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Abstract: Image super-resolution (SR) reconstruction plays a key role in coping with the increasing
demand on remote sensing imaging applications with high spatial resolution requirements. Though
many SR methods have been proposed over the last few years, further research is needed to improve
SR processes with regard to the complex spatial distribution of the remote sensing images and the
diverse spatial scales of ground objects. In this paper, a novel multi-perception attention network
(MPSR) is developed with performance exceeding those of many existing state-of-the-art models.
By incorporating the proposed enhanced residual block (ERB) and residual channel attention group
(RCAG), MPSR can super-resolve low-resolution remote sensing images via multi-perception learning
and multi-level information adaptive weighted fusion. Moreover, a pre-train and transfer learning
strategy is introduced, which improved the SR performance and stabilized the training procedure.
Experimental comparisons are conducted using 13 state-of-the-art methods over a remote sensing
dataset and benchmark natural image sets. The proposed model proved its excellence in both objective
criterion and subjective perspective.
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1. Introduction

Super-resolution (SR), which aims at restoring the missing high-frequency information from
lower-resolution images in order to increase the apparent spatial resolution [1], is a crucial field of
research in the remote sensing community. Different from the common imaging devices (e.g., camera),
imagery resolution of the space-borne imaging system is always limited by factors such as orbit altitude,
revisit cycle, instantaneous field of view, optical sensor, and the like [2–4]. Undoubtedly, once a remote
sensing satellite is launched, the super-resolving reconstruction is needed to exceed those limitations
and improve the image resolution from a post-processing perspective.

SR, as a key image processing technique, has gained increasing attention for decades. Its core idea is
to reconstruct a high-resolution (HR) image from its low-resolution (LR) counterpart. Many traditional
algorithms have been proposed to handle this issue [4–6]. Recently, with the booming of deep
learning-based methods and the satisfying results they gained, traditional algorithms are outperformed
by them. Deep learning-based super-resolving networks could be categorized into two groups
according to their structures: linear networks and skip connection-based networks.

Linear network indicates a simple single-path structure consisting of only convolutional layers
without any skip connections or multiple branches. Dong et al. [7] first demonstrated that a convolutional
neural network (CNN) can be used to learn mapping from LR space to HR space in an end-to-end
manner. Their model, SRCNN, successfully adopts a deep learning technique into the SR community
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and shows outstanding performance. However, it would have to first interpolate the inputs to the
desired size. This early up-sampling design is memory-intensive since the network structure parameter
grows in proportion to cope with high-dimension input. Contrary to SRCNN, Shi et al. [8] proposed
to perform feature extraction in LR space and increase the resolution from low-dimension space
to high-dimension space only at the very end of the network. Their network, efficient sub-pixel
convolutional neural network (ESPCN) [8], introduces an efficient sub-pixel convolutional layer at the
end to predict a HR output from LR feature maps directly, with one up-sampler for each feature map.
Their late up-sampling design significantly reduces the memory and computational requirements,
but it still employs a shallow linear structure.

Considering the limited representational ability of the simple linear structure, the skip
connection-based network uses residual connections to promote gradients’ propagation and makes it
feasible to build very deep networks. He et al. [9] first demonstrated the advantages of the residual
design. Kim et al. [10] then introduced residual learning into SR reconstruction. They pointed out
that SRCNN [7] relies on the contextual information of small regions, and it converges slowly during
training. Also, SRCNN works only for a single scale at a time. Therefore, they proposed a model
named very deep convolutional network (VDSR) [10]. Unlike the shallow architecture used in SRCNN,
VDSR exploits contextual feature priors over large image regions by cascading small size filters many
times in the network. To speed up the training, it learns residuals only and uses extremely high
learning rates enabled by a strategy named adjustable gradient clipping. They also extended VDSR to
deal with the multi-scale super-resolving problem jointly in a single network. The deeply recursive
convolutional network (DRCN) [11] is another model proposed by Kim et al., which applies the same
convolutional layers multiple times, as the name indicates. Based on a similar idea of using recursive
units, Tai et al. later introduced recursive block in the deep recursive residual network (DRRN) [12]
and memory block in the persistent memory network (MemNet) [13]. Note that References [10–13]
still require bicubic interpolated images as input. As for post-up-sampling networks, Ledig et al. [14]
introduced the residual network (ResNet) [9], which is proposed to solve high-level image processing
problems, such as image classification and target detection, into their model, SRResNet. Lai et al.
employed a novel pyramidal framework within their network laplacian pyramid super-resolution
network (LapSRN) [15], which consists of three sub-networks to predict the residual features under
large SR factors in a progressive manner. Other recent work like the information distillation network
(IDN) [16], adopts an information distillation block, which is made up of enhancement units and
compression units. Super-resolution network for multiple degradations (SRMD) [17] takes multiple
degradations into account simultaneously, which offers a unique capability. The cascading residual
network (CARN) [18] uses multiple cascading connections to incorporate local-level and global-level
representations. This strategy makes information and gradient propagate efficiently, but it neglects the
information difference between different levels.

As for the remote sensing community, the authors of Reference [1] explored enhancing
high-frequency content and image-to-image translation based on Reference [14]. Huang et al. [2]
combined SRCNN [7] and VDSR [10] and achieved superior SR performance on Sentinal-2A data. Luo
et al. [19] then improved the work of Reference [10] with a mirroring reflection method in the light
of image self-similarity. Lei et al. [20] explored a multi-fork design, named local-global combined
network, to learn multi-level feature information of remote sensing images including local details
and global environmental information. Xu et al. [21] argued that Reference [20] ignores the local
information produced by lower layers and further proposed the deep memory connected network [21],
which employs local and global memory connections to further leverage local details and global
priors learned in different convolutional layers. In fact, the image information they utilized are still
limited. Furthermore, considering the insufficiency of the good-qualified HR remote sensing training
samples, Huat et al. [22] studied a deep generative network to learn mapping between LR space and
HR space without external HR training data. They super-resolved remote sensing images from an
unsupervised perspective.



