetation [77]

NDWI = R860−R1240
R860+R1240

Normalised Difference Water Index
. . . total water content [78]

NDLI =
log(R1754)−1

− log(R1680)−1

log(R1754)−1+ log(R1680)−1
Normalised Difference Lignin Index
. . . leaf and canopy lignin content [79]

CAI =0.5*(2000 + 2200) − 2100 Cellulose Absorption Index
. . . cellulose, dried plant material [80]

(1) The value for the R800 band was averaged with the values of the two neighbouring bands, to reduce noise.
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51. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions.
ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]

52. Dalponte, M.; Ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree species classification in boreal forests
with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2632–2645. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2013.05.017
http://dx.doi.org/10.14358/PERS.78.10.1079
http://dx.doi.org/10.1080/01431160500285076
http://dx.doi.org/10.1371/journal.pone.0118403
http://www.ncbi.nlm.nih.gov/pubmed/26153693
http://dx.doi.org/10.1016/j.rse.2016.08.013
http://dx.doi.org/10.1080/01431160701736471
http://www.knowledgeauckland.org.nz
http://dx.doi.org/10.1007/s11258-014-0432-x
http://dx.doi.org/10.1016/j.geoderma.2005.10.004
https://www.linz.govt.nz/land/maps/topographic-maps/topo50-maps
https://www.linz.govt.nz/land/maps/topographic-maps/topo50-maps
http://dx.doi.org/10.1016/j.jag.2016.06.005
https://data.linz.govt.nz/layer/95497-auckland-0075m-urban-aerial-photos-2017/
http://dx.doi.org/10.1109/TGRS.2003.813206
http://www.rese.ch/products/parge/
http://dx.doi.org/10.1016/j.isprsjprs.2013.02.003
http://dx.doi.org/10.1109/36.3001
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1109/TGRS.2012.2216272


Remote Sens. 2019, 11, 2865 25 of 26

53. Fassnacht, F.E.; Neumann, C.; Förster, M.; Buddenbaum, H.; Ghosh, A.; Clasen, A.; Joshi, P.K.; Koch, B.
Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three
central European test sites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2547–2561. [CrossRef]

54. Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network
classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50,
144–154. [CrossRef]

55. Bollandsås, O.M.; Maltamo, M.; Gobakken, T.; Næsset, E. Comparing parametric and non-parametric
modelling of diameter distributions on independent data using airborne laser scanning in a boreal conifer
forest. Forestry 2013, 86, 493–501. [CrossRef]

56. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY,
USA, 2013; Volume 112.

57. Bruzzone, L.; Chi, M.; Marconcini, M. A novel transductive SVM for semisupervised classification of
remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3363–3373. [CrossRef]

58. Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines [EB/OL]. 2001. Available online:
https://www.csie.ntu.edu.tw/~{}cjlin/libsvm/ (accessed on 6 May 2019).

59. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
60. Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999; Volume 3.
61. Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. Ser. A.

Math. Phys. Sci. 1946, 186, 453–461.
62. Serrano, L.; Penuelas, J.; Ustin, S.L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from

AVIRIS data: Decomposing biochemical from structural signals. Remote Sens. Environ. 2002, 81, 355–364.
[CrossRef]

63. Gamon, J.; Penuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in
photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [CrossRef]

64. Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance
measurements. Remote Sens. Environ. 1995, 51, 375–384. [CrossRef]

65. Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using
Eucalyptus leaves. J. Plant Physiol. 1999, 154, 30–36. [CrossRef]

66. Datt, B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a + b, and total carotenoid content in
eucalyptus leaves. Remote Sens. Environ. 1998, 66, 111–121. [CrossRef]

67. Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator
of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [CrossRef]

68. Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ.
1998, 64, 234–253. [CrossRef]

69. Clark, M.L.; Roberts, D.; Clark, D. Hyperspectral discrimination of tropical rain forest tree species at leaf to
crown scales. Remote Sens. Environ. 2005, 96, 375–398. [CrossRef]

70. Hill, J. State-of-the-Art and Review of Algorithms with Relevance for Retrieving Biophysical and Structural
Information on Forests and Natural Vegetation with Hyper-Spectral Remote Sensing Systems. In Hyperspectral
algorithms: report in the frame of EnMAP Preparation Activities; Kaufmann, H., Ed.; Scientific Technical Report
(STR); 10/08; Deutsches GeoForschungsZentrum GFZ: Potsdam, Germany, 2010.

