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Abstract: Ship detection plays an important role in many remote sensing applications. However,
the performance of the PolSAR ship detection may be degraded by the complicated scattering
mechanism, multi-scale size of targets, and random speckle noise, etc. In this paper, we propose
a ship detection method for PolSAR images based on modified faster region-based convolutional
neural network (Faster R-CNN). The main improvements include proposal generation by adopting
multi-level features produced by the convolution layers, which fits ships with different sizes, and
the addition of a Deep Convolutional Neural Network (DCNN)-based classifier for training sample
generation and coast mitigation. The proposed method has been validated by four measured datasets
of NASA/JPL airborne synthetic aperture radar (AIRSAR) and uninhabited aerial vehicle synthetic
aperture radar (UAVSAR). Performance comparison with the modified constant false alarm rate
(CFAR) detector and the Faster R-CNN has demonstrated that the proposed method can improve the
detection probability while reducing the false alarm rate and missed detections.

Keywords: Polarimetric synthetic aperture radar (PolSAR); ship detection; deep convolutional neural
network (DCNN)

1. Introduction

As one of the most important applications in remote sensing, ship detection has played significant
roles in commercial, fishery, vessel traffic services, and military applications, etc. [1–3]. Particularly,
polarimetric synthetic aperture radar (PolSAR) is vital in ship detection because it permits good target
characterization and guarantees effective detection regardless of illumination and weather conditions
by capturing massive structural and textural information. Therefore, ship detection from PolSAR
images has drawn increasing attention in recent years. Featured by adaptive detection threshold,
CFAR has become one of the most popular ship detectors [1–6]. However, its performance strongly
depends on statistical modeling of the local background clutter and empirical sliding window size (i.e.,
the target window, protect window, and background window). As we all know, heterogeneous clutter
and interfering targets often lead to inaccurate estimations and biased modeling in practice. To deal
with the intrinsic drawbacks of the CFAR detector, modified CFAR detectors have been proposed,
where the heterogeneous clutter is reduced by advanced background estimation method [7] and the
problem of statistical contamination, i.e., the sliding window contains one or more interfering targets,
is solved by truncated statistics [8,9]. Additionally, other ship detectors have been developed by
exploiting polarimetric scattering characteristics; e.g., polarization entropy, cross entropy, the degree

Remote Sens. 2019, 11, 2862; doi:10.3390/rs11232862 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-0329-7124
http://www.mdpi.com/2072-4292/11/23/2862?type=check_update&version=1
http://dx.doi.org/10.3390/rs11232862
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 2862 2 of 27

of polarization, and eigenvalue [10–12], etc. However, the success of the available methods lies in
effective feature extraction, which usually requires rich prior knowledge that is hard to obtain.

DCNN can automatically extract hierarchical features from abundant training data, and it has
been successfully applied to image classification [13] and object detection [14–16]. For example,
Simonyan et al. proposed a visual geometry group (VGG) network and investigated the effect of
the convolutional network depth on the accuracy in the large-scale image recognition setting [13].
Girshick et al. proposed a fast and precise detector; namely, region-based convolutional neural network
(R-CNN) [14]. After that, he proposed a more precise object detection method termed “fast R-CNN” by
using a multi-task loss [15]. To boost the detection performance, Ren et al. presented the Faster R-CNN,
in which it enables nearly cost-free region proposals by adding a Region Proposal Network (RPN),
and shares full-image convolutional features with the detection network [16]. Such convolutional
neural network architecture has achieved superior performance over task-specific feature extractors
for multi-class remote sensing data classification and object detection [17–23], especially for PolSAR
image. Maggiori et al. presented a large-scale remote sensing image classification based on DCNN [17].
Kang et al. proposed a modified faster R-CNN based on CFAR algorithm. It takes the object
proposals generated by faster R-CNN for the guard windows of CFAR algorithm to improve the
detection performance for small ships [18]. It may perform well in homogeneous areas, while the
detection performance will degrade in the heterogeneous area due to the drawback of the CFAR.
Lin et al. presented a new network architecture based on the faster R-CNN to further improve the
detection performance by using squeeze and excitation mechanism [19]. The detection result shown
in [19] demonstrates the effectiveness of the proposed ship detector, but there are many missed ships.
Meanwhile, the precision of the bounding boxes generated by the proposed ship detector is low.
Chen et al. established a polarimetric-feature-driven deep CNN detection and classification scheme
by incorporating expert knowledge of target scattering mechanism interpretation and polarimetric
feature mining [20]. Zhang et al. adopts the idea of deep networks and presents a fast regional-based
convolutional neural network (R-CNN) method to detect ships from high-resolution remote sensing
imagery [21]. Fan et al. proposed a pixel-wise detection for compact polarimetric SAR images based on
a fully convolutional network [22]. Motivated by these advancements, the deep convolutional neural
network (DCNN) is a promising tool for achieving object detection on PolSAR images.

Although Faster R-CNN has been successfully applied to object detection and recognition from
optical images, some problems remain to be solved for its successful application in PolSAR target
detection: (1) the interpretation and understanding of SAR images differ from optical images due to
inherent scattering and imaging mechanisms, and SAR/PolSAR targets are easily contaminated by
speckle noise and strong sea clutters; (2) in the AIRSAR and UAVSAR PolSAR images, ships appear as
bright spots without refined structure characters; therefore, ship detection performances are severely
affected by coast. (3) it is difficult to detect small ships by proposals generated from the feature maps
output by the last shared convolutional layer for the deep network [16] because the size of proposals
depends on the total stride, while the total stride in the deep network is generally larger than the size
of the small ships.

