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Abstract: This study builds on fundamental knowledge of granular failure dynamics to develop a
statistical and machine learning approach for characterization of a landslide. We demonstrate our
approach for a rockslide using surface displacement data from a ground based radar monitoring
system. The algorithm has three key components: (i) identification of a regime change point t0

marking the departure from statistical invariance of the global velocity field, (ii) characterization
of the clustering pattern formed by the velocity time series at t0, and (iii) classification of velocity
patterns for t > t0 to deliver a measure of risk of failure from t0 and estimates of the time of emergent
and imminent risk of failure. Unlike the prevailing approach of analysing time series data from one
or a few chosen locations, we make full use of data from all monitored points on the slope (here 1803).
We do not make a priori assumptions on the monitored domain and base our characterization of the
complex spatial patterns and associated dynamics only from the data. Our approach is informed
by recent developments in the physics and micromechanics of failure in granular media and is
configured to accommodate additional data on landslide triggers and other determinants of landslide
risk readily.

Keywords: landslides; early warning systems; kinematics; statistical learning; non-stationarity

1. Introduction

Recent advances in sensing technologies and signal processing have been a boon to hazard
monitoring and management. For slope hazards, the last decade has witnessed a tremendous increase
in both the spatial and temporal resolution of monitoring data on potential sites of instability [1–4].
However, more data per se are insufficient to manage the risk of landslides. New tools that can
extract actionable intelligence from these high-dimensional, big datasets are essential for mitigating
the damage caused by landslides to life, property, social stability, the economy, and the environment.
Several recent reviews have discussed the open challenges confronting the development of these
tools [4–7]. Many of these difficulties stem from the fact that landslide monitoring data are inherently
spatio-temporal [8–11].

In contrast to traditional data in the classical data mining literature, spatio-temporal data exhibit
spatial and temporal codependencies among measured system properties: that is, property F at
location x at current time t∗ (say) depends on past behaviour, x(t): t < t∗, as well as behaviour at other
locations both past and present, y(t): t ≤ t∗. An underlying spatio-temporal process invariably leads
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to system properties exhibiting different structures or patterns in different spatial regions and time
periods. Ignoring these space-time codependencies inevitably leads to poor forecast accuracy and a
prevalence of false alarms and/or missed events [8–11]. Consequently, in this study of a rockslide
from displacement monitoring data, we depart from the prevailing approach of selecting time series of
displacements from one or a few locations.

Specifically, our aim is to develop a robust yet relatively simple algorithm that can exploit the high
density radar data for spatio-temporal characterization of a landslide. To achieve this, we use statistical
and machine learning techniques to formulate an algorithm that can deliver a measure of risk of failure,
estimates of the time of emergent and imminent risk of failure, from a time point of “regime change”,
a time point in the precursory failure regime when the global kinematic field manifests an abrupt and
significant departure from statistical invariance or so-called “stationary process” [12]. The algorithm
has three key components: (i) identification of a regime change point t0 marking the departure from
statistical invariance of the global velocity field, (ii) characterization of the clustering pattern formed
by the pixel velocity time series at t0, and (iii) classification of the velocity patterns for t > t0 to deliver
a measure of risk of failure and estimates of critical transition times in the risk of failure. Although
the clustering and the classification of the pixel velocities are based on cross-sectional data of velocity
features (i.e., spatial variation at one time state t > t0), information on the temporal variability of pixel
velocity is accounted for in our chosen set of velocity features. Our focus on the velocity time series,
instead of the displacement time series, is consistent with state-of-the-art literature on time-of-failure
forecasting for landslides [4–7,13], which deliver a forecast from analysis of the velocity time series,
albeit from isolated locations on the slope, as opposed to hundreds to thousands of locations across the
entire slope, as is done in this study.

Our approach is informed by observed dynamics of motions from micromechanics experiments
focussing on the precursory failure regime of granular systems [14–18]. Findings from these studies
shed light on a transition or a regime change point from which highly transient patterns of motion
manifest. Specifically, multiple groups with member particles of each group moving in very similar
ways emerge. The early phase directly after this change point is characterized by particles continually
realigning themselves with different groups. Studies report the presence of multiple “competing”
strain localization zones (e.g., shear bands and cracks) during this period [14–18]. Eventually, however,
another transition point is reached when realignments subside and the pattern formed becomes more
persistent. In this latter phase, the so-called “winning” shear zones become fully formed and incised
in their location, giving way to the ultimate pattern of failure. This study exploits this spatio-temporal
pattern in the kinematics in the context of clustering and classification analysis combined with change
point detection.

The rest of this paper is organized as follows. In Section 2, we describe the data. Section 3
provides a concise reference to earlier work on this dataset. Section 4 is the main methodology section
containing the proposed algorithm. Results from the application of our algorithm on the landslide
data are given in Section 5. We then discuss potential implementation of our algorithm in an early
warning system for landslide monitoring in Section 6, before concluding in Section 7.

2. Data

The monitored slope is a rock wall in an open pit mine (Figure 1). The mine operation, location,
and year of the rockslide are confidential. The rock slope stretches to around 200 m in length and
40 m in height. Slope stability radar (SSR) technology [13,19] was deployed to monitor the movements
of the rock face over a period of three weeks: 10:07 31 May to 23:55 21 June. For more details on
the particular radar technology, please see [20]. Displacement along a line-of-sight (LOS) from the
stationary ground based monitoring station to each observed location on the surface of the rock slope
was recorded every six minutes, with millimetric accuracy. This led to time series data from 1803 pixel
locations at high spatial and temporal resolutions for the entire slope. A rockslide occurred on the
western side of the slope on 15 June, with an arcuate back scar and a strike length of around 120 m.
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A global average peak velocity of 0.56 mm/min (33.61 mm/h) was recorded at 13:10 15 June; we refer
to this as the event time tE for the rest of this paper. Figure 2 shows the velocity time series of pixels where
the maximum and minimum pixel velocities were attained at tE.
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Figure 1. (a) Monitored slope. (b) Spatial distribution of velocity at 13:10 15 June when the global
average pixel velocity reaches its maximum during the entire monitoring campaign.
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Figure 2. (a) Velocity time series for the slip zone location with maximum velocity during event time.
(b) Velocity time series for the stable zone location with minimum velocity at event time tE = 13:10
15 June.