Remote Sens. 2019, 11, 2857 3 of 21

In a word, deep learning-based methods achieved significantly satisfying performance in the
SR problem, and the skip-connection design further optimized the learning process and improved
the hierarchical representation ability of the networks. Nonetheless, these networks still have some
deficiencies when super-resolving remote sensing data.

First, the aforementioned methods forgot that all prior knowledge learned by their networks are
useful for reconstructing. Even though References [18,20,21] took pattern information at the local-level
and global-level into account, what they utilized is still limited. Also, none of them [7,8,10–22] attempt
to build a model with multiple perceptual scales, which could learn information at diverse context
scales adaptively. Remote sensing images have highly complex spatial distribution and the ground
objects exhibited usually share diverse ranges of their scales. Therefore, extracting as much prior
knowledge as possible at different levels is critical to coping with the complexity and variability of the
remote sensing data and reconstructing images with high fidelity.

Second, all methods previously discussed treat the learned feature equally in the SR process,
which lacks scalability in processing information at different levels. To be specific, some studies tried
to learn local and global information [18,20,21] or multi-scale features [23], but they neglected the
channel-wise constituent differences across those feature maps and failed to use them reasonably.
Actually, information obtained from different levels are usually full of components (e.g., edges, textures,
and smooth regions) with different proportions, which are unequally important for reconstructing
an image.

To solve these problems, based on the idea of “the more complementary prior information we
capture the better reconstructions we get”, a multi-perception attention network (MPSR) is developed
for remote sensing image super-resolution. The main contribution of this study is:

1. Present MPSR, a parallel two-branch structure, which achieves multi-perception learning in
image patterns and multi-level information adaptive weighted fusion simultaneously.

2. Propose residual channel attention group (RCAG), where the enhanced residual block (ERB)
serves as the main building block to fully capture the prior information from diverse perception
levels and the attention mechanism allows the group to focus on more informative feature
maps adaptively.

3. Train the proposed model with a supervised transfer learning strategy to cope with the lack of real
HR remote sensing training samples and further boost the reconstruction ability of the proposed
network toward remote sensing images.

In this article, we first analyze the proposed methods in Section 2. In Section 3, we clarify the
experimental settings, demonstrate the effectiveness of the proposed methods, study the relations
between SR performance and the factors such as the number of the enhanced residual blocks and the
number of residual channel attention groups, and compare the proposed MPSR with recent works
in objective criterion and subjective perspective. Further discussion is given in Section 4, and the
conclusion is provided in Section 5.

2. Materials and Methods

2.1. Network Architecture

As shown in Figure 1, MPSR employs a well-designed two-branch structure, which is capable to
learn a diverse set of priors at multiple context scales. Since the multi-level information obtained has
varying importance for reconstruction due to the channel-wise constituent differences, the attention
mechanism [24–27] is introduced to rescale it. The whole network mainly consists of three parts:
shallow feature learning, multi-perception deep feature extraction, and reconstruction.
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Figure 1. Multi-perception attention network (MPSR).

Here, the LR input image is denoted as ILR. One convolutional (Conv) layer is used to extract
shallow feature F0 from ILR. Formally, the first layer is expressed as a function fSF(·):

F0 = fSF(ILR), (1)

F0 is used for multi-level information extraction. Then:

FML = fMP(F0), (2)

where fMP(·) denotes the parallel two-branch multi-perception structure, which further contains G
RCAGs in each branch. Since the proposed structure achieves learning prior information at multiple
levels, its output is treated as FML. More details about the multi-perception part are provided in
Section 2.3. FML is then sent to the reconstruction part, which is composed of an upscale module and a
Conv layer:

FUP = fUP(FML), (3)

where fUP(·) and FUP denote upscale module and upscaled feature map, respectively. The sub-pixel
Conv layer [8] is chosen as the upscaler, which can aggregate LR images and project them to
high-dimensional space. The upscaled feature is reconstructed via the last Conv layer:

ISR = fREC(FUP), (4)

where ISR indicates the reconstruction result of MPSR.
Finally, the whole SR process is defined as:

ISR = fMPSR(ILR) = fREC( fUP( fMP( fSF(ILR)))), (5)

where fMPSR(·) represents the function of MPSR.
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2.2. Loss Function

MPSR is optimized with loss function. There are several choices to serve as a loss function, such as
L2 loss, L1 loss, perceptual, and adversarial losses. L1 loss is chosen to be minimized, for it has been
demonstrated to be more suitable for SR tasks [28]. Considering a given training dataset

{
Ii
LR, Ii

HR
n
i=1

}
,

which contains n HR training samples and their degenerated LR versions, the goal of training MPSR is
to optimize the L1 loss to recover from ILR, an image ISR = fMPSR(ILR) which is as similar as possible
to the ground truth image IHR:

L(Θ) =
1
n

n∑
i=1

|| fMPSR(Ii
LR) − Ii

HR||1, (6)

where Θ indicates the weight set of MPSR. More details about training are given in Section 3.1.

2.3. Multi-Perception Learning

Multi-perception learning and multi-level information adaptive weighted fusion are achieved
by combining ERBs and RCAGs. Hence, details about these two basic modules are given first in the
following subsections.

