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Abstract: A reliable and accurate monitoring of traffic load is of significance for the operational
management and safety assessment of bridges. Traditional weight-in-motion techniques are capable of
identifying moving vehicles with satisfactory accuracy and stability, whereas the cost and construction
induced issues are inevitable. A recently proposed traffic sensing methodology, combining computer
vision techniques and traditional strain based instrumentation, achieves obvious overall improvement
for simple traffic scenarios with less passing vehicles, but are enfaced with obstacles in complicated
traffic scenarios. Therefore, a traffic monitoring methodology is proposed in this paper with extra
focus on complicated traffic scenarios. Rather than a single sensor, a network of strain sensors of a
pre-installed bridge structural health monitoring system is used to collect redundant information and
hence improve accuracy of identification results. Field tests were performed on a concrete box-girder
bridge to investigate the reliability and accuracy of the method in practice. Key parameters such as
vehicle weight, velocity, quantity, type and trajectory are effectively identified according to the test
results, in spite of the presence of one-by-one and side-by-side vehicles. The proposed methodology
is infrastructure safety oriented and preferable for traffic load monitoring of short and medium span
bridges with respect to accuracy and cost-effectiveness.

Keywords: traffic load identification; bridge weigh-in-motion; multiple-vehicle problem; deep
learning; structural health monitoring; computer vision

1. Introduction

Over last two decades, bridge structural health monitoring (BSHM) has become a pervasive
technique that monitors the static and dynamic bridge responses induced by environmental effects or
vehicle loads [1]. As the engineering practice of BSHM develops, an increasing number of structures are
now being equipped with data acquisition equipment and sensor network consisting of strain sensors
and accelerometers, as well as cameras. The initial purpose of these sensors is normally to observe
the behavior of bridge structure over time, and thereby to conduct damage detection and assess the
structural condition [2]. Then, with the evolution of related technologies, researchers realized that the
collected data may be analyzed to achieve the operational monitoring of the bridges as well, such as
capturing the bridge response under extreme loads [3–6] or monitoring the traffic on the bridge [7–9].

For bridge structures, traffic load is the central one among these operational factors. On the one
hand, bridges are constructed for traffic purpose. On the other hand, the traffic load might deviate
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from the original bridge design with the rapid development of the transportation industry. Therefore,
monitoring traffic load, including vehicle weight, velocity, quantity, type and trajectory, is crucial
for bridge design refinement and safety assessment, as well as operational management. In order to
monitor the traffic load of bridges, the bridge weigh-in-motion (BWIM) technique is highlighted [10].
The initial concepts behind BWIM were proposed by Moses [11], who used an instrumented bridge
as the weighing scale to estimate vehicle weights in his engineering practice. Due to the advantages
in terms of cost efficiency, durability and unbiased accuracy, BWIM technique turns out to be a
preferable tool to weigh vehicles and is augmented by many subsequent research and engineering
applications [12].

Recognizing the vehicle weight is the motivation of BWIM technique. The identification approach
is generally based on the static influence line/surface theory [13]. By now, there have been many
engineering practices aimed at recognizing the vehicle weight, yet problems are experienced for
obtaining accurate results in complicated traffic cases [14]. The original Moses algorithm used for
BWIM purpose has difficulty separating the contribution of the individual vehicles from the bridge
response alone when more than one vehicle in adjacent lanes travels side by side on the bridge span.
In addition, this method is unable to identify extra traffic information including types, size, axle
number and velocity of vehicles, without the help of additional traffic sensors such as radar, road tubes
and embedded axle detectors [15]. However, the usage of any sort of those sensors would diminish the
advantage of BWIM systems over pavement-based WIM systems.

Fortunately, the bridge structural health monitoring (BSHM) technique might provide solutions.
An increasing number of bridges are now being instrumented with sensor network and data acquisition
equipment. Through mining the data collected by the BSHM sensor network, extra traffic information
might be discovered so as to mitigate the aforementioned problems faced by traditional BWIM
techniques. An example is when Yu et al. [16] proposed a BWIM algorithm that was able to identify the
lateral position of a single vehicle on a bridge by using seven strain gauges installed transversely at the
bottom of the beams. Other valuable attempts use the traffic webcam of a BSHM system to automatically
detect the vehicles on bridge and achieve further vehicle information identification [17–23].