3. Related Work on Studied Data

A study of the displacement time series data was recently performed by Tordesillas et al. [11].
From the day prior to the collapse, the displacement field displayed a distinct clustering pattern:
a partitioning or clustering into three subzones. This is evident not only in its spatial distribution,
but also in the frequency distributions of the displacements and their local spatial variations.
The displacements formed a bimodal distribution with the peaks far apart: one peak corresponded to
the small movements developed in the stable region to the east, while the other peak comprised the
significant movements that characterized the failure region to the west. In between these peaks are the
motions recorded in the narrow arcuate boundary of the rockslide. The relatively high local spatial
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variation of the displacements, quantified in terms of the coefficient of variation, gave a unimodal
positive skew distribution with a long tail and mean to the right of the peak. Tordesillas et al. [11]
exploited this pattern in displacements to develop a method for early prediction of the extent and
location of this rockslide in the pre-failure regime.

In [11], the displacement data were mapped to a time evolving complex network. Each network
node is uniquely associated with a pixel. Thus, the number of nodes in the network is fixed at
1803. Only the node connections change with time. At each time state, a pair of nodes in the
network is connected according to similarity in the displacement recorded at the corresponding pixels.
Therefore, by design, the resultant network only contains information on the kinematics of the system.
The location of failure is then predicted based on the persistence of a pattern formed by a subset of
nodes, which is most efficient at transmitting kinematic information to all other nodes in the network.
This subset of nodes is determined by the network node property known as closeness centrality [21].
The higher the closeness centrality of a node, the shorter is the average distance from it to any other
node in the network. The subset of nodes that persistently ranked the highest with respect to closeness
centrality was previously shown to identify the location of the yet-to-form shear band early in the
pre-failure regime in laboratory triaxial compression tests on sand and simulations of biaxial tests [18].
When adapted and applied to the radar data examined here, this method also identified the boundary
of the rockslide early in the pre-failure regime, namely 00:32 1 June, over two weeks in advance of the
wall collapse on 15 June. The temporal persistence of failure patterns from 00:32 1 June suggested the
existence of a clear precursory failure regime in which critical transitions in the evolving instability of
the slope can be estimated.

Consequently, in this study, we sought to develop an algorithm that provides an estimate of the
risk of failure and critical transition time states in the precursory failure regime. In contrast to [11],
however, we focus here on the temporal evolution of the landslide based on the velocity time series
data, instead of the displacement time series, following the state-of-the-art in time-of-failure forecasting
and hazard alert criteria [7,22].

4. Methodology and Algorithm

The key idea behind our approach stems from physical observations of the dynamics of motions
in the precursory failure regime in laboratory experiments [14–18]. This dynamical regime proceeds in
two phases. The initial phase is characterized by subtle partitions in motions: points in the granular
mass form groups that move collectively. This group behaviour is initially highly transient as points
continually realign themselves with different groups. Eventually, a transition to a second phase is
reached when realignments subside and the pattern becomes persistent. In this latter phase, strain
localization regions become fully formed and incised in their locations, giving way to the ultimate
pattern of failure whereupon the granular mass splits into parts that move in relative rigid-body
motion. Here, we exploit this spatio-temporal pattern in motion in the context of clustering and
classification analysis combined with change point detection. Figure 3 depicts the key components
of our proposed algorithm. Component I (Stages 1 and 2) identifies a regime change point t0, which
marks a significant departure of the global velocity field from statistical invariance. Component II
(Stage 3) then characterizes the clustering pattern formed by the 1803 pixel velocity time series at
t0; while Component III (Stages 4 and 5) classifies subsequent velocity clustering patterns for t > t0

relative to that at t0 to deliver estimates for tR and tI .
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Figure 3. Flowchart of the proposed five-stage algorithm for characterization of the spatio-temporal
evolution of pixel velocities over the studied domain D.

In what follows, we first introduce in Section 4.1 a set of definitions and statistical measures that
we use throughout the paper and then describe in Section 4.2 our proposed algorithm.

4.1. Definitions

4.1.1. Definition 1

Let Xst; t = 1, 2, ...n; s = {1, 2, ..., J} be a dynamic physical feature ([23], Ch. 4), sampled at
regular intervals of time t and irregularly (or regularly) distributed pixel locations, s ∈ D ⊂ R2.
In the statistical theory of time series, X = {X1t, X2t, ..., Xst} are defined as multiple time series [24].
Alternatively, they are modelled as a spatio-temporal geostatistical process [25].

4.1.2. Definition 2

A time series Xst : t = 1, 2, ..., n is observed at a chosen pixel s with mean, variance, and
auto-covariance denoted by E(Xst), Var(Xst) and Cov(Xst, Xs(t+h)), respectively. Then, Xst is defined
to be weakly stationary (or second order stationary) if the first two statistical moments are invariant
in time:

E(Xst) = µ constant,

Var(Xst) = σ2 constant, and

Cov(Xst, Xs(t+h)) = c(h).

(1)

4.1.3. Definition 3

Let Xst, t = 1, 2, ..., n denote a sample of size n observed from a time series of a natural process.
We assume that Xst can be represented as a two term additive combination, Xst = fs(t) + εs(t), at pixel
s. In general, fs(t) is a non-linear function of time t that encapsulates the long term natural variation
in Xst with respect to time. εs(t) are innovations (random variables) with zero mean and constant
variance, σ2 (say). In model based statistical analyses of time series, there are two broad approaches.
In the first approach, εs(t) is approximated using a serially correlated second order stationary linear
process and fs(t) is a (simple) parametric trend function, also known as the signal or long term mean
effect. However, a stationarity assumption on a complex system such as landslide data is restrictive.
Instead, we adopt the alternative approach that prioritizes estimation of the signal. We assume that
the signal fs(t) is a complex non-parametric functional of time, which may incorporate measurement
errors, large scale and micro-scale variation, and εs(t) are assumed to be uncorrelated. Readers
interested in these comparative modelling approaches are referred to [26] ( Ch. 4). A statistical estimate
of the signal fs(t) from observed data can be obtained by minimizing the following penalized mean
squares function:

n

∑
t=1
{Xst − fs(t)}2 + λ

∫
{ f
′′
s (t)}2dt. (2)
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The solution to the above optimization problem (2) is given by the natural cubic spline estimate
f̂s(t), a smooth function within the class of all second order differentiable functions of t, which
minimizes (2). The smoothing parameter λ is a balance between goodness-of-fit and overfitting. Here,
we choose λ using the automatic generalized cross-validation technique proposed in [27]. More details
on the statistical theory and applications of splines are given in [28] (Ch. 2).