2.3.1. Enhanced Residual Block

Residual designs exhibit excellent performance from low-level tasks (e.g., SR [10–14,16,18,19,21–
23,25–27]) to high-level tasks (e.g., image classification [9]). Ledig et al. [14] successfully applied the
residual block architecture (Figure 2a) [9] to resolve the SR problem without much modification. Some
researchers [21,29] further removed the batch normalization (BN) layers from the residual blocks in
their network (Figure 2b) and experimentally showed that this simple modification can improve the
super-resolving performance. Tong et al. [30] then pointed out that skip connections between Conv
layers provide an effective way to jointly employ the low-level information and high-level information
to enhance the super-resolving performance.
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To fully capture the feature information at different levels, we further optimized the common
residual block architecture (Figure 2b) by introducing a short residual connection (Figure 2c). This block
structure, named the enhanced residual block (ERB), is the basic constituent unit of the proposed
RCAG introduced in Section 2.3.2.
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As shown in Figure 2c, the later Conv layer in an ERB takes the output of the former Conv layer
as input, assuming that filters of the same size (i.e., 3 × 3) are used for these two Conv layers. For the
first layer, the receptive field is of size:

(2× 1 + 1) × (2× 1 + 1) = 3× 3, (7)

For the next layer, the size of the receptive field is:

(2× 2 + 1) × (2× 2 + 1) = 5× 5. (8)

That is, Conv layers of the same spatial size form relatively different receptive fields. Thus,
two perceptual scales can be achieved in each ERB.

In general, a large receptive field means that the Conv layer can collect and analyze more neighbor
pixels to predict feature maps which would contain more contextual information. In other words,
the output feature maps of the later Conv layer contain more contextual feature priors, which can
be exploited to predict high-frequency components, than those of the former Conv layer. Moreover,
the two short residual connections within the ERB carry the input and the output of the former Conv
layer to the end, that is, information from three different levels serve as the total output of an ERB (e.g.,
ERBg,b, the b-th ERB in g-th RCAG):

Fg,b = Fg,b−1 + f1(Fg,b−1) + f2( f1(Fg,b−1)) = fERBg,b(Fg,b−1), (9)

where f1(·), f2(·), and fERBg,b(·) denote the combination of the former Conv layer and ReLU [31],
the later Conv, and the function of ERBg,b, respectively. Fg,b−1 and Fg,b are the input and output of
ERBg,b. It should be noted that if the short residual connection added is removed, like the block
structure shown in Figure 2b, the feature information generated by the former Conv layer would
be discarded.

In brief, the ERB not only achieves two perceptual scales but also fully utilizes the prior information
at three different levels by itself. The effectiveness of the ERB surpassing the common residual block
(Figure 2b) is shown quantitatively in Section 3.2.

2.3.2. Residual Channel Attention Group

It has been demonstrated that stacked residual blocks and one global residual connection can
be used to construct a deep network in Reference [14]. Actually, simply stacking residual blocks to
build a very deep network would suffer training difficulties (e.g., vanishing gradients) and can hardly
achieve performance improvements. Therefore, a residual channel attention group (RCAG) structure
is proposed here.

As shown in Figure 3, one RCAG (e.g., RCAGg, the g-th RCAG in a branch) contains B ERBs.
As discussed in Section 2.3.1, the b-th ERB in RCAGg can be formulated as:

Fg,b = fERBg,b(Fg,b−1) = Fg,b−1 + f1(Fg,b−1) + f2( f1(Fg,b−1)), (10)

where Fg,b−1, the input of ERBg,b, is composed of responses generated by ERBg,b-1.
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Specifically, each ERB in RCAGg receives three different levels of image information output by the
former ERB and generates information at three other levels as the input of the later ERB, except ERBg,1.
The multi-level feature information obtained by all stacked ERBs in RCAGg can be described as:

FERBSg = Fg,B = fERBg,B(Fg,B−1) = fERBg,B( fERBg,B−1(. . . fERBg,1(Fg−1) . . .)), (11)

where Fg−1 represents the input of RCAGg, and the output of RCAGg-1.
Considering channel-wise differences among the obtained multi-level information FERBSg ,

the attention mechanism [24–27] is further integrated into every RCAG.
The channel attention (CA) mechanism [27] generates different attention for each channel-wise

feature map it receives. As shown in Figure 4, the input, which contains C feature maps of a size H
×W. Vector z ∈ RC, a channel-wise statistic of size 1 × 1 × C, can be obtained by performing global
average pooling to X. The c-th element of z is determined by:

zc = fGP(xc) =
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j), (12)

where xc(i, j) denotes the pixel value at position (i, j) of the c-th feature map xc and fGP(·) represents
the global average pooling function. Such channel-wise statistic, z = [z1, . . . , zc . . . , zC], can be viewed
as a collection of the local descriptors, whose statistics contribute to the expression of the whole
image [24,27].

Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 22 

 

)...))((...()( 1-1,Bg,ERBS 1,1,B,B,g gERBERBERBBgERB FfffFfFF
gBggg 

  ,  
 

(11) 

where 1gF represents the input of RCAGg, and the output of RCAGg-1. 

Considering channel-wise differences among the obtained multi-level information 
gERBSF , the 

attention mechanism [24–27] is further integrated into every RCAG.  

The channel attention (CA) mechanism [27] generates different attention for each channel-wise 

feature map it receives. As shown in Figure 4, the input ]...,,...,[ 1 Cc xxxX  , which contains C 

feature maps of a size H × W. Vector CRz , a channel-wise statistic of size 1 × 1 × C, can be 

obtained by performing global average pooling to .X The c-th element ofz is determined by:    


 


H

i

W

j

ccGPc jix
WH

xfz
1 1

),(
1

)( , (12) 

where ),( jixc denotes the pixel value at position ),( ji of the c-th feature 

map cx and )(GPf represents the global average pooling function. Such channel-wise 

statistic, ]...,,...,[ 1 Cc zzzz , can be viewed as a collection of the local descriptors, whose statistics 

contribute to the expression of the whole image [24,27]. 