To deal with the problems mentioned above, we proposed a DCNN-based ship detector for
PolSAR images. The proposed ship detector consists of the following steps: (1) convert the multi-look
complex (MLC) PolSAR data into a 3-D real vector by utilizing Pauli decomposition, which serves
as the input of the modified Faster R-CNN, then segment the PolSAR image into sub-samples with
a sliding window of fixed size. Meanwhile, random translation and multi-scale rotation (180◦ and
flipping from left to right) are performed on original samples to enrich the training dataset; (2) extract
interesting ship samples using a DCNN-based classifier; (3) apply modified Faster R-CNN to detect
ships from extracted sub-samples; (4) For ships that are segmented into two or more sub-samples, fuse
the detection windows according to the geometric relationships. Additionally, we merge proposals
generated by adopting multi-level features produced by the convolution layers.
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The major contributions include that the modified Faster R-CNN is proposed to achieve fast
and accurate ship detection for ships with differing size. Meanwhile, the proposed ship detector can
mitigate the influence of azimuth ambiguities on ship detection, and has exhibited superior detection
performance for the heterogeneous PolSAR images.

The organization of this paper is listed as follows: Section 2 provides detailed description of the
ship detection method and gives an introduction of the overall architecture, as well as the components
of the proposed method. Section 3 presents experimental results on measured AIRSAR and USVSAR
datasets, and Section 4 concludes the paper.

2. Theory and Methodology

The workflow of the proposed ship detector is shown in Figure 1. There are four core processes
involved: preprocessing, DCNN based sea-coast-ship classifier, modified Faster R-CNN ship detector,
and the target fusion. Firstly, in the preprocessing stage, we convert the covariance matrix of the PolSAR
data to real vector by Pauli decomposition. To enrich the training dataset and suppress overfitting for
DCNN, we segment the PolSAR image with sliding windows and do multi-scale rotation to segmented
samples. Meanwhile, we apply the box-car multi-look processing for speckle noise reduction. Secondly,
we designed a sea-coast-ship classifier based on deep convolutional neural network to extract samples
containing ships. Thirdly, we use the modified Faster R-CNN detector to detect ships of the selected
samples by using sea-coast-ship classifier. Finally, we merge the detection results according to the
geometrical relationship of samples and output the final detection results. Below, we will discuss
them sequentially.  
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Figure 1. Workflow of the deep convolutional neural network (DCNN)-based ship detector.

2.1. Preprocessing

To feed PolSAR data into real-valued DCNN, the Pauli decomposition are utilized to generate
color-coded images. The Pauli decomposition can express the Sinclair scattering as elementary
scattering mechanisms, and they are given by
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Specifically, a represents single scattering from a plane surface, b and c represent dihedral
scattering with relative orientations of 0◦ and 45◦, respectively, and the final elements are all the
antisymmetric components of the scattering S matrix. The corresponding color-coded image of the
Pauli decomposition with Red = |a|2, Green = |b|2, and Blue = |c|2. Then, the input can be expressed as

Input =
[
|a|2, |b|2, |c|2

]
(2)

In the UAVSAR and AIRSAR datasets, the number of PolSAR images containing ships are usually
limited. Meanwhile, the image resolution is low and most of the ships are small in size. To avoid
severe overfitting and improve detection performance, it is required to generate sufficient samples by
segmenting the PolSAR image with sliding windows. According to the prior knowledge of ship size in
the UAVSAR and AIRSAR datasets, we set the segmentation size and stride size at 64× 64 and 8 pixels,
respectively, in the training stage. The stride is set to 64 or 32 pixels in the testing stage. To further
enrich the training data and suppress overfitting for DCNN, we do multi-scale rotation to segmented
samples, and the multi-scale rotation mainly refers to rotating the samples 180 degrees and flipping
the sample from left to right.

Illustratively, Figure 2 shows some Pauli images of the three types of targets, each image at
1090 × 5111 pixels. Figure 2a shows Pauli images of coast, Figure 2b shows Pauli images of sea, and
Figure 2c shows Pauli images containing ships and sea. Meanwhile, some rotated Pauli images of
sub-samples are presented in Figure 3 and them are extracted from Figure 2, where the top row
corresponds to ship samples, the middle row corresponds to sea samples, and the bottom row
corresponds to coast samples. It is worth noting that the first image in Figure 2a and the second image
in Figure 2b are collected by AIRSAR in L band, while other images are collected by UAVSAR in L band.
Meanwhile, the training dataset consists of different sea states, resolution, and azimuth ambiguities
samples to make the sea-coast-ship classifier and the modified Faster R-CNN more robust.
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Figure 3. Training samples with size of 64× 64, where the top row shows ship samples, the middle row
shows sea samples, and the bottom row shows coast samples.

Additionally, severe speckle noise will appear in the PolSAR imagery and affect ships with
weak scattering due to the unique scattering and imaging mechanism for SAR. Therefore, multi-look
processing should be utilized to suppress speckle noise before image segmentation. In this paper, we
apply the simple box-car multi-look processing for speckle noise reduction, which will be proven
necessary for detection from heterogeneous PolSAR data in Section 3.

2.2. Sea-Coast-Ship Segmentation

Compared to sea surface, ships usually exhibit stronger backscattering due to their unique
double-bounce structures and large radar cross sections. On the contrary, ships and coast have similar
backscattering intensity in PolSAR images, which would prevent effective detection. Therefore, coast
samples should be removed firstly from the dataset before implementing the modified Faster R-CNN.
Common approaches to coast masking include manual operation or designing classifiers with domain
knowledge, which usually have poor performance with large computational burden. In this paper, we
propose a DCNN-based sea-coast-ship classifier to distinguish ships, coast, and sea, which extracts
ship samples automatically.

The network architecture is shown in Figure 4, which consists of 8 convolutional layers, 3
max-pooling layers, and 2 fully connected layers. The network architecture is designed by the best
performance of the classification for sea, coast, and ship [24,25]. The sea-coast-ship classifier based on
CNN is trained on the NVIDIA Titan-X GPU using caffe [26]. All the weights and biases are learned
via the mini-batch stochastic gradient descent algorithm [26], where the mini-batch size is 64, the
momentum parameter is 0.9, the weight decay parameter is 0.0005, and the learning rate is 0.001.
Meanwhile, we randomly initialize the layers by drawing weights from Gaussian distributions with
zero mean and standard deviation of 0.01, and initialize the bias by small constants; e.g., 0.1 [13].