Focusing on the aforementioned key issues of current BWIM techniques, this study combines the
strain sensor network and an additional traffic video webcam belonging to a bridge structural health
monitoring system, to monitor and identify the traffic load on bridge. The logic of the paper is as
follows: i) both the theoretical background and the application procedure of camera visual sensing and
strain sensing is introduced; ii) the influence line theory oriented towards gross vehicle weight (GVW)
recognition is elaborated on with an emphasis on the multiple-vehicle problem, iii) overall framework
of the data integration methodology for traffic monitoring is summarized; iv) field tests on a concrete
box-girder bridge are conducted to demonstrate the proposed methodology, especially for complicated
traffic cases. The advantages and the potential engineering applications of the methodology are
summed up as a conclusion.

2. Traffic Sensing Technologies

2.1. Visual Sensing

2.1.1. Computer Vision Technique

Over the last decades, the exponential growth in both hardware facilities and software algorithm
has successfully made traffic video surveillance widespread. In essence, the goal of traffic video
surveillance is the detection of moving object, which aims to decide whether a vehicle exists in the
monitored area and where it is. To attain the goal automatically, the computer vision technique is
invented, of which the main methods are either motion-based or feature-based. Compared to the
motion-based one, the feature-based method is much more efficient and robust due to the upsurge of
deep learning, and is considered to be the mainstream of computer vision techniques [24,25].
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Convolution neural network (CNN) is a category of neural network with deep structure and
convolution calculation. It is one of the representative algorithms of deep learning approaches
employed for object detection, classification and segmentation tasks [26]. The learning ability enable
the CNN automatically learns features from the training data set, rather than using hand-engineered
features, to detect the target object. This process imitates the visual perception mechanism of humans,
which makes the CNN leap over the traditional manual feature extraction methods and greatly reduces
the workload of operation. The robustness and efficiency of the CNN have been proven in numerous
object detection practices.

With the unremitting efforts of computer scientists, superior CNN based computer vision
algorithms have been continually proposed. In view of this, an advanced algorithm named Mask
Region-based CNN (R-CNN) is applied in this research to detect vehicles in the video surveillance
for traffic. The R-CNN is one of the bounding-box object detection approaches. Bounding-box object
detection uses a sliding box to search for candidate positions where the object possibly occurs and
evaluates the convolutional networks of the image in the box to determine the existence of the object [27].
‘Mask’ indicates that the Mask R-CNN outperforms the R-CNN by outputting the mask of detected
object. Put another way, Mask R-CNN not only detects the existence and position of the objects, but
also recognizes the shape of the objects [28].

As with any deep-learning based computer vision algorithm, the implementation procedure of
the Mask R-CNN has the following three steps: i) prepare training data sets, ii) train the convolution
neural network of the Mask R-CNN algorithm and iii) apply Mask R-CNN to detect vehicles in the
traffic video. The real-time detection results in this research are shown in Figure 1.
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As seen in Figure 1, the detection tasks of the Mask R-CNN are divided into two trigger 
strategies: before and after vehicles entering the bridge deck zone. In the first mode, both the back 
and the side of a vehicle are visible in the video image so that the Mask R-CNN is capable of 
distinguishing different segments of a vehicle. It is remarkable that the back and side area, as well as 
closely-spaced wheels of a vehicle are successfully recognized as shown in Figure 1a, proving the 
segmentation capability of the Mask R-CNN algorithm. When vehicles drive further after entering 
the bridge deck, the side of the vehicles becomes invisible due to the fixed angle of the camera. Since 
computer vision techniques cannot detect what is invisible in the image, only the back of vehicles are 
detected in this scenario, even when the multiple vehicles are overlapping, as shown in Figure 1b. 

The image pixel coordinates of the detection box are collected for further size measuring and 
vehicle positioning tasks. 

2.1.2. Coordinate Transformation 

Figure 1. Vehicle recognition results. (a) Before entering the bridge deck; (b) after entering the
bridge deck.

As seen in Figure 1, the detection tasks of the Mask R-CNN are divided into two trigger strategies:
before and after vehicles entering the bridge deck zone. In the first mode, both the back and the side of
a vehicle are visible in the video image so that the Mask R-CNN is capable of distinguishing different
segments of a vehicle. It is remarkable that the back and side area, as well as closely-spaced wheels of
a vehicle are successfully recognized as shown in Figure 1a, proving the segmentation capability of the
Mask R-CNN algorithm. When vehicles drive further after entering the bridge deck, the side of the
vehicles becomes invisible due to the fixed angle of the camera. Since computer vision techniques
cannot detect what is invisible in the image, only the back of vehicles are detected in this scenario,
even when the multiple vehicles are overlapping, as shown in Figure 1b.