 

Figure 4. Channel attention (CA).  represents the element-wise product. 

As studied in References [26,27], a gating mechanism with sigmoid function is adopted to 

extract channel-wise dependencies from the information aggregated by the global average pooling 

function: 

))(( zs  DRUS WfWf ,  (13) 

where )(Sf and )(Rf indicate the sigmoid function and ReLU, respectively. DW denotes the 

weights of a Conv layer, which serves as channel-downscaler with a reduction ratio, r [27]. After 

channel-downscaling and being activated by )(Rf , the low-dimension vector )( zz  DR Wf1 of 

size 1 × 1 × C/r is later upscaled with factor r  by a channel-upscaling Conv layer, whose parameter 

set is .UW  Finally, the statistic ]...,,...,[ 1 Cc ssss is outputted by sigmoid gating )(Sf , which is 

employed to perform channel-wise rescaling to the input X : 

ccc xsx  ,  (14) 

]...,,...,[ 1 Cc xxxX  , (15) 

where cx is the rescaled c-th feature map.  

In this case, the multi-level information obtained by all stacked ERBs in a RCAG can be 

adaptively rescaled with the CA mechanism by considering constituent differences among channels. 

The function of CA is denoted as )(CAf , and could further have: 

Figure 4. Channel attention (CA). ⊗ represents the element-wise product.

As studied in References [26,27], a gating mechanism with sigmoid function is adopted to extract
channel-wise dependencies from the information aggregated by the global average pooling function:

s = fS(WU ⊗ fR(WD ⊗ z)), (13)

where fS(·) and fR(·) indicate the sigmoid function and ReLU, respectively. WD denotes the
weights of a Conv layer, which serves as channel-downscaler with a reduction ratio, r[27]. After
channel-downscaling and being activated by fR(·), the low-dimension vector z1 = fR(WD · z) of size
1 × 1 × C/r is later upscaled with factor r by a channel-upscaling Conv layer, whose parameter set is
WU. Finally, the statistic s = [s1, . . . , sc . . . , sC] is outputted by sigmoid gating fS(·), which is employed
to perform channel-wise rescaling to the input X:

x′c = sc · xc, (14)

X′ = [x′1, . . . , x′c . . . , x′C], (15)

where x′c is the rescaled c-th feature map.
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In this case, the multi-level information obtained by all stacked ERBs in a RCAG can be adaptively
rescaled with the CA mechanism by considering constituent differences among channels. The function
of CA is denoted as fCA(·), and could further have:

F′ERBSg = fCA(FERBSg). (16)

Then, the total output of RCAGg is formulated as:

Fg = fRCAGg(Fg−1) = Fg−1 + Conv(F′ERBSg). (17)

As discussed above, a RCAG achieves multi-level information extraction and adaptive weighted
fusion by combining B stacked ERBs and a CA module. Moreover, with this modular design, the network
depth can be easily controlled by modifying the number of blocks or groups. The quantitative
comparison between the performance of RCAG and simple residual group (residual group composed
of stacked residual blocks, without CA) is provided in Section 3.2.

2.3.3. Multi-Perception Learning Overview

Reviewing Figure 1, the proposed multi-perception deep feature extraction part has two branches.
Each branch has G RCAGs and one RCAG further contains B ERBs.

As analyzed in the previous two subsections, B stacked ERBs in one RCAG have B × 2 different
perceptual scales in all. RCAGs in one branch share different receptive fields with each other due to
the depth they are located. Furthermore, the kernel size of all filters located in the upper-branch is set
to 3 × 3 while all filters located in the lower-branch are of size 5 × 5. Also, every Conv layer in the two
branches has its own scale-specific receptive field. Further enhancement of the perception capacity
can be done by adding a branch in which the kernel size is larger, or by increasing the network depth.
For example, kernel 7 × 7, the parameter number of one ERB is 5.44 times and 1.96 times larger than
an ERB of kernel 3 × 3 and 5 × 5, respectively [32]. Adding a branch with larger convolution kernel
size will introduce a great number of additional parameters, then, overfitting can arise [11]. Hence,
the network ability is improved by adding modules, as shown in Section 3.2. As a result, the whole
two-branch multi-perception part achieved a diverse set of perceptual scales that sums to:

N = 2× (G× (B× 2 + 1) + 1). (18)

The final multiple levels prior information FML learned by MPSR is expressed as:

FML = fCA(F0 + fbranch1(F0) + fbranch2(F0)), (19)

fbranch1(F0) = Conv(FG1)
∣∣∣3×3 = Conv( fRCAGG(. . . fRCAG1(F0) . . .))

∣∣∣3×3, (20)

fbranch2(F0) = Conv(FG2)
∣∣∣5×5 = Conv( fRCAGG(. . . fRCAG1(F0) . . .))

∣∣∣5×5, (21)

where fbranch1(·) and fbranch2(·) are functions of the upper-branch and the lower-branch, respectively.
FG1 and FG2 represent the output information of the G-th RCAG in the upper-branch and the
lower-branch, correspondingly.

With this multi-perception design, the proposed network can consider feature representations
from diverse receptive fields by different attention when reconstructing an image.

2.4. Transfer Training Strategy

Currently, there is no standard training set used for image SR reconstruction in the remote sensing
community. As a matter of fact, it is difficult to collect a large amount of remote sensing images with
clear edges and textures which are suitable for training a SR model. However, the performance of
deep learning-based SR methods always benefits from a sufficient volume of good-qualified HR and
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LR training sample pairs. Thus, a transfer training strategy to deal with the insufficiency of training
samples is introduced here. The core of transfer learning is assuming that individual models for related
tasks share parameters or prior distributions of hyperparameters [33], which means to solve tasks in
one domain based on the shared knowledge obtained from other related domains.