4.1.4. Definition 4

Time series data on physical features of geological structures are quite often statistically
non-stationary. Das and Nason [12] recently demonstrated that the spline penalty (the second term
in (2)),

S(t) = λ
∫
{ f
′′
s (t)}2dt (3)

can be used as a measure of non-stationarity of the time series, Xst. S(t) summarizes the degree of
temporal variation of a statistical moment and can be used to investigate the temporal variation in
any statistical moment, over any time interval. S(t) can thus be used to estimate the non-stationarity
of a time series Xst using either local or cumulative time windows. Moreover, S(t) can be used as a
feature vector for classifying multiple time series into homogeneous clusters of time series, over any
finite intervals of time. Das and Nason [12] discussed this in the context discriminating a seismic data
from an explosion data. Here, we show that S(t) can also be used to detect points in a time series that
deviate from typical behaviour in the physical features of a time series. We define these as points of
regime change.

4.2. Algorithm

We now introduce a data driven algorithm for characterization of a landslide (Figure 3). The input
data are time series of a particular physical feature Xst; t = 1, 2, ...n; s = {1, 2, ..., J} that are recorded
over a total of J locations on a given slope D. The method we develop is designed to quantify the risk
of failure of the slope without imposing any deterministic, stochastic, or empirical generative model
on the observed feature time series or the corresponding trend component fs(t). Instead, the method
characterizes the spatio-temporal pattern of kinematic partitioning that develops during the precursory
unstable regime preceding the landslide, t0 ≤ t < tE. During this regime, we expect the pattern of
kinematic partitioning to change continually as time advances away from t0, before finally converging
into the ultimate failure pattern at the time of failure tE. This hypothesis follows from observations of
the precursory regime in small laboratory tests [14–18], as well as the earlier study of these data in [11].
The algorithm is comprised of five stages, as described below.

4.2.1. Stage 1: Estimate the Kinematic State of the Studied Slope at Any Time t

At a pre-decided time tn ∈ [i, n], we initiate the algorithm. The spatial average of the physical
feature is computed across all pixels s : 1, 2, . . . , J for all time states t = 1, 2, . . . , tn. We denote the
resulting time series by X̄(t1), X̄(t2), . . . , X̄(tn) and estimate its trend. Let V̄(tn) denote the estimated
trend of the sample time series {X̄(t1), X̄(t2), . . . , X̄(tn)}. We estimate V̄(tn) using regularized
non-parametric regression, as described in Section 4.1.3.

4.2.2. Stage 2: Detect Regime Change t0

V̄(tn) represents the state of the system at time tn. We contend that the state of an unstable and
dynamic geological slope would display complex time varying statistical properties, in contrast to a
stable zone that should have features with relatively invariant statistical properties. To assess if the
state of the system has significantly diverged from its past, we measure the non-stationarity of V̄(tn)

using the non-stationarity statistic S(t), as described in Section 4.1.4.
To estimate S(t), we partition the interval [t1, tn] into subintervals of equal length, w (say),

and estimate the non-stationarity S(t) over each subinterval. Thus, S(t) estimates the evolution of
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non-stationarity over blocks of time. The trajectory of S(t) is close to zero during a stable temporal
regime. Further details of the implementation are given in Appendix A. We repeat the estimation of
S(t) over successive moving time windows of fixed length, [t1, tw+2], [t2, tw+2], [t3, tw+3], ..., until we
find a time point t0 = tnl such that S(t0) is significantly greater than S(ti), ti < tnl . We define t0 to be
the time point of regime change. That is, t0 is the time point that presents the most definitive evidence
of the transition of the slope from a stable state to an unstable state. In the rest of the article, we use the
phrase time of regime change interchangeably with baseline time to refer to t0.

The problem of detecting t0, posed in this article, resembles that of change point detection in
the classical time series literature, and we could have considered any number of options. However,
most existing change point detection methods (see for example [29]) require making specific model
based assumptions on the mean structure/variance structure/stochastic structure and distribution,
but more importantly, the number of regime changes that then lead to analysis based on the principle
of likelihood. The complex system and information presented in these data did not allow us that
possibility. Further, in a streaming data scenario, making a priori assumptions on the numbers of
change point is a bit restrictive for land displacement data. However, the algorithm itself is quite
flexible and can easily incorporate model based assumptions. Future work would consider inclusion
of physical models describing displacement dynamics.

4.2.3. Stage 3: Characterize Kinematic Partitioning at t0

At the estimated time of regime change t0, we partition the domain D into m subregions or pixel
clusters, C0 = (C01, C02, ...C0m)

′. That is, each pixel s is assigned a cluster label based on its feature
vector at time t0. This feature vector is derived from Xst0 , which is the spatial (and not temporal)
variation of features observed at the fixed cross-sectional time point t0. While the proposed algorithm
is not dependent on any particular clustering method, here we choose the popular medoid clustering
algorithm [30] implemented in the statistical program R with library [31]. The medoid algorithm
requires that we specify the number of clusters, m. We recommend choosing m such that the total
explained inter-cluster variation is at least 80%. Further details are given in Section 5.4.