The image pixel coordinates of the detection box are collected for further size measuring and
vehicle positioning tasks.
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2.1.2. Coordinate Transformation

The raw output of vehicle coordinates from traffic video are in the image coordinate, which cannot
be directly used to recognize the velocity, size, or influence value of the vehicles, unless the image
coordinates are transformed into the space coordinates. To this purpose, three coordinate systems,
namely image pixel coordinate in the video image, space coordinate in the real space, and planar
coordinate on the bridge deck, are established for obtaining the vehicle position in situ, as illustrated
in Figure 2. A coordinate transformation method is utilized in this paper, basing on the former work of
Xu and Zhang [29].
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Figure 2. Coordinate systems. (a) Diagram of coordinate systems; (b) spatial camera imaging model;
(c) planar camera imaging model.

Supposing a vehicle denoted as V is driving on the bridge, what the computer vision technique
directly outputs is the pixel coordinate, V1(x1, y1), of the recognized vehicle in the image pixel plane
shown in the video image in Figure 2a. In order to get the real space coordinate V2(x2, y2, z2) of the
vehicle, the geometrical relations between the two systems are employed as shown in Figure 2b,c, in
which Figure 2c is the planar projection of Figure 2b. According to the geometrical relations, the pixel
coordinate of a point V1(x1, y1) can be transferred into spatial coordinate V2(x2, y2, z2) as follows:[

x1 y1 f
]
· t =

[
x2 y2 z2

]
, (1)

where f is the focal length of the camera and t is the similarity coefficient between the two similar
triangles in Figure 2c. Now that the coordinate V1(x1, y1) and the focal length f are known, the
application of Equation (1) requires to find the similarity coefficient t initially.
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Moreover, to get the relative position of vehicles, that is V3(x3, y3), on the bridge deck, it is
necessary to firstly consider the bridge deck as a spatial plane in the space coordinate shown in Figure 2.
The plane is described by the following equation:

Ax2 + By2 + Cz2 + D = Ax1t + By1t + C f t + D = 0, (2)

where A, B, C, D are unknown parameters determining the bridge deck plane equation in the spatial
coordinate system. The similarity coefficient t can thus be written as:

t =
−D

Ax1 + By1 + C f
, (3)

The next step is to project the focal point of the camera, i.e., O2(0,0,0) in Figure 2a, onto the bridge
deck plane. As shown in Figure 2a, the projection point is denoted as O3(xo3,yo3,zo3), of which the
coordinates can be easily obtained according to the basic space geometry theory:[

xo3 yo3 zo3
]
=

[
−AD

A2+B2+C2
−BD

A2+B2+C2
−CD

A2+B2+C2

]
, (4)

Now the coordinate x3 of the vehicle in the bridge deck coordinate system can be obtained through
calculating the distance between the vehicle point V2(x2, y2, z2) and the plane z2O2O3 in the real
space coordinate system shown in Figure 2a above. Assuming the plane z2O2O3 is determined by
two coplanar vectors,

−−−−→
O2O3 =

[
xo3 yo3 zo3

]
and

−−−→
O2z2 =

[
0 0 1

]
, then the coordinate x3 is

expressed as: 
[

Ax Bx Cx
]
=
−−−−→
O2O3 ×

−−−→
O2z2

x3 =
Axx2+Bx y2+Cxz2√

Ax2+Bx2+Cx2

, (5)

where Ax, Bx and Cx are the coordinates of the normal vector belong to the spatial plane z2O2O3.
Similarly, the coordinate y3 of the vehicle in the bridge deck coordinate system can be obtained

through calculating the distance between the vehicle point V2(x2, y2, z2) and the plane x2O2O3.
The expression is: 

[
Ay By Cy

]
=
−−−−→
O2O3 ×

−−−→
O2x2

y3 =
Ayx2+By y2+Cyz2
√

Ay2+By2+Cy2

, (6)

The coordinates V3(x3, y3) exactly describe the vehicle position on the bridge deck and will be
directly used for BWIM purpose. Noticing that the camera orientation is not always identical with the
bridge longitudinal direction due to the limited installation position of the camera, simple coordinate
shift and rotation are needed in such cases.

Finally, the key issue of the coordinate transformation turns out to be the determination of
parameters A