Remote Sens. 2019, 11, 2862 6 of 27

Remote Sens. 2019, 11, x FOR PEER REVIEW  2 of 14 

 

Sh
ip

Se
a

C
oa

st

 
Figure 3. Training samples with size of 64 64× , where the top row shows ship samples, the middle 
row shows sea samples, and the bottom row shows coast samples. 

 

 

Figure 4. Architecture of the proposed classifier. 

 

Input Image

2K

4K

Classification

Regression

RPN

ROI
Pooling

Fc 
Layers

Classification

Regression

Detection Result

Convolutional layer
ReLU
Max Pooling Detection Network  

Figure 5. Architecture of Faster R-CNN. 

 

Figure 4. Architecture of the proposed classifier.

2.3. Modified Faster-RCNN

With sufficient samples, we perform ship detection by modified Faster R-CNN, which is an
improved version of Faster-RCNN specifically designed for ship detection. Originally, the Faster
R-CNN is a DCNN-based detection algorithm, and the core is the region proposal network (RPN)
that shares full-image convolutional features with the detection network. Figure 5 shows a typical
architecture of the Faster R-CNN, which mainly includes two modules: (1) a fully DCNN that generates
region proposal; and (2) the Fast R-CNN detector [15] that detects target based on region proposal
generated by the first module. Such architecture enables a unified and deep-learning-based object
detection system, which runs at near real-time frame rates and achieves satisfying performance with
object detection.
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Figure 5. Architecture of Faster R-CNN.

The performance of the state-of-the-art ship detection networks depends heavily on region
proposal algorithms; e.g., the RPN in the Faster R-CNN. The RPN simultaneously predicts a set of
rectangular object bounds with object scores. To generate a region proposal, a small network with
a spatial window of 3× 3 slides over feature maps produced by the last shared convolutional layer.
Each sub-feature included in the sliding window is then mapped to lower-dimension features, which is
fed into two sibling fully connected layers: the proposal-regression layer (termed “Proposal_bbox_pred”
in Figure 7) and the proposal-classification layer (termed “Proposal_cls_score” in Figure 7). At each
position, the small network simultaneously predicts multiple region proposals and the number of
maximum possible proposals; i.e., k. Therefore, the proposal-regression layer has 4k outputs encoding
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coordinates of k boxes, and the proposal-classification layer outputs 2k scores to give the probability of
being a ship or not a ship for each proposal. The k proposals are parameterized relative to k reference
boxes; namely, anchors. By default, the “proposals” are dense sliding windows of 4 scales (2, 4, 8, 16)
and 3 aspect ratios (1:1, 1:2, 2:1).

The detection network takes the entire image and the set of object proposals as input, and processes
the whole image with several convolutional and max pooling layers to generate feature maps. It shares
convolutional layers with RPN, where the fully connected layer demand fixed-length vectors as inputs.
Therefore, the region of interest (ROI) pooling layer utilizes max-pooling to convert features inside a
valid region of interest into a small feature map with fixed spatial extent. Figure 6 shows the structure
of an ROI pooling layer, where each valid ROI feature map is converted into a vector with fixed length.
Then, each feature vector is fed into a sequence of fully connected layers, which are finally branched
into two sibling output layers; i.e., the box-regression layer (termed “Bbox_pred” in Figure 7) and
the box-classification layer (termed “Cls_score” in Figure 7). The box-classification layer produces
softmax probability of the ships plus a catch-all “background”, and the box-regression layer outputs
four real-valued numbers to calibrate the coordinates of the boxes.

proSize = 2NumP (3)
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According to the translation-invariant property, the base proposal size defined in (3) depends
on the total stride of the last convolutional layer, where NumP is the total stride. Meanwhile, the
architecture of the Faster R-CNN should be determined by the ship size; i.e., a large ship needs a
large receptive filed to learn instinct features and generate large proposals, while a small ship needs
a relatively small receptive filed to create small proposals. Additionally, the detection resolution,
also known as the minimum detectable distance between two ships, should be equal to the base
proposal size. Obviously, the conventional Faster R-CNN fails to simultaneously detect large and
small ships in the PolSAR images. Therefore, we propose the modified Faster R-CNN, which is capable
of detecting ships of varying size. The new architecture is shown in Figure 7, where we add an
additional proposal-classification layer and proposal-regression layer after the lower-level feature
map (conv2) to generate small proposals. Meanwhile, we add an additional box-regression layer and
box-classification layer to improve the detection accuracy for small ships. It is observed that the RPN
and the detection network share the first two convolutional layers, and the modified architecture
could predict proposals with differing size from the last two shared convolutional layers. As shown
in Figure 7, we apply a small feature extraction network instead of a classical network architectures
(e.g., VGG-16 [13], ResNet-101 [27] and DenseNet [28]) to capture the low-level visual features of the
ships in the PolSAR images. These classical network architectures are designed for optical images
which have the characteristics of high resolution, large target size, and refined features. Compared
with the targets in the optical images, the targets in the PolSAR images just have some rough features
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(e.g., brightness and edge). Meanwhile, due to the low resolution of the PolSAR images of the AIRSAR
and UAVSAR, the sizes of ships usually do not match with the total stride of the classical network
architectures. For example, the total stride of VGG-16 is 16, while the ship size in the PolSAR images is
generally less than 16 × 16 pixel units. It is worth noting that the proposals generated from the Conv2
and Conv3 are conveyed to the Conv2-based and Conv3-based detection networks, respectively. Then,
the Conv2-based and Conv3-based detection networks produce softmax probability of the ships and
the coordinates of the boxes.
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the RPN and detection network share full-image convolutional features. The Faster R-CNN which
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To improve the quality of region proposals, we first segmented the PolSAR image into sub-samples
with the size of 64 × 64 pixels, and set the smallest ship size at 2 × 2 pixels. In the training stage
of RPN, we randomly sample 64 anchors in an image to compute the loss function of a mini-batch,
where the momentum parameter is set to 0.9, the decay parameter is set to 0.0005, and the learning
rate is set to 0.01. Meanwhile, the weights are initialized from Gaussian distributions with a zero
mean and standard deviation of 0.01, and the biases are initialized with a small constant of 0.1 [16].
The parameter values for setting up RPN network is determined by the best performance of the ship
detection according to the references [24,25]. The modified Faster R-CNN is trained on the NVIDIA
Titan-X GPU using caffe [26]. It takes advantage the GPUs, which makes for efficient prediction of
object bounds and objectness scores at each position. The detection network shares the convolutional
layer with RPN, and detailed architecture can be found in Figure 7. We train the detection network by
backpropagation and stochastic gradient descent. Similarly, the detection network adapts the same
parameter values as the RPN.