Hence, the proposed MPSR is pre-trained with the natural image set DIV2K [34] as an external
knowledge set when conducting experiments. Generally speaking, the low-level feature information
learned from DIV2K (e.g., point-like components, local texture and color, and point-line distribution)
can be shared. In order to learn high-level feature information specific to remote sensing data,
the pre-trained network is re-trained by using images randomly selected from UC MERCED [35]
(a remote sensing scenes classification dataset). This training strategy further boosts the model
performance on super-resolving remote sensing images. Relevant experimental results are provided in
Section 3.2.

3. Results

3.1. Experiment Settings

In this section, the experiment settings on datasets, degradation model, training, and evaluation
metrics are clarified.

Datasets: 800 training samples from the DIV2K dataset [34] are used as the pre-training set,
and 800 images are selected randomly from the UC MERCED [35] for transfer training. For testing,
120 images from the UC MERCED are chosen at random, which are different from transfer training
samples, to form a test set named UCtest. To further demonstrate the effectiveness of the proposed
model, it is compared with the state-of-the-art algorithms on publicly available benchmark natural
datasets, including Set5 [36], Set14 [37], BSD100 [38], and Urban100 [39]. The representative images
from these datasets are shown in Figure 5.
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Figure 5. Representative images from the datasets used for comparing and evaluating algorithms.
(a) DIV2K, (b) UC MERCED, (c) Set5, (d) Set14, (e) BSD100, (f) Urban100.

• DIV2K [34] contains 800 natural images for training. The image resolution is of around 2K.
• UC MERCED [35] contains 2100 images in size of 256 × 256 pixel. The pixel resolution is 0.3 m.
• Set5 [36] is a classical dataset which only consists of 5 test images.
• Set14 [37] has 14 test images which contain more categories compared to Set5.
• BSD100 [38] has 100 rich and delicate images ranging from natural to object-specific.
• Urban100 [39] is a relatively more recent dataset composed of 100 images, the focus of which is on

urban scenes.

Degradation model: Experiments are conducted with the bicubic interpolation degradation model
and three down-sampling scales (×2, ×3, ×4) [17]. Specifically, a LR version is generated from its
corresponding HR counterpart by bicubic interpolation with a specific downscaling factor. For example,
a three-fold down-sampling LR image can be generated from its corresponding HR counterpart by
bicubic interpolation with a factor of 1/3.

Training: Data augmentation is performed on both 800 pre-training images and 800 transfer
training images, including rotation of 90◦, 180◦, 270◦, and horizontal flipping [27]. In each training
batch, 16 LR input patches of size 48 × 48 and the corresponding HR patches are used. The proposed
model is trained with the Adam optimizer [40] by setting β1 = 0.9, β2 = 0.999, and ε = 10-8 [27].
The learning rate is initially set as 10-4 and decreases to half every 2 × 105 batches [26].

All models go through 500 epochs of pre-training, and 100 epochs of transfer training. The ×2
network is trained from scratch. After it is converged, it is used as a pre-trained model for factors ×3
and ×4 [29]. As shown in Figure 6, this pre-training strategy stabilizes the training process and further
improves the network performance.

The proposed models are implemented with PyTorch [41] and 4 NVIDIA GTX 1080Ti GPUs.
Evaluation metrics: Experimental results are quantitatively evaluated with peak signal- to-noise

ratio (PSNR) and the structural similarity index (SSIM) [42] on the Y channel (i.e., luminance) in
transformed YCbCr space. This is due to human vision being more sensitive to details in intensity
space than in color [10]. Higher PSNR and SSIM values represent better reconstruction quality.
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Figure 6. Effect of using the pre-training strategy. (a) Performance of training ×3 MPSR by using the
pre-trained ×2 model. (b) Performance of training ×3 MPSR from scratch. Image 0801 to 0805 from the
DIV2K dataset are used for validation during training.

3.2. Model Design and Performance

The effectiveness of using ERB, RCAG, and the transfer training strategy, as well as the relations
between SR performance and factors, such as the number of ERBs and RCAGs, are studied in this
section. Additionally, the configuration details of the final model are specified.

ERB and RCAG: To demonstrate the effects of these two proposed structures, the networks are set
with B = 6 (the number of ERBs) and G = 3 (the number of RCAGs). In Table 1, the first row represents
MPSR composed of a common RB (residual block with only one short residual connection, as shown in
Figure 2b) and RG (residual group composed of stacked residual blocks, without CA), the PSNR value
it gained is relatively low (39.510 dB). After adding ERB, the performance reached 39.540 dB, as shown
in the second row. After adding RCAG, a similar trend is observed—the performance improved from
39.540 dB to 39.604 dB. These findings firmly demonstrate the effectiveness of widely extracting and
reasonably leveraging multi-level prior information by introducing the proposed ERB and RCAG.

Table 1. Investigations of the proposed ERB, RCAG, and transfer training strategy. The average PSNR
(dB) of ×2 test results on UCtest is observed.

ERB RCAG Transferred PSNR

× × × 39.510
√

× × 39.540
√ √

× 39.604
√ √ √

39.728

ERB and RCAG represent the proposed enhanced resiudal block and residual channel attention group, respectively.

Transfer training: MPSR with 6 ERBs and 3 RCAGs is used to verify the significance of adopting
the transfer learning strategy mentioned in Section 2.3. As shown in Table 1, after transfer training,
the gain of MPSR-transferred (row 4) over MPSR-notransfer (row 3) reaches 0.124 dB. This improvement
shows that the transferred MPSR achieves better reconstruction performance.