4.2.4. Stage 4: Classify Kinematic Partitioning for t > t0

At each successive time post t0, that is t0+1, t0+2, t0+3, ..., we now classify the pixels into one of
the m baseline clusters, using multinomial logistic regression ([32], Ch. 6). Note that at any time t > t0,
misclassification of pixels encapsulates the zone dynamics during the unstable epoch. For each pixel
s, let the classification probabilities at times k = t0+1, t0+2, . . ., be denoted by Pk

s . Pk
s is a vector of

multinomial probabilities. Thus, at each time k > t0, Pk
s = (pk

s1, pk
s2, ..., pk

sm) quantify the probability
that pixel s is assigned to one of the m baseline clusters, at kth time. The assigned label corresponds
to the label with maximum probability value. Hence, the probability matrix Pk = {Pk

1, Pk
2, . . . , Pk

J}′
describes the state of geological zone at time k > t0. Further details of classification are given in the
Appendix C.

4.2.5. Stage 5: Assess the Risk of Failure for t > t0

At all times post regime change, k > t0, we summarize the risk of failure based on the overall
uncertainty of classification of locations (pixels). A guiding principle for constructing a measure for
risk of failure could be that higher uncertainty of classification into baseline clusters represents higher
likelihood of failure. Heuristically, when time lag y = k− t0 is small, the uncertainty associated with
allocating a randomly selected pixel into one of the m baseline clusters (of t0) should be relatively low.
However, in the unstable precursory regime, the trend of classification uncertainty would increase
with increasing time lag, y, as the instantaneous state of the system, Pk, evolves and gradually deviates
from the state at time t0. Hence, at an arbitrary future observation time, k > t0, a summarized measure
of uncertainty of classification (over all pixels) represents the risk of failure of the slope D.
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We now formally introduce a classification uncertainty measure Uk as our measure of risk of
failure. This measure Uk summarizes the uncertainty of classification for a total of s pixels at time of
observation k > t0:

Uk = medians(pksqks), 0 < pks < 1

pks = max(Pk
s) = Prob[Assignment of pixel s to a particular cluster]

qks = 1− pks = Prob[Non-assignment of pixel s to the above cluster]

(4)

At any point in time k > t0, Uk (4) measures the median uncertainty of a randomly chosen pixel,
to be allocated to one of the m baseline clusters. Uk is non-negative. It is well known that Uk has a
maximum possible value of 0.25. This follows from the fact that the maximum uncertainty of the state
of the system corresponds to a time k∗ such that the classification probability is pk∗ = 0.5. This implies
that at k∗ > t0, the algorithm classifies a pixel completely at random, with no systematic preference for
any of the baseline clusters.

Let the variation of Uk be defined by Ik, the corresponding interquartile range computed over
all pixels s. Then, it can be shown that the Uk and Ik are bounded by functions of the classification
variance pkqk:

Uk ≈ O(pkqk)

and IK ≈ O{(pkqk)
2}; qk = 1− pk, 0 < pk < 1.

(5)

Uk and Ik share a parabolic relation. Algebraically, it is a complex exercise to derive a closed form
functional relationship between the median Uk and the interquartile range Ik. However, for ease of
algebraic demonstration, in Appendix D, we derive the mean and variance of uncertainty estimate
to demonstrate the parabolic relationship between the spatial central tendency of uncertainty Uk
and the interquartile range Ik. As can be seen, the parabolic relationship described in (5) dictates
that, post t0, Uk (the trend of classification uncertainty) and Ik (variation of classification uncertainty)
increase simultaneously till Ik reaches its theoretical maximum. It can be shown that this corresponds
to a time {k′ : median s pk′s ≈ 0.125}. For more details, see Lemma 1 and Figure A1 in Appendix D.
We denote this time point by k′ = tR and define it to be the time of emergent risk. Thus, the time point
corresponding to the maximum variation in uncertainty Uk is:

tR = max
k>t0

Ik. (6)

Beyond tR, the kinematic partitioning approaches its ultimate pattern at the time of failure
tE. That is, in the final stages leading up to failure, a burgeoning set of pixels displays increasing
uncertainty in alignment with the baseline cluster labels at t0. Mathematically, from the simple
parabolic relationship between Uk and Ik for k > tR, Uk has an increasing trend, while Ik has a
decreasing trend, till it reaches the time k∗ (say) > tR. At k∗, the uncertainty estimate Uk∗ has a value
very close to the maximum possible value of 0.25, while Ik∗ is very close to zero (see Equation (A6) in
Appendix D). In other words, at time k∗, the state of the monitored domain D is such that assignment
and non-assignment probabilities into one of the baseline clusters become equal for at least 50% of
pixels. This implies a substantial deviation of the time series of features Xsk∗ at time k∗ relative to that
at t0.

For successful implementation of the algorithm, a domain expert needs to consider the following.
The decision rule described above depends on the convergence of classification uncertainty Uk, relative
to baseline clusters, to the maximum possible value of 0.25 (see Lemma 1 and Figure A1 in Appendix D).
Hence, estimation of the time of regime change t0 is critical for the algorithm’s sensitivity. We illustrate
this point in Section 5.4 and suggest a method of choosing a time point from a set of competing
non-stationary time points.
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We demonstrate the algorithm using a univariate time series of pixel velocities; however,
the framework could be easily extended to multivariate time series, provided that the features are
mutually exclusive (e.g., velocity and hydrological properties).

5. Results

The input data are time series of velocity Xst; t = 1, 2, ...n; s = {1, 2, ..., J} where J = 1803 and
n = 4000. The initial time state label t = 1 corresponds to 10:07 31 May; while the final time
state t = 4000 corresponds to 09:00 17 June. We label the time of the landslide tE to be the time
when the global average pixel velocity reaches its maximum value of 0.56 mm/min (33.61 mm/h):
t = tE = 3568, which corresponds to 13:10 15 June. We make full use of the available high density
radar data comprising line-of-sight (LOS) ground displacements for 1803 monitored points (pixels)
covering the whole of the rock slope for a total of 4000 time states, around six minutes apart for 17 days
(Figure 1). We do not make a priori assumptions on the monitored site and base our characterization
of the complex kinematic patterns and associated dynamics only from the data.