2.4. Target Fusion and Localization

As has been discussed previously, we segment the PolSAR image into sub-samples by the
sliding window technique to fit the input size of DCNN and improve the ship detection performance.
The stepping window structure of the segmented PolSAR image is shown in Figure 8, where the dashed



Remote Sens. 2019, 11, 2862 9 of 27

rectangle indicates the edge of the PolSAR image, and the solid rectangle indicates the non-overlapping
block-shifting segmentation window. Additionally, the black arrow denotes the shifting direction of the
sliding window. For the target that occupies more than one sliding window, the detection window is
split into red rectangles A and B. In this scenario, we need to merge them according to the geometrical
relationship of the two samples and draw a bounding box of the ship. Additionally, the rectangles
marked red and green are generated by two different detection networks shown in Figure 8; thus, we
should also merge these detection results.
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Supposing that the center coordinates (x, y), width w, and height h of the split detection windows
A and B are known a priori, which are defined by (xA, yA, wA, hA) and (xB, yB, wB, hB), respectively, then
they should satisfy the two principles given below:

(||xA − xB||1 −wA/2−wB/2 ≤ Threshold_l ) and
(∣∣∣∣∣∣yA − yB

∣∣∣∣∣∣1 ≤ Threshold_h
)

(4)(∣∣∣∣∣∣yA − yB
∣∣∣∣∣∣1 − hA/2− hB/2 ≤ Threshold_l

)
and (||xA − xB||1 <= Threshold_h ) (5)

where ‖ · ‖1 is L1-norm. The first inequality sets constraint on the two windows in the horizontal
direction, while the second one sets constraint in the vertical direction. Threshold_l is the lower bound
of the distance between two detection windows, which is determined by the detection resolution and
is experimentally set to 2. Meanwhile, Threshold_h is the higher bound of the distance between two
detection windows distance, and is set to be

Threshold_h =

(wA + wB)/2 horizontal

(hA + hB)/2 vertical
(6)

If the two detection windows satisfy merge principles given in (4) and (5), then the new detection
windows are defined by

xmin = min(xminA, xminB)

ymin = min(yminA, yminB)

xmax = max(xmaxA, xmaxB)

ymax = max(ymaxA, ymaxB)

(7)

where xmin, ymin, xmax, and ymax denote the left, top, right, and bottom coordinates of the bounding
box, respectively.
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After that, we define the new detection window to draw bounds of ships in the PolSAR image,

(xmin_c, xmax_c) = (xmin, xmax) + Windex × Ss
(ymin_c, ymax_c) = (ymin, ymax) + Hindex × Ss

(8)

where, xmin_c, xmax_c, ymin_c, ymax_c denote the coordinates of the detection window in the PolSAR
image, xmin, xmax, ymin, ymax denote the coordinates of the detection window in the segmented samples,
Windex, Hindex denote the width and height of the segmented samples, respectively, and Ss is the stride.

3. Experimental Results

In the following discussions, experimental results of four measured datasets are presented to show
the validity and the generality of the proposed method. Firstly, we illustrate the necessity of multi-look
processing for heterogeneous PolSAR data before applying the detection algorithm by comparing
the detection results of different number of looks. Meanwhile, we analyze the influence of azimuth
ambiguity on ship detection performance. Because the ground truth provided by the automatic
identification system (AIS) is unavailable, we discriminate between ships and their ambiguities by
comparing the multi-frequency data [12], and assess the UAVSAR data by comparing images of the
same scene at different time instants.

3.1. Results of AIRSAR Japan Dataset

The L-band dataset covers an area of the inland sea named Kojimawan, which is close to the Tamano
City in Japan. It was acquired on 4 October 2000 using the NASA/JPL AIRSAR instrument. The extracted
image has 797 × 741 pixels, corresponding to a resolution of 3.33 × 4.63 m (Range × Azimuth). Figure 9
shows the Pauli RGB image of this dataset, where 21 ships are marked by red rectangles. Obviously,
the PolSAR image is too large for DCNN. Therefore, we segment the image into smaller slices by the
sliding-window technique, where the stride is set as 64 pixels and the size of a slice is 64× 64. Then, the
CNN-based classifier discussed in Section 2.2 is applied for ship subsamples extraction. The CNN-based
classifier discussed in Section 2.2 achieves the state-of-the-art classification performance with 99.8%
accuracy on the real-measured data, and is utilized for ship subsamples extraction. After that, the
modified Faster R-CNN is applied to ship detection. In the training stage, it takes about 3 h to train an
accurate modified Faster R-CNN model.
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For illustration, Figure 10 shows typical detection results with Faster R-CNN, Figure 10a–d refer
to the detection results of the original PolSAR image and Figure 10e–h refer to the detection results
after multi-look processing with 9 looks. From Figure 10, it is observed that all the ships are concisely
detected and marked with red and green rectangles, which are generated by feature maps of the last
and the second last convolutional layers, respectively. It is worth noting that the Faster R-CNN, which
generates proposals from Conv3 is termed deep Faster R-CNN, and shallow Faster R-CNN generates
proposals from Conv2 (Conv2 and Conv3 are convolutional layer shown in Figure 7). Figure 10a,e
shows that the all ships are clearly detected by the deep Faster R-CNN and can be individually
distinguished, while the shallow Faster R-CNN detector miss the labeled A ship. Meanwhile, the
large-size ship in Figure 10c,g is detected by shallow and deep Faster R-CNN, while the small ship in
the right of Figure 10c,g is only detected by the shallow Faster R-CNN. The detection windows labeled
A and B with respect to Figure 10a,e, and Figure 10b,f correspond to one ship, and thus they should be
merged into a single window. Additionally, the detection proposals generated by feature maps from
different convolutional layers should also be merged. As shown in Figure 10, there are two missed
detections by using single-level feature, while robust detection performance can be achieved by using
multi-level features.
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Figure 10. Ship detection result of partial samples, where the red and green rectangles are generated
from the last two convolutional layers, respectively. (a–d) show the ship detection results of the Faster
R-CNN for original PolSAR image shown in Figure 9, and (e–h) show the ship detection results of the
Faster R-CNN for PolSAR images after multi-look processing with 9 looks.