ERB number and RCAG number: B (the ERB number) and G (the RCAG number) of
MPSR-notransfer is modified progressively to obtain the most suitable values of B and G. First,
G is set to three. In terms of the results shown in Table 2, B is set to eight to get a reasonable trade-off

between reconstruction performance and speed. The changed value of G is shown in Table 3.
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Table 2. The results of using different ERB numbers in MPSR-notransfer (G = 3). The average PSNR
(dB) and average running time (sec) on UCtest (×2 test results) is observed. Best results are in bold.

B = 6 B = 7 B = 8 B = 9 B = 10

PSNR 39.604 39.621 39.627 39.570 39.573
TIME 0.14 0.16 0.18 0.20 0.21

Table 3. The results of using different RCAG numbers in MPSR-notransfer (B = 8). The average PSNR
(dB) and average running time (sec) on UCtest (×2 test results) is observed. Best results are in bold.

G = 3 G = 4 G = 5

PSNR 39.627 39.608 39.630
TIME 0.18 0.23 0.28

Generally, the reconstruction performance would further improve if the network depth kept on
increasing, i.e., adding more ERBs and RCAGs, at the cost of training time. Actually, not only the
running time is sacrificed but also the GPU memory usage due to the huge amount of calculations and
parameters. In the end, a trade-off is made between the performance and speed for the model: i.e.,
B = 8 and G = 5.

Final model configuration: With regard to the final model, G is set to five in each branch and B is set
to eight in each RCAG. The kernel size of channel-downscaling the Conv layer and channel-upscaling
the Conv layer in the CA module are 1 × 1. The kernel size of Conv layers in the lower branch is 5 × 5
(as described in Section 2.3.3), and the kernel sizes of all the rest of the Conv layers in the network
are 3 × 3. For Conv layers with filters of 3 × 3 and 5 × 5, the zero-padding strategy [10] is used
to keep the sizes of all feature maps the same. Furthermore, all Conv layers in the shallow feature
extraction part and multi-perception deep feature extraction part have 64 filters (C = 64), expect for
the channel-downscaling layers. The filter number of channel-downscaling Conv layers as C/r is set
to four, which indicates that the reduction ratio r mentioned in Section 2.3.2 is 16. The setting of this
value is similar to that in References [24,27]. As for the reconstruction part, the sub-pixel Conv layer [8]
is used as an upscaler, and the last Conv in the network has 3 filters in order to output color images.
In the following experiments, the final model without transfer training is named as MPSR, and the
transferred one as MPSR-T.

3.3. Comparisons to State-of-the-Art Methods

In this section, the quantitative and qualitative results of the final model in comparison to recent
state-of-the-art models, on the remote sensing dataset [35], benchmark natural image sets [36–39],
and data from GaoFen-1 satellite and GaoFen-2 satellite, are provided.

Evaluation on UCtest: MPSR and MPSR-T are adopted to super-resolve images from the UCtest.
As described in Section 3.1, the UCtest is composed of 120 images randomly selected from the UC
Merced land use dataset [35], which are different from transfer training samples. The reconstruction
results are compared with four recent state-of-the-art methods, including IDN [16], SRMD for noise-free
degradation (SRMDNF) [17], CARN [18], and MSRN [23]. All these SR algorithms were published at
the world’s top computer vision conference—CVPR 2018 and ECCV 2018. Note that the MPSR is only
pre-trained by the DIV2K dataset [34], a widely used SR dataset in the computer vision community.
That is to say, it is fair enough to do comparisons. Also, transfer training is not performed on the
state-of-the-art models.

As shown in Table 4, the proposed MPSR and MPSR-T yield the highest scores and the second-best
scores in all experiments, respectively. The gains on PSNR obtained by MPSR-T are 0.23 dB, 0.46 dB,
and 0.38 dB higher than the third best approach, on the three up-sampling factors.
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Table 4. UCtest ×2, ×3 and ×4 test results. Mean PSNR (the first row) and SSIM (the second row).
Best results are in bold.

Bicubic IDN SRMDNF CARN MSRN MPSR MPSR-T

×2
35.05 39.20 39.03 39.22 39.55 39.63 39.78

0.9450 0.9696 0.9695 0.9695 0.9704 0.9705 0.9709

×3
29.92 33.35 32.99 33.38 33.47 33.71 33.93

0.8627 0.9154 0.9131 0.9156 0.9163 0.9183 0.9199

×4
27.07 29.95 29.71 29.96 29.90 30.20 30.34

0.7739 0.8528 0.8498 0.8533 0.8527 0.8571 0.8584

PSNR and SSIM represent peak signal-to-noise ratio and structural similarity index, respectively.

Figure 7, Figure 8, Figure 9 show the SR results with upscaling factor ×2, ×3, and ×4 of different
approaches. To carry out better comparisons, some regions of original HR images and the corresponding
SR reconstruction results are displayed in an enlarged scale. For example, in Figure 7, the area within
the red box of the original image dense residential 13 is zoomed in by factor ×2 and named as ‘HR’.
The patch named ‘Bicubic’ in the first row, which is a part of the image reconstructed by bicubic
interpolation, represents the same area as patch ‘HR’. It can be seen that the left edge of the greenbelt
in patch ‘MPSR-T’ is sharper than those in other reconstructed results (e.g., patch ‘MSRN’). Figure 8
shows a similar trend. As for Figure 9, the lines in some patches are blurred out while the models yield
superior results.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 20 
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Benchmark results: To further validate the effectiveness of the proposed network, MPSR (without
transfer training) is compared with 13 state-of-the-art algorithms, including SRCNN [7], VDSR [10],
DRCN [11], DRRN [12], MemNet [13], LapSRN [15], IDN [16], SRMDNF [17], CARN [18], MSRN [23],
SelNet [25], SRRAM [26], and SRDenseNet [30] on publicly available benchmark datasets [35–38].