5.1. Estimation of State and Detection of Regime Change Point

Figure 4 shows points of regime change using the non-stationarity measure, S(t) (Section 4.2.2).
We observe that prior to the actual event, S(t) is substantially higher than zero at times: t = 162,
t = 1418, and t = 2367. We consider each of these time points as potential times for significant change
in the state of the slope. However, t = 162 occurs quite early in the trajectory of the time series X̄(t).
To avoid any potential boundary problems (see, for example, [33,34]), we ignore t = 162. This leaves
time points t = 1418 and t = 2367 as potential candidates for time points of regime change. Following
the procedure in Section 4.2.2 and Appendix A, we find t0 = 2367. Hence, for the rest of this section,
we describe the subsequent stages of the algorithm using t0 = 2367 as the regime change point.
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Figure 4. (a) Time series of the global average spatial velocity scaled by the standard deviation
(grey) with the superimposed smoothing spline estimate of the signal (red). (b) The corresponding
non-stationarity trajectories.

5.2. Clustering and Classification of Kinematic Partitioning

Figure 5 shows the pixel cluster assignments shown in the spatial domain at different times of the
monitoring campaign. It can be seen that the proposed statistical learning algorithm corroborates the
kinematic partitioning obtained in [11], using the cumulative displacement data, which gave an early
prediction of the location of failure along the west wall. As postulated in Section 4.2, as time advances
from t0, there is an initial increase in the number of pixels realigning or changing cluster label relative
to their baseline label at t0. This highlights the increasing deviation in the state of the system relative
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to the stable regime t < t0. However, close to the event time tE = 3568, the pixel cluster realignments
subside as the kinematic pattern converges to the ultimate pattern of failure at t = 3568.
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Figure 5. Cluster labels at different times: (a) t = 900, (b) t = t0 = 2367, (c) t = tR = 2659,
(d) t = tI = 3350, (e) t = tE = 3568, and (f) t = 4000. The red (blue) label has the highest (lowest)
average velocity.

5.3. Risk Assessment

In Figure 6a, we show the estimated risk trajectory Uk (Equation (4)) with t0 = 2367. At times
k > t0, Uk is the sample median of classification uncertainty with respect to all locations, into one of
the baseline clusters at t0. Figure 6b shows the interquartile range I(k), the corresponding measure of
the statistical variation of Uk. Following Equation (6), the estimated time of emergent risk is tR = 2659.
This is approximately 99 hours prior to the time of event, tE = 3568. From tR, Uk and Ik progressively
diverge from one another, in approximate bilateral symmetry, till Uk reaches its maximum possible
value of 0.25, or a close approximate. We define this to be k∗ = tI . At tI , the zone may be declared
landslide imminent: tI = 3350 (red vertical line), which is almost a day prior to tE = 3568. Note that
this is also the time point where Ik should be close to zero. Here, we select tI empirically, that is
the time point following tR such that:

tI = max
k>tR

Uk (7)
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Spatial exploratory analysis of the landslide data provides additional insight into the dynamic
nature of statistical variation and throws light onto the increasing misclassification and its uncertainty
in the lead up to the time of event tE = 3568 (Figure 7). Closer to tE = 3568, both the mean and variance
of the spatial velocities rise sharply, in tandem. A consequence of this is that the signal-to-noise ratio,
namely the ratio of the spatial mean to the spatial standard deviation, suddenly concentrates around
the value of one (Figure 7b). This is synonymous with loss of estimation or predictive power for any
model. As such, the non-parametric regression that forms the basis for the baseline clusters is no longer
informative about this epoch. Thus, not surprisingly, the pixels display the highest misclassification
(Uk) relative to their baseline cluster labels over this period of the monitoring campaign. In Section 5.4,
we show how other potential choices for t0 influence the estimates for tR and tI .
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Figure 6. (a) Risk of failure Uk (4) (grey) for t0 = 2367. Dashed red lines are the lower and upper 95%
confidence limits of Uk obtained by fitting non-parametric smoothing splines to the trajectory of Uk.
(b) Variability of risk of failure Ik.
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Figure 7. (a) Spatial mean (signal) of velocity time series across all 1803 locations. (b) Spatial variance
(noise) of velocity time series across all 1803 locations. (c) Trajectory of signal to noise ratio. (d) Zoomed
signal to noise ratio between times 3400 till 4000.

5.4. Sensitivity of t0 in Estimation of Critical Times tR and tI

We described that a principal outcome of the proposed algorithm is estimation of the time point of
maximum classification uncertainty, relative to baseline t0, in the risk trajectory of Uk = 0.25. We define
this to be the estimated event time k∗ = tI . This in turn is the time point when the median of location
classification probabilities pk, into one of the m baseline clusters, attains the value of 0.5. Consequently,
the choice of the baseline t0 is important.

In this section, we demonstrate the impact of choosing t0 on the estimation of tR and tI .
In Section 5.4.1, we provide an objective recommendation for the selection of t0 from a set of
comparators. Section 5.4.2 depicts a tabular and graphical analysis of the sensitivity of t0 against
several subjective alternatives, in the subsequent determination of tR and tI . A more comprehensive
sensitivity analysis would be the subject of a future paper.

Previously, we suggested two time points t = 1418 and t = 2367 as candidates for the baseline,
based on the non-stationarity index S(t). We conclude the section by suggesting a method for selection
of t0 from a set of non-stationary time estimates. Figures 6 and 8 show the trajectories of risk Uk and its
variation Ik, for the landslide data estimated with the two different baselines, t0 = 2367 and t0 = 1418,
respectively. In each figure, the top panel shows the trajectory for Uk, while the bottom panel depicts
the corresponding estimated trajectory for Ik (solid blue line) against time on the x-axis. The dashed
red lines in the top panels are the upper and lower 95% confidence interval lines obtained by fitting a
smoothing spline estimate to Uk.
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Figure 8. (a) Risk of failure Uk (4) (grey) for t0 = 1418. Dashed red lines are the lower and upper 95%
confidence limits of Uk obtained by fitting non-parametric smoothing splines to the trajectory of Uk.
(b) Variability of risk of failure Ik.

For baseline t0 = 1418 (Figure 8), the classification probabilities pk never come close to 0.5.
Consequently, Uk does not come close to the theoretical maximum of 0.25. This further implies that
Uk and its dispersion, Ik do not diverge from one another, and we are unable to identify tR, the time
point of emergent risk (6), unlike the estimates obtained for t = 2367 (Figure 6). This demonstrates
the effect t0 has on the subsequent risk analysis. Hence, we need an objective decision criterion to
determine a baseline time, t0, from a set of several statistical non-stationary time points (S(t) > 0) that
we now describe.