71. Loizzo, R.; Guarini, R.; Longo, F.; Scopa, T.; Formaro, R.; Facchinetti, C.; Varacalli, G. PRISMA: The Italian
hyperspectral mission. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote
Sensing Symposium, Valencia, Spain, 22–27 July 2018.

72. Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.;
Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation.
Remote Sens. 2015, 7, 8830–8857. [CrossRef]

73. Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer 1. Agron.
J. 1968, 60, 640–643. [CrossRef]

74. Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation
(Green Wave Effect) of Natural Vegetation; NASA Technical Report; Texas A&M University: College Station, TX,
USA, 1973.

http://dx.doi.org/10.1109/JSTARS.2014.2329390
http://dx.doi.org/10.1080/22797254.2017.1299557
http://dx.doi.org/10.1093/forestry/cpt020
http://dx.doi.org/10.1109/TGRS.2006.877950
https://www.csie.ntu.edu.tw/~{}cjlin/libsvm/
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/S0034-4257(02)00011-1
http://dx.doi.org/10.1016/0034-4257(92)90059-S
http://dx.doi.org/10.1016/0034-4257(94)00114-3
http://dx.doi.org/10.1016/S0176-1617(99)80314-9
http://dx.doi.org/10.1016/S0034-4257(98)00046-7
http://dx.doi.org/10.1080/01431169308954010
http://dx.doi.org/10.1016/S0034-4257(98)00014-5
http://dx.doi.org/10.1016/j.rse.2005.03.009
http://dx.doi.org/10.3390/rs70708830
http://dx.doi.org/10.2134/agronj1968.00021962006000060016x


Remote Sens. 2019, 11, 2865 26 of 26

75. Ustin, S.L.; Roberts, D.A.; Gardner, M.; Dennison, P. Evaluation of the potential of Hyperion data to estimate
wildfire hazard in the Santa Ynez Front Range, Santa Barbara, California. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002.

76. Fourty, T.; Baret, F.; Jacquemoud, S.; Schmuck, G.; Verdebout, J. Leaf optical properties with explicit
description of its biochemical composition: Direct and inverse problems. Remote Sens. Environ. 1996, 56,
104–117. [CrossRef]

77. Hunt, E.R., Jr.; Rock, B.N. Detection of changes in leaf water content using near-and middle-infrared
reflectances. Remote Sens. Environ. 1989, 30, 43–54.

78. Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens. Environ. 1996, 58, 257–266. [CrossRef]

79. Melillo, J.M.; Aber, J.D.; Muratore, J.F. Nitrogen and lignin control of hardwood leaf litter decomposition
dynamics. Ecology 1982, 63, 621–626. [CrossRef]

80. Nagler, P.L.; Inoue, Y.; Glenn, E.P.; Russ, A.L.; Daughtry, C.S.T. Cellulose absorption index (CAI) to quantify
mixed soil–plant litter scenes. Remote Sens. Environ. 2003, 87, 310–325. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0034-4257(95)00234-0
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.2307/1936780
http://dx.doi.org/10.1016/j.rse.2003.06.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Research Context 
	Objectives and Approach 

	Materials and Methods 
	Study Area 
	Data and Data Preparation 
	Extraction and Analysis of Spectra and Spectral Separabilities 
	Band and Indices Selection 
	Selection and Parametrisation of the Classifier 
	Tests to Further Improve the Accuracy 

	Results and Interpretations 
	Results Objective 1: Kauri Spectrum 
	Results Objective 2: Indices Selection 
	Results Objective 3: Method Development 

	Discussion and Recommendations for Further Analysis 
	Conclusions 
	
	
	
	References