In Figure 10, only two SR results of reconstructed factor ×3 and ×4 on the Urban100 dataset is
provided. The difference with Figure 7, Figure 8, Figure 9 is that patches which are part of the original
super-resolved images are exhibited without zooming in. As can be seen in img_062 and img_004,
the five state-of-the-art methods for comparison [10,15,16,18,23] cannot clearly reconstruct the lattices
and generate blurring artifacts [27]. In contrast, the MPSR can overcome the blurring artifacts better
and recover image details of high fidelity and shows a significant improvement.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 20 

 

lattices and generate blurring artifacts [27]. In contrast, the MPSR can overcome the blurring 
artifacts better and recover image details of high fidelity and shows a significant improvement. 

 

 
Urban100: img_062 

factor ×3 

 
HR 

PSNR/SSIM 

 
Bicubic 

20.20/0.6737 

 
VDSR 

22.36/0.8351 

 
LapSRN 

22.38/0.8441 

 
IDN 

23.65/0.8876 

 
CARN 

23.42/0.8864 

 
MSRN 

23.76/0.8965 

 
MPSR 

25.09/0.9130 

 
Urban100: img_004 

factor ×4 

 
HR 

PSNR/SSIM 

 
Bicubic 

21.08/0.6788 

 
VDSR 

22.37/0.7939 

 
LapSRN 

22.41/0.7984 

 
IDN 

23.35/0.8334 

 
CARN 

23.51/0.8396 

 
MSRN 

23.81/0.8438 

 
MPSR 

24.11/0.8535 

Figure 10. Visual comparisons of Urban100. The best results are in bold. 

In a more comprehensive comparison, quantitative evaluations for reconstruction factor ×2, ×3, 
and ×4 on dataset Set5 [36], Set14 [37], BSD100 [38], and Urban100 [39] are provided in Table 5. The 
results of state-of-the-art methods involved are cited from their papers. It is worth pointing out that 
MPSR performs the best on all the benchmark natural image sets with all scaling factors. In other 
words, the proposed model is also a competitive candidate for super-resolving other kinds of 
images, not just remote sensing images. 

Table 5. ×2, ×3, and ×4 test results on benchmark natural image sets (average PSNR and SSIM). Best 
results are in bold. The ‘-’ indicates the method is unsuitable to handle the images of the 
dataset.--------------------------------------------------------------------------------------------------------------. 

Method 
Set5 Set14 BSD100 Urban100 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 
× 2 

Bicubic 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 
SRCNN 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 
VDSR 37.53 0.9587 33.05 0.9127 31.90 0.8960 30.77 0.9141 
DRCN 37.63 0.9588 33.06 0.9121 31.85 0.8942 30.76 0.9133 
DRRN 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188 

LapSRN 37.52 0.9591 33.08 0.9124 31.80 0.8949 30.41 0.9101 
MemNet 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 

IDN 37.83 0.9600 33.30 0.9148 32.08 0.8985 31.27 0.9196 
SRMDNF 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 

CARN 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 
SelNet 37.89 0.9598 33.61 0.9160 32.08 0.8984 - - 

Figure 10. Visual comparisons of Urban100. The best results are in bold.



Remote Sens. 2019, 11, 2857 15 of 21

In a more comprehensive comparison, quantitative evaluations for reconstruction factor ×2,
×3, and ×4 on dataset Set5 [36], Set14 [37], BSD100 [38], and Urban100 [39] are provided in Table 5.
The results of state-of-the-art methods involved are cited from their papers. It is worth pointing out
that MPSR performs the best on all the benchmark natural image sets with all scaling factors. In other
words, the proposed model is also a competitive candidate for super-resolving other kinds of images,
not just remote sensing images.

Table 5. ×2, ×3, and ×4 test results on benchmark natural image sets (average PSNR and SSIM).
Best results are in bold. The ‘-’ indicates the method is unsuitable to handle the images of the dataset.

Method
Set5 Set14 BSD100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

× 2

Bicubic 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403
SRCNN 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946
VDSR 37.53 0.9587 33.05 0.9127 31.90 0.8960 30.77 0.9141
DRCN 37.63 0.9588 33.06 0.9121 31.85 0.8942 30.76 0.9133
DRRN 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188

LapSRN 37.52 0.9591 33.08 0.9124 31.80 0.8949 30.41 0.9101
MemNet 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195

IDN 37.83 0.9600 33.30 0.9148 32.08 0.8985 31.27 0.9196
SRMDNF 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204

CARN 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256
SelNet 37.89 0.9598 33.61 0.9160 32.08 0.8984 - -

SRRAM 37.82 0.9592 33.48 0.9171 32.12 0.8983 32.05 0.9264
MSRN 38.08 0.9605 33.74 0.9170 32.23 0.9013 32.22 0.9326

MPSR (ours) 38.09 0.9607 33.73 0.9187 32.25 0.9005 32.49 0.9314

× 3

Bicubic 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349
SRCNN 32.75 0.9090 29.29 0.8215 28.41 0.7863 26.24 0.7991
VDSR 33.66 0.9213 29.78 0.8318 28.83 0.7976 27.14 0.8279
DRCN 33.82 0.9226 29.77 0.8314 28.80 0.7963 27.15 0.8277
DRRN 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8377

LapSRN 33.82 0.9227 29.79 0.8320 28.82 0.7973 27.07 0.8271
MemNet 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376

IDN 34.11 0.9253 29.99 0.8354 28.95 0.8013 27.42 0.8359
SRMDNF 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398

CARN 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493
SelNet 34.27 0.9257 30.30 0.8399 28.97 0.8025 - -