5.4.1. Choosing t0 from Several Comparators

Suppose there are L non-stationary time points, {tn
1 , tn

2 , ..., tn
L}, obtained based on the feature vector,

X̄t. At each such time point tn
l , l = 1, 2, ..., L, we partition the zone into a finite number of clusters, m.

t0 is chosen to be the time that corresponds to the maximum inter-cluster variation, expressed as a
percentage (see Table 1). Heuristically, this corresponds to a time of major transition in the state of
the whole geological zone. For more details on medoid cluster algorithm and inter-cluster variation,
see [30] and the references therein. For the present data, we estimated the proportion of inter-cluster
variation for various cluster solutions, m = 2, 3, 4, 5 for times, t = 1418 and 2367. The details are given
in Table 1. We see that for each cluster solution, the proportion of explained (spatial) variation is higher
for t = 2367 compared to t = 1418. Hence, we choose t = 2367 as the point of regime change, t0.
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Table 1. Explained intra- and inter-cluster variations for different numbers of cluster partitions, 2, 3, 4, 5,
at non-stationary times, t = 2367 and t = 1418. Time point t = 2367 has a higher explained inter-cluster
variation for a smaller cluster solution. It is selected as t0.

Time No. of Clusters Within Cluster Variation Explained Inter-Cluster Variation (%)

2367

2 0.147 0.080 74%
3 0.040 0.055 0.028 86%
4 0.016 0.021 0.019 0.028 90%
5 0.018 0.007 0.020 0.005 0.011 93%

1418

2 0.019 0.015 53%
3 0.005 0.017 0.003 67%
4 0.004 0.004 0.014 0.002 69%
5 0.003 0.002 0.004 0.003 0.002 81%

If the domain expert uses medoid partitioning algorithm s/he would also have to decide on the
appropriate cluster solution, m. We decided to opt for m = 3 since this led to the minimum number
of clusters that resulted in a proportion of inter-cluster variation of at least 80%. Our data driven
clustering solution also corroborates the spatial partition obtained using network models [11]. We now
compare the sensitivity of our choice of t0 based on non-stationarity and clustering against several
subjective choices. Note that since our illustration is based on a single real event as such we can
only perform an informal sensitivity analysis at this stage. A future work would consider a formal
sensitivity analysis of the method based on several landslide event datasets.

5.4.2. Sensitivity of Chosen t0

Figure 9 and Table A1 in Appendix B show estimates for times of emergent and imminent risk, tI
and tR respectively, for the landslide data, for different choices of baseline time, t0. To this end, we have
compared estimates of tI (7) and tR (6) for non-stationarity based estimate of t0 = 2367, against 50
subjective choices in the neighbourhood of t0. We selected 25 points before and 25 subsequent points.
Our interest is to explore the sensitivity of the proposed algorithm in estimating tI and tR, subject to
particular choices for t0.
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Figure 9. Estimated values of tI (7) and tR (6) for 51 different choices of t0. Non-stationarity based on
t0 = 2367 (3) is compared with 25 prior and subsequent time points, Panel (a) shows estimates of tI

against t0, (b) plots tR against t0. The intersecting lines show the estimates obtained using the algorithm.

We observe that for the vast majority of chosen baseline times in the vicinity of t0, the algorithm
leads to very similar estimates for tI (around the time 3350) and tR (around 2260). One might
conjecture that under certain regularity conditions (and for certain types of natural land displacement)
the proposed algorithm is able to obtain a limiting value for the point of regime change and its
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time functionals, tI and tR. Establishing such a mathematical relationship is among our future
research interests.

5.5. Choosing t0 for Streaming Data

So far we have illustrated our method on retrospective data. But we envisage that the proposed
algorithm can be implemented on streaming landslide data. Our suggestion is to proceed as follows.

As a new observation on the features is recorded, at the latest time point, we fit a smooth
non-parametric regression to the (spatially) averaged feature vector of the geological zone, up until
that time. The fitted regression provides confidence intervals on the estimated feature, accounting for
the uncertainty at that time. We use the index S(t) (2), to quantify the non-stationarity of the fitted
feature, as described earlier. This process is repeated till we encounter a time point, t0 (say), such that
the non-stationarity metric is substantially higher than 0. We treat t0 as a prospective baseline time and
partition the spatial locations into a finite number of homogeneous zones using the medoid clustering
algorithm [31] (see Section 3.2). This is an example of unsupervised learning. t0 is accepted to be the
baseline only if it accounts for at least 80% of inter-cluster variation (see Section 5.4.1).

If a hypothetical baseline time point has a smaller (than 80%) inter-cluster variation, we return
to the stage for detection of the non-stationary regime change point. Also note that this sequential
learning approach, of baseline detection and subsequent clustering, allows us to interpolate the state of
the system accounting for average temporal and spatial variation of locations, simultaneously, without
using an explicit spatio-temporal model [35].

6. Discussion

We proposed a five-stage statistical and machine learning algorithm for near real-time
characterization of a landslide from streaming monitoring data. As depicted in The algorithm delivers
an estimate of critical transition time states t0 < tR < tI preceding the hazard event time tE; see Figure 3.
These transition times may be used as a guide in a manner complementary to forecasts from other Early
Warning Systems (EWS) tools for deciding hazard warning levels: yellow, be aware; orange, prepare
now; and red, take action. The algorithm combines standard statistical learning tools, cluster analysis
and likelihood theory based classification with the principle of statistical second order non-stationarity.
Our proposal distinguishes itself from current tools used in EWS in three respects. First, it combines
state-of-the-art knowledge of granular failure dynamics with recent advances in non-stationary time
series analysis and machine learning. Second, we make full use of whole-of-slope displacement
monitoring radar data. This contrasts with the common practice of subjectively choosing a single
or a handful of time series for analysis, in favour of fast-moving sites. In this context, our approach
more robustly captures the complex spatio-temporal dynamics of landslides and may help reduce
false alarms caused by sudden shifts in behaviour; for example, failure may be arrested before it can
develop into a landslide [8]. Third, our algorithm is fairly generic and can be extended to incorporate
model based assumptions and data on other landslide triggers.