Figure 11a,b present the merged ship detection result with respect to the shallow Faster R-CNN
and the deep Faster R-CNN, respectively. Simultaneously, the target marked with red dotted circle, pink
ellipse, and green dotted circle shown in Figure 11 are false alarm, missed ship, and roughness-detected
ship, respectively. In Figure 11a, four missed ships and no false alarms occur. Figure 11b shows that
20 ships are detected with two false alarms, and one small ship is misdetected. Note that the clutter is
detected by the deep Faster R-CNN as a ship, but it is corrected in the shallow Faster R-CNN, probably
because of the strong energy of the clutter and the lack of train samples with clutter. The ship detection
result of the modified Faster R-CNN is depicted in Figure 11c, where 21 ships are detected with two false
alarms. No missed detections occur in this case. By comparing the detection result of the traditional
Faster R-CNN, the modified Faster R-CNN achieves a better detection performance for multi-size
ships by combining different feature maps. Figure 11d shows the ship detection result with modified
CFAR, which applies the segmentation-based CFAR detector using truncation statistics for multi-look
intensity (MLI) SAR imagery [8]. For the modified CFAR detector, the detection window, truncation
ratio, confidence level, subsampling factor, and false alarm rate are set to 300× 300, 5%, 99.9%, 4, and
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10−8, respectively [8]. As shown in Figure 11d, all ships are correctly detected; however, the modified
CFAR detector misses 2 ships and four false alarms appear due to strong clutter. Figure 11e presents
the ship detection result of the SPWH detector. The SPWH detector is based on the assumption that sea
clutter presents a homogeneous polarimetric behavior, and there are only two kinds of scatterers (i.e.,
sea, ship) in the scene [12]. We can see that major ships were clearly detected by this detector. However,
there exist many false alarms marked using red dash circles, and these false alarms may be caused by
severe clutter. It is indicated that the sea with abnormal polarimetric characteristics would generate
false alarms, and we cannot simply suppose that only two kinds of scatterers existed in the scene.
Ships do not have too much appearance information in PolSAR images, and their useful visual features
(e.g., brightness and edge) can be easily captured by Conv1. Figure 11f shows the ship detection
performance of the shallow Faster R-CNN detector with the proposals generated by the Conv1 in
RPN. There are a lot of partial structures of large ships that have not been detected. It is worth noting
that the shallow Faster R-CNN generates proposals by the Conv1 in RPN that would consume a large
amount of memory, which seriously reduces the speed of target detection model training and testing.
Figure 11e shows the ship detection result of the fully convolutional network-based ship detector; there
are 5 false alarms and no misdetected ships. Meanwhile, some clutters are wrongly detected as a part of
ships marked with greed dotted circles. The detection performance shown in Figure 11e demonstrates
that the ship detector based on a fully convolutional network can’t mitigate the influence of the clutter.
The fully convolutional network-based ship detector can output pixel-wise segmentation results [22]
(sea, coast, and ship). The parameters of the fully convolutional network-based ship detector are
adopted from the reference [28], while the fully convolutional network-based ship detector utilizes the
same training data for the proposed ship detector. There are, in total, 31,892 samples with the size of
64× 64 for training the ship detector based on fully convolutional network. In Figure 11, it is shown that
the proposed modified Faster R-CNN detector had superior performance compared to the traditional
Faster R-CNN and the modified CFAR detector with the improvement of detection probability.

The training data was generated from Pauli decomposition. To demonstrate the validity of the
training data generated from Pauli decomposition, we analyze the ship detection performance with
training data generated from a different decomposition. Figure 12a shows the ship detection result
with training data generated from Cloude decomposition [29], there are 13 false alarms marked with
red dash ellipses and no ship missed detections. Figure 12b shows the ship detection result with
training data generated from Huynen decomposition [29]; there are 14 false alarms marked with red
dash ellipses and 1 missed ship was marked with a pink ellipse. By comparison, it is shown that the
modified Faster R-CNN with the training data generated by Pauli decomposition has the best ship
detection results.

Additionally, we analyzed the influence of the number of looks on the detection performance.
Figure 13 shows the detection results of the proposed detector after multi-look processing with
9 looks, 25 looks, and 49 looks, respectively. Compared to the detection result of the original PolSAR
image, the detection results after multi-look processing are more accurate. Figure 10d,h show partial
ship detection result of the original and multi-look processed PolSAR images, respectively, which
indicate that multi-look processing can suppress speckle noise and improve the detection performance.
Compared to Figure 13, the bounding box marked by the green dash ellipse in Figure 11 became
rougher. With an increasing number of looks, however, some weak ships may have been misdetected
as clutter because the multi-look processing make it look more like clutter, as shown in Figure 13c.
Therefore, the modified Faster R-CNN detector has better performance after multi-look processing
with 9 or 25 looks for the heterogeneous PolSAR images.
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detector, (c) the proposed ship detector, (d) the modified constant false alarm rate (CFAR) detector,
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convolutional network-based ship detector.
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To further validate the proposed method, the detection probability Pd [12] and the figure of merit
(FoM) [30] are introduced to perform performance evaluation quantitatively; i.e.,

Pd =
Ntd
Ngt

(9)

FoM =
Ntd(

N f a + Ngt
) (10)
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where Ntd is the number of true detections, N f a is the number of false alarms, and Ngt is the number
of ground-truth targets. From Table 1, it is shown that the proposed ship detector has performance
superior to the traditional Faster R-CNN and the modified CFAR, achieving high accuracy with
Pd = 100%, FoM = 91.7% for the Japan dataset.