SRRAM 34.30 0.9256 30.32 0.8417 29.07 0.8039 28.12 0.8507
MSRN 34.38 0.9262 30.34 0.8395 29.08 0.8041 28.08 0.8554

MPSR (ours) 34.55 0.9284 30.47 0.8450 29.18 0.8072 28.57 0.8606

× 4

Bicubic 28.43 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577
SRCNN 30.48 0.8628 27.50 0.7513 26.90 0.7103 24.52 0.7226
VDSR 31.35 0.8838 28.02 0.7678 27.29 0.7252 25.18 0.7525
DRCN 31.53 0.8854 28.03 0.7673 27.24 0.7233 25.14 0.7511
DRRN 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638

LapSRN 31.54 0.8866 28.19 0.7694 27.32 0.7264 25.21 0.7553
MemNet 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630

SRDenseNet 32.02 0.8934 28.50 0.7782 27.53 0.7337 26.05 0.7819
IDN 31.82 0.8903 28.25 0.7730 27.41 0.7297 25.41 0.7632

SRMDNF 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731
CARN 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837
SelNet 32.00 0.8931 28.49 0.7783 27.44 0.7325 - -

SRRAM 32.13 0.8932 28.54 0.7800 27.56 0.7350 26.05 0.7834
MSRN 32.07 0.8903 28.60 0.7751 27.52 0.7273 26.04 0.7896

MPSR (ours) 32.30 0.8968 28.74 0.7856 27.66 0.7389 26.43 0.7969

PSNR and SSIM represent peak signal-to-noise ratio and structural similarity index, respectively.
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Validation by using GaoFen-1 and GaoFen-2 data: To verify the robustness of MPSR-T, some
experiments are performed on multispectral remote sensing data from the GaoFen-1 satellite
(medium-resolution, 8 m per pixel) and the GaoFen-2 satellite (relatively high resolution, 4 m
per pixel).

Band 1, band 2, and band 3 are selected to stack into true color images before conducting the
experiments, and original GaoFen-1 data and GaoFen-2 data are taken directly as LR input. Some of the
test results are provided in Figures 11 and 12. In Figure 11, patch ‘mountain ×2’ represents an enlarged
version of the original terminal area, and ‘mountain SR ×2’ is the corresponding result of MPSR-T. It is
impossible to carry out an objective evaluation with PSNR and SSIM for these reconstructed images
because the real HR image is unknown. However, MPSR-T shows impressive performance when
coping with remote sensing images with highly complex spatial distribution and varied-scale ground
objects. For both small-scale ground features (e.g., the slight textures or edges of the playground,
highway, airstrip, and mountain) and large-scale ground objects (e.g., terminal, factory, dense building,
small town), satisfactory super-resolved results are obtained and the spatial resolution is significantly
improved, which proved that the multi-perception network proposed achieved promising SR capacity.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 20 
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4. Discussion

The methods proposed in this paper are proven to have convincing performance with extensive
experimental results. In Section 3.2, the gains after adding ERBs and RCAGs clearly clarify the
effectiveness of the multiple perceptual scales within the design and the rationality of treating
information from different levels with unequal attentions. Then, a reasonable network structure was
given by progressively modifying the number of ERBs and RCAGs, and further improving it with a
transfer training strategy. In order to explore the SR capacities of the models, tests were conducted over
public remote sensing data and benchmark natural image sets in Section 3.3. The results encouraged us
that the models achieved pretty good performance in comparison to the world’s top SR methods and
obtained satisfactory super-resolved results even when dealing with the complex and varied remote
sensing images from the GaoFen-1 satellite and the GaoFen-2 satellite. From the slight lines on the
playground to the indistinct but dense buildings, and so on (Figure 11), all the SR results demonstrate
excellent image processing capability of the multi-perception learning-based network once again.
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However, some problems were found through this research. In general, the CNN-based method
could benefit from increasing the network depth, while worse test results were received when going
deeper by adding ERBs (e.g., B = 9 and B = 10, see Table 2), and something similar happened when
G = 4 (Table 3). This phenomenon could be related to the input images. Compared with natural
images, the input images from the UC Merced dataset’s [35] lacked a high-frequency component,
though they had spatial resolution of 0.3 m per pixel. Moreover, after the degradation operation before
testing, the image quality gets worse. The low initial input gradients may lead to vanishing gradients
during the SR process and are unsuitable for a deep network to learn or extract information. Therefore,
making a good trade-off between super-resolving performance and the network setting according to
the practical situation is of great importance.

In addition, an objective evaluation on super-resolved GaoFen-1 data and GaoFen-2 data could not
be performed, since the real HR image is unknown. How can a more reasonable and relatively objective
evaluation be performed in such case without a standard reference? It is an open issue that needs to
be solved. Besides, existing CNN-based SR works mostly using a bicubic down-sampler to generate
LR images. Actually, learning multiple degradations [17] or exploring real-world degradation [43]
helps to train super-resolving models since the true degradation does not always follow the bicubic
interpolation-based assumption. Furthermore, a high-quality dataset dedicated to remote sensing SR
research is also a core issue to be solved.

5. Conclusions

In this paper, a novel multi-perception attention network (MPSR) was presented, by fully
considering the complex spatial distribution of the remote sensing data and diverse spatial scales of
ground objects. By incorporating the enhanced residual blocks (ERBs) and residual channel attention
groups (RCAGs), MPSR achieved multi-perceptual scale learning and multi-level information adaptive
weighted fusion. Also, a pre-train and transfer strategy was adopted to further improve the SR ability
of the network toward remote sensing images. Extensive experimental results over remote sensing
data and benchmark natural image sets demonstrated that the proposed MPSR achieves superior
performance compared to the state-of-the-art methods. It is worth mentioning that MPSR is also a
competitive candidate for super-resolving other kinds of images.
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