In stage one, the algorithm estimates a regime change point, t0, at which the physical system
suffers a deviation from its relatively stable and statistically stationary past. We define this to be the
point of regime change or the baseline time, t0. In stage 2 a clustering methodology is used to define
the state of the system at t0. Stage 3 quantifies dynamic trajectories of risk based on deviation from the
baseline time. Classification tools based on the theory of maximum likelihood are used at this phase.
Finally we deliver times of emergent (tR) and imminent risk (tI) based on empirical points of inflection
and maximum, in the risk trajectories.

Detecting the point of regime change, t0, is significant for ensuring sensitivity and specificity of
proposed method. In Section 5.4.1 we have provided advisory based on inter-cluster variation on how
to ascertain that a selected non-stationary time point is indeed the baseline time, t0. Section 5.4.2 shows
that our approach is robust compared to subjective choices. A future work would consider a rigorous
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sensitivity analysis to test the proposal on multiple landslides data. Further, in Section 5.5 we have
given advisory on implementing this algorithm on real-time landslide features data.

The work presented in this paper makes limited assumptions on the physical model underlying
the spatial displacement or velocity fields. This was a deliberate choice as we wanted to develop
a methodology for characterization of landslide evolution that is free from modelling assumption.
However, the methodology can be easily adapted to incorporate a parametric model. To this end,
a future work on this data would consider embedding a full spatio-temporal hierarchical prediction
model following state-of-the-art conventions in spatial statistics literature, see for example [35]
(Section 3). Such a model would include several sources of variation in the spatial data such as
trend surfaces, stochastic spatial variation, pixel level micro scale variation and measurement errors.

7. Conclusions

We developed a new data driven framework for landslide characterization using statistical and
machine learning techniques informed by fundamental knowledge of granular failure dynamics.
Our framework was designed to harness spatio-temporal patterns in ground motion from datasets
with high density spatial and temporal monitoring points. We tested our approach using ground
based radar displacement data from a rockslide. We identified a precursory failure regime t0 ≤ t ≤ tI
during which the velocity field portrayed a distinct spatio-temporal pattern: (i) a spatially clustered
pattern that identified the location of the yet-to-form failure event tE = 13:10 15 June and (ii) a temporal
evolution that culminated in the clustering pattern converging to the form that it assumed during
failure. The time of emergent risk t0 was 10:37 10 June, while the time of imminent failure tI was
14:53 14 June. Studies are under way to test the extent to which this dynamical pattern manifests in
other landslides.
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Appendix A. Use of Nonstationarity to Identify Candidate Regime Change Points t0

This section is an extension of stage two of our algorithm (Section 4.2.2). We describe further
details of computation and discuss potential comparators.

1. In Definition 4, S(t) (3), we described that a value of S(t) is closer to 0 is indicative of second
order stationarity (1) [12] of a time series. During a dynamic geological epoch feature time series,
Xst, gradually evolve into higher degree non-stationary. To track the dynamics of change in the
state of the system, as a function of time, we estimate S(t) over moving local time windows each
of length 50, sequentially. Based on the trajectory of S(t) we partition the zone into two epochs.
A period of relative stability for all times t < t0 when St<t0(t) is relatively close to zero and the
unstable epoch t > t0 with significantly higher values of St>t0(t). This leads to the estimated
point of regime change, t0.

2. The problem of identifying t0 in this algorithm is similar to that of estimation of change point(s)
in time series. As such we could use any of a suite of methods for estimating t0. However,
conventional approaches in change point estimation methods are commonly based on the
variation in mean or trend and often require a priori assumptions on the (finite) number of
change-points in the time series. See for example [29] and references therein. But it is quite well
known that geological time series usually display non-stationarity in higher order statistical
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moments. Also, the rate of change (itself) is dynamic in time and space. Hence a better approach
to studying variation in statistical properties would be to estimate deviation from second order
stationarity as a function of time. Thus we suggest using S(t) as a characteristic feature of the
zone for detecting the epoch change time, t0.

3. Here, we have implemented the non-stationarity metric on the smoothed velocity signal, V(tn)

(Section 4.2.2). An alternative approach would be to use the non-stationarity metric S(t) to
estimate the temporal variation of the dynamic Fourier transform of V(tn) (see for example [23]
(Ch 4)), since the spectrum is a unique signature of a second order stationary time series.

Appendix B. Comparison of Non-Stationarity Based t0 against Subjective Choices

This section shows the table of observations corresponding to Figure 9 given in Section 5.4.2.
The table compares the effect of non-stationarity based detection of t0 = 2367 against 50 alternatives
on subsequent estimation of times of emergent and imminent risk, tR and tI , respectively.

Table A1. Comparison of the risk (Uk) and estimates of time of imminent risk tI for various choices of
t0 including times, 2342 and 2367 (red).

Uk Ik tI tR t0

0.249 0.093 3363 2723 2342
0.249 0.094 3429 2668 2343
0.249 0.093 3366 2733 2344
0.249 0.093 3357 2668 2345
0.249 0.093 3358 2662 2346
0.249 0.093 3358 2666 2347
0.249 0.095 3357 2664 2348
0.249 0.094 3357 2661 2349
0.249 0.093 3357 2660 2350
0.249 0.095 3356 2664 2351
0.248 0.092 3355 2658 2352
0.248 0.094 3355 2664 2353
0.248 0.096 3355 2665 2354
0.248 0.097 3355 2665 2355
0.247 0.099 3353 2661 2356
0.247 0.098 3354 2660 2357
0.246 0.095 3354 2416 2358
0.246 0.094 3353 2410 2359
0.245 0.094 3353 2659 2360
0.245 0.096 3353 2413 2361
0.242 0.098 3353 2662 2362
0.240 0.098 3351 2665 2363
0.240 0.099 3351 2662 2364
0.239 0.098 3351 2664 2365
0.239 0.094 3351 2657 2366
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Table A1. Cont.