The experiment is carried out on a personal computer with a 3.60-GHz Intel Core i7 processor and
64.00-GB RAM. The processing time of the shallow Faster R-CNN detector, the deep Faster R-CNN
detector, proposed ship detector, the modified CFAR detector, and the shallow Faster R-CNN using
Conv1 in RPN takes 2.53s, 2.71s, 3.03s, 201.9s, and 3.97s, respectively. The modified CFAR detector is a
segmentation-based CFAR detection algorithm based on truncated statistics for multi-look intensity
(MLI) SAR imagery. It takes around 195.3s for image segmentation due to the high computation
complexity of the modified EM (Expectation Maximization) algorithm. On the contrary, all the
parameters of the proposed ship detector are trained off-line, and thus the test stage takes much less
time than the CFAR detector. A comparison between the execution time in Table 1 demonstrates that the
proposed ship detector has a faster detection speed for complex and challenging sea clutter situations.

Table 1. Accuracy assessment for AIRSAR Japan dataset.

Method Ntd Nfa Nmiss Pd FoM Consumed Time

Shallow Faster R-CNN [16] 17 0 4 81.0% 81.0% 2.53 s

Deep Faster R-CNN [16] 20 2 1 95.2% 87.0% 2.71 s

Proposed ship detector 21 2 0 100% 91.3% 3.03 s

Modified CFAR [8] 19 3 2 90.5% 79.2% 201.90 s

Fully convolutional network based ship detector [22] 21 5 0 100% 80.7% 3.48 s

In addition, we analyzed the influence of azimuth ambiguity on the detection performance.
For the C-band measured dataset of the same scene, the extracted image has 785 × 693 pixels, and the
Pauli image is shown in Figure 14a, where the targets marked by red rectangles are ships, and those
marked by a cyan rectangle are ambiguities. There are 20 ships and 8 ambiguities.

The detection results of the shallow Faster R-CNN, deep Faster R-CNN, proposed ship detector,
proposed ship detector after multi-look processing, the modified CFAR detector, and the ship detector
based on fully convolutional network are presented in Figure 14b–e, respectively. For the modified
CFAR detector, the detection window, truncation ratio, confidence level, subsampling factor, and
specifics false alarms are separately set by 300 × 300, 5%, 99.9%, 4, and 10−8 [8]. Meanwhile, the
parameters of the modified CFAR are the same for other test dataset. There is one false alarm marked
with red dotted ellipse and one missed ship marked with pink circle in Figure 14b. As is shown in
Figure 14c, there are 3 false alarms and one missed ship. The false alarms are marked by red dotted
ellipses shown in Figure 14d, and there are no missed detections. As we can see from Figure 14e, the
ship detection performance has improved after multi-look processing, and there are two false alarms.
Figure 14f shows that there are 17 false alarms and 2 missed ships. Meanwhile, 7 ambiguities marked
by green dotted circles are misclassified as ships. Figure 14e shows that there are 13 false alarms and no
missed detections. Although the ship detector based on a fully convolutional network can mitigate the
influence of the azimuth ambiguities, it introduces more false alarms due to strong clutter. Compared
to the modified CFAR detector, the proposed ship detector has better ability in distinguishing the
ambiguities and ships because it can accurately extract different features of ships and ambiguities in
the scattering intensity. Quantitative analysis on the ship detection results is listed in Table 2, which
demonstrates that the proposed ship detector has performance superior to the modified CFAR detector,
the fully convolutional network based ship detector, and the proposed ship detector using a multi-level
feature that has better detection performance than traditional Faster R-CNN. Due to the existence of
ambiguities having an adverse impact on ship detection, it is recommended that the dataset should
undergo ambiguity removal beforehand.



Remote Sens. 2019, 11, 2862 16 of 27 

Remote Sens.2019, 3,x; doi:FOR PEER REVIEW  www.mdpi.com/journal/remotesensing 

 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Cont.



Remote Sens. 2019, 11, 2862 17 of 27

Remote Sens. 2019, 11, x FOR PEER REVIEW  2 of 8 

 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 14. C-band Japan dataset. (a) Pauli RGB image. (b) Detection result of the shallow Faster 
R-CNN detector. (c) Detection result of the deep Faster R-CNN detector. (d) Detection result of the 
proposed detector. (e) Detection result of the proposed detector after multi-look processing with 

Figure 14. C-band Japan dataset. (a) Pauli RGB image. (b) Detection result of the shallow Faster
R-CNN detector. (c) Detection result of the deep Faster R-CNN detector. (d) Detection result of the
proposed detector. (e) Detection result of the proposed detector after multi-look processing with
9-looks, (f) Detection result of the modified CFAR detector, and (g) the fully convolutional network
based-ship detector.
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Table 2. Accuracy assessment for AIRSAR Japan dataset(c-band).

Method Ntd Nfa Nmiss Pd FoM Consumed Time

Shallow Faster R-CNN [16] 19 1 1 95.0% 90.5% 4.20 s

Deep Faster R-CNN [16] 19 3 1 95.0% 82.6% 4.50 s

Proposed ship detector 20 3 0 100% 86.9% 5.30 s

Modified CFAR [8] 18 17 2 90.0% 48.6% 108.10 s

Fully convolutional network based ship detector [22] 20 13 0 100% 60.6% 3.37 s

3.2. Result of UAVSAR Gulfco Area A Dataset

The detection results on the AIRSAR data where ships are distributed, targets have demonstrated
the effectiveness of the proposed detector. In this part, we further analyze the detection performances
on the UAVSAR Gulfco area A dataset, where the ships are compactly distributed. The dataset is
acquired by NASA/JPL L-band, quad-pol UAVSAR over a bay area in Gulfco in 2010. The extracted
image is 249 × 223 pixels in size with a resolution of 7.2 × 5 m (Azimuth × Range). This image contains
39 ships in the scene. Figure 15 shows the Pauli image for reference, where the ships are marked by red
rectangles. Additionally, the ships marked by green solid circles in Figure 15 are relatively compacted,
which are difficult to detect by conventional Faster R-CNN.
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Figure 16 shows ship detection result of partial samples. It is observed that the deep Faster R-CNN
were prone to take compacted ships as single ship while the shallow Faster R-CNN could detect all
the compacted ships, as shown in Figure 16a,b. Figure 17a–e shows the final ship detection result of
the shallow Faster R-CNN, the deep Faster R-CNN, the proposed ship detector, the modified CAFR
ship detector, and the fully convolutional network based ship detector, respectively. All the ships
are accurately detected without false alarms and missed detections for the shallow Faster R-CNN,
the proposed ship detector, the modified CFAR ship detectors, and the fully convolutional network
based ship detector. However, Figure 17b shows that there were three missed ship marked with pink
circles, and three small ship are detected as one marked with green dotted ellipses. The modified
CFAR achieves satisfying performance because the PolSAR data presents a homogeneous polarimetric
behavior. Meanwhile, the fully convolutional network-based ship detector shows that it performed
well in ship compactly distributed condition, as well as in homogeneous area. This experiment also
verified that the proposed detector is capable of detecting compactly distributed ships accurately.
Moreover, it proves that the deep Faster R-CNN is not suitable for small and compactly distributed
ship detection. Detailed detection result of the four ship detectors can be found in Table 3.



Remote Sens. 2019, 11, 2862 19 of 27

Remote Sens. 2019, 11, x FOR PEER REVIEW  3 of 8 

 

9-looks, (f) Detection result of the modified CFAR detector, and (g) the fully convolutional network 
based-ship detector. 

 
Figure 15. Pauli RGB image of the Gulfco area A dataset. 

  
(a) (b) 

Figure 16. Ship detection result of partial samples, the red and green rectangles denote the bounding 
boxes generated from feature maps of the last two convolutional layers, respectively. (a) shows the 
zoomed version of ship detection result of the area marked with A in the Figure 15, and (b) shows the 
zoomed version of ship detection result of the area marked with B in the Figure 15. 

  

Figure 16. Ship detection result of partial samples, the red and green rectangles denote the bounding
boxes generated from feature maps of the last two convolutional layers, respectively. (a) shows the
zoomed version of ship detection result of the area marked with A in the Figure 15, and (b) shows the
zoomed version of ship detection result of the area marked with B in the Figure 15.
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Table 3. Accuracy assessment for UAVSAR Gulfco area a dataset.

Method Ntd Nfa Nmiss Pd FoM Consumed Time

Shallow Faster R-CNN [16] 39 0 0 100% 100% 1.80 s

Deep Faster R-CNN [16] 36 1 3 92.3% 90.0% 2.10 s

Proposed ship detector 39 0 0 100% 100% 2.40 s

Modified CFAR [8] 39 0 0 100% 100% 6.18 s

Fully convolutional network based ship detector [22] 39 0 0 100% 100% 2.07 s

3.3. Result of UAVSAR Gulfco Area B Dataset

The ship detection results on the AIRSAR and UAVSAR Gulfco area A datasets have demonstrated
the validity and generality of the proposed ship detector. However, there are no coasts in the above
datasets. To verify that the proposed ship detector can suppress the negative impact of coast on the
detection result, we performed experiments on the UAVSAR Gulfco area B dataset. This L band
dataset is also a product of NASA/JPL UAVSAR system acquired in Gulfco. The extracted image is
2021 × 1209 pixels in size with a resolution of 7.2 × 5 m (Azimuth × Range), and there are 22 ships in
the scene. Figure 18 shows the Pauli image for reference, where ships are marked by red rectangles.
Meanwhile, the targets marked by yellow rectangles are not ships with referred ground truth shown
in the image. After obtaining sub-samples through the sliding-window technique, the DCNN based
classifier is applied to extract samples containing ships.
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Figure 18. Pauli RGB image of the uninhabited aerial vehicle synthetic aperture radar (UAVSAR)
dataset. The aircraft sensor flew from top to bottom with respect to the image orientation, i.e., azimuth
direction, during data acquisition, while the range direction was from the left to the right.

Figure 19a–e shows the final ship detection result of the shallow Faster R-CNN, the deep Faster
R-CNN, the proposed ship detector, the modified CAFR ship detector, and the fully convolutional
network-based ship detector, respectively. Figure 19a shows that most ships were detected, two false
alarms marked with red dotted circles, and one miss detected ship marked with pink circles. Figure 19b
shows that most ships are detected and two false alarms presented. Figure 19c shows the merged ship
detection results of the proposed ship detector, where all the ships are detected with 2 false alarms
marked by red dotted ellipse. Due to the resolution of the PolSAR image being comparatively low,
the proposed ship detector could not learn sufficient fine features and false alarms appeared in the
detection result. Meanwhile, the detection results of the modified CFAR and the fully convolutional
network-based ship detector shown in Figure 19d,e further demonstrate the superiority of the proposed
ship detector. The segmentation result shown in Figure 19e demonstrates that the fully convolutional
network performs well, the lakes and rivers are very clear. The sea, ship, and coast are marked with
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blue, yellow, and green color, respectively. However, there are some false alarms which occurs because
the characteristic differences between ship and some coast are too small. Detailed ship detection
performance comparisons of the five detectors are shown in Table 4. Note that though there is no
clutter in the detected area and ship size is moderate, the detection performance of the traditional
Faster R-CNN is consistent with the proposed algorithm.
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Table 4. Accuracy assessment for UAVSAR Gulfco area B dataset.