Uk Ik tI tR t0

0.239 0.099 3351 2660 2367
0.237 0.099 3351 2664 2368
0.237 0.099 3351 2661 2369
0.236 0.095 3351 2659 2370
0.235 0.099 3350 2663 2371
0.235 0.096 3351 2658 2372
0.233 0.095 3350 2588 2373
0.233 0.094 3350 2586 2374
0.230 0.095 2930 2590 2375
0.230 0.097 2926 2659 2376
0.232 0.095 2927 2586 2377
0.228 0.095 2929 2876 2378
0.228 0.096 2929 2876 2379
0.230 0.102 2928 2875 2380
0.231 0.103 3363 2970 2381
0.229 0.106 3477 2971 2382
0.229 0.107 3476 2973 2383
0.235 0.107 3481 2972 2384
0.234 0.107 3478 2972 2385
0.235 0.107 3478 2971 2386
0.233 0.106 3479 2973 2387
0.233 0.105 3590 2972 2388
0.237 0.107 3587 2971 2389
0.237 0.108 3481 3115 2390
0.240 0.109 3480 3116 2391
0.240 0.107 3482 3116 2392

Appendix C. Classification Details

This section provides additional computational details on classification of pixels, required in stage
four of the Section 4.2.4 (see also Section 5.2).

We use the principle of likelihood maximization to classify each location (pixel) at all time points
t0+1, t0+2, ...- post regime change- into one of the m baseline clusters ([32], Ch. 6). Akin to clustering,
classification of the pixels are based on (cross-sectional) spatial variation of the features and do not
account for temporal evolution. This allows classification of the locations without (temporal) bias.

For each location s let the classification set at times k = t0+1, t0+2, . . . , ..., be denoted by Pk
s . Pk

s is a
vector of multinomial probabilities. That is, at each time k > t0, Pk

s = (pk
s1, pk

s2, ..., pk
sm) quantify the

probability that location s be assigned to one of the m baseline clusters. Collectively, the probability
matrix Pk = {Pk

1, Pk
2, . . . , Pk

J}′ describe the state of geological zone at time k. To estimate Pk
s we fit

multinomial logistic regression models with the cluster labels as response variables and pixel velocity
as covariate, using the principle of maximum likelihood. We expect that the state matrices, Pk and Pk′

at two different times {(k, k′) : t0 < k < k′} during the epoch of high geological activity would be
different. Further, this difference should gradually increase as the lag k− k′ grows, till the event time
tI , highlighting the increasing difference in the state of the system with the time of regime change, t0.

Appendix D. Distribution of Estimator for Uncertainty Parameter

In Sections 4.2.5 and 5.3 we discussed that the first and second order moments of uncertainty
(risk) metric U = pq share a parabolic relationship leading to a bilateral symmetric divergence of the
beyond the time of emergent risk, tR. We now prove this using estimates of the mean and variance of
pq. In Stage 5 of our algorithm, we use the following relationship between the maximum likelihood
estimator of first and second order moments (mean and variance) of the classification uncertainty,
M(p) = pq, to estimate the times of emergent and imminent risks, tR and tI , respectively.
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Lemma A1. If X1, X2, . . . , Xn are a sample of independent and identically distributed Bernoulli random
variables with distribution,

fXi (xi) =

{
p, if xi = 1

q = 1− p, if , xi = 0

Then the mean of the maximum likelihood estimator for M(p), M̂(p), and the corresponding variance,
Var{M̂(p)}, share a quadratic relationship given by,

M̂(p) = p̂q̂ = X̄(1− X̄); X̄ =
n

∑
i=1

Xi

E{M̂(p)} = pq(1− 1/n)

Var{M̂(p)} = Var{X̄(1− X̄)} u 1
n
{pq(1− 4pq)}

(A1)

Proof. The first equality in equation M̂(p), follows from standard maximum likelihood theory for
independent and identically distributed (iid) Bernoulli random variables. That is, the maximum
likelihood estimator of p for n iid Bernoulli is X̄. Further, as p(1− p) is a differentiable function of p
for 0 < p < 1, from the invariance theorem of maximum likelihood estimators we have of M̂(p) is
{X̄(1− X̄)}. See for example [36].

Note that, E(X̄) = p

Var(X̄) = pq/n

E(X̄2) = Var(X̄) + {E(X̄)}2 =
pq
n

+ p2

Hence, E{M̂(p)} = E(X̄)−E(X̄2)

= p− pq
n
− p2 = pq(1− 1/n)

(A2)

Next we derive the variance. It is well known that if f (X) is a differentiable function of random
variable X then

Var{ f (X)} u [E{ f ′(X)}]2 Var(X) (A3)

The above relationship follows from Taylor series expansion and is commonly known as the Delta
method, in statistics literature (see for example [37]). The method is often used to derive approximate
variance of complex non-linear functions of a random variable. We have f (X̄) = X̄(1− X̄). Hence,
f ′(X̄) = 1− 2X̄. Thus using Equation (A3) we have,

Var{X̄(1− X̄)} u [E{ f ′(X̄)}]2 Var(X̄) (A4)

=
1
n
{(1− 2p)2(p(1− p))}

=
1
n
{p(1− p)(1− p− p)2}

=
1
n
{pq(q− p)2} (A5)

=
1
n
{pq(q2 + p2 + 2pq− 4pq)}. (A6)

But, (q2 + p2 + 2pq) = (p + q)2 = 1

Hence, Var{X̄(1− X̄)} u 1
n
{pq(1− 4pq)} (A7)
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It immediately follows that as a function of pq, Var{X̄(1− X̄)} has its unique theoretical maximum
and minimum at pq = 0.125 and pq = 0.25, respectively (see Figure A1). In Section 3 we use the
maxima and minima to obtain an estimate of tR (6) and tI (7), respectively. However our time varying
risk estimates are based on the median (Uk) and interquartile range (IK) of pq. In Lemma 1 we chose
to use the mean and variance estimators of the uncertainty parameter pq for an algebraically simpler
mathematical illustration of order O() of the relationship between first and second statistical moments
of Uk. The order remains the same in both cases.
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Figure A1. Relationship between the average uncertainty pq(1 − 4pq)/n and the corresponding
variance pq (A7).
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