Method Ntd Nfa Nmiss Pd FoM Consumed Time

Shallow Faster R-CNN [16] 21 2 1 95.5% 87.5% 4.48 s

Deep Faster R-CNN [16] 22 2 0 100% 91.7% 5.17 s

Proposed ship detector 22 2 0 100% 91.7% 8.42 s

Modified CFAR [8] 22 11 0 100% 66.7% 98.6 s

Fully convolutional network based ship detector [22] 21 8 1 95.5% 70.0% 6.94 s

3.4. Result of AIRSAR Taiwan Area Dataset

To further demonstrate the effectiveness of the proposed modified Faster R-CNN ship detector and
to verify the performance of the proposed method in inshore scenery, we perform experiments on the
AIRSAR Taiwan area dataset in L band. Figure 20 shows the Pauli RGB image of the AIRSAR Taiwan
area dataset and the extracted image is 1527 × 1277 pixels in size with a resolution of 2.5720 × 1.6655 m
(Azimuth × Range). Figure 20 shows a complex and challenging sea situation for ship detection. There
are multiple small weak ships appearing in the image, and many ships spread over the inshore. There
are about 132 ships marked with red rectangle by visual inspection.



Remote Sens. 2019, 11, 2862 23 of 27

Remote Sens. 2019, 11, x FOR PEER REVIEW  6 of 8 

 

 
(d) 

 
(e) 

Figure 19. Ship detection results of (a) the shallow Faster R-CNN, (b) the deep Faster R-CNN, (c) the 
proposed ship detector, (d) the modified CFAR detector and (e) the fully convolutional 
network-based ship detector. 

 
Figure 20. Pauli RGB image of the AIRSAR Taiwan area dataset. The aircraft sensor flew from bottom 
to top with respect to the image orientation, i.e., azimuth direction, during data acquisition, while the 
range direction was from the right to the left. 

Figure 20. Pauli RGB image of the AIRSAR Taiwan area dataset. The aircraft sensor flew from bottom
to top with respect to the image orientation, i.e., azimuth direction, during data acquisition, while the
range direction was from the right to the left.

Figure 21a–e shows the final detection result of shallow Faster R-CNN, the deep Faster R-CNN, the
proposed ship detector, the modified CAFR ship detector, and the fully convolutional network-based
ship detector, respectively. The detection result shown in Figure 21 demonstrates that the proposed ship
detector can provide a more excellent performance than the traditional Faster R-CNN, the modified
CFAR, and the fully convolutional network-based ship detector. The proposed ship detector is sensitive
enough to clearly detect and distinguish small and close located ships. It is worth noting that there
were 14 false alarms observed around the coast edge because coast and ships have many similar image
features in low-resolution PolSAR images. Moreover, the proposed ship detector completely missed
the 8 ships because some samples contain ships were wrongly classified as coast. Compared with the
traditional faster R-CNN and proposed ship detector, the performance of the modified CFAR and
fully convolutional network-based ship detector was poor. There were many false alarms due to the
complex inshore condition. Meanwhile, compared with the segmentation result shown in Figure 19e,
the segmentation result shown in Figure 21e were worse, especially for coast. This situation may occur
because there were no similar coastal samples in the training samples. However, the proposed ship
detector performed well in such inshore areas. Detailed ship detection performance comparisons of
the five detectors are shown in Table 5.

Table 5. Accuracy assessment for AIRSAR Taiwan area dataset.

Method Ntd Nfa Nmiss Pd FoM Consumed Time

Shallow Faster R-CNN [16] 118 10 14 89.4% 83.1% 17.84 s

Deep Faster R-CNN [16] 122 14 10 92.4% 83.6% 18.54 s

Proposed ship detector 125 14 7 94.7% 85.6% 19.83 s

Modified CFAR [8] 116 19 16 87.9% 78.4% 564.48 s

Fully convolutional network based ship detector [22] 122 30 10 92.4% 75.3% 7.27 s
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Figure 21. Ship detection results of (a) the shallow Faster R-CNN, (b) the deep Faster R-CNN, (c) the
proposed ship detector, (d) the modified CFAR detector and (e) the fully convolutional network-based
ship detector.

4. Discussion

In this paper, we developed a modified Faster R-CNN ship detector for PolSAR images.
Compared with previous ship detection algorithms for PolSAR, the modified Faster R-CNN ship
detector could capture the difference between the ship and clutter. Therefore, it performed well
and effectively detected ships of multiple size. Four ship detection experiments performed on the
measured PolSAR images in different condition demonstrates the effectiveness of the proposed ship
detector. Meanwhile, the proposed ship detector had the ability to mitigate the influence of the azimuth
ambiguities on the ship detection performance. Simultaneously, the modified Faster R-CNN ship
detector had good performance in inshore scenery, expanding the scope of application of the proposed
algorithm. However, the ship detection result presented in the last experiment shows that some small
ships near land were more easily misdetected, and some coasts would be recognized as ships using
the proposed ship detector. This might have occurred because the characteristic difference between
ship and coast is very small in low resolution PolSAR images. In the future, we will introduce more
additional features and use deep learning to improve the accuracy of ship detection for PolSAR.
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5. Conclusions

In this paper, a DCNN based ship detection algorithm for PolSAR images is proposed. To mitigate
the influence of the coast on ship detection, a three-class classifier based on DCNN was utilized
to accurately extract samples containing ships. Compared with conventional Faster R-CNN, the
modified Faster R-CNN could generate proposals of differing size from multi-level feature maps of the
last two convolutional layers. Experimental results of four measured datasets have shown that the
improvement in Faster R-CNN facilities fast and accurate detection performance for ships of differing
size, especially for the compactly distributed ships and small ships. Additionally, we investigated the
influence of multi-look processing, polarimetric decomposition methods and azimuth ambiguities on
the detection performance for PolSAR images. Moreover, we performed an experiment on inshore
scenery to demonstrate the effectiveness of the proposed ship detector.

Future works will focus on the methods of combining the deep learning and Bayesian theory
to extract the structure, texture, and statistical characteristics of the ship, and further improve the
detection performance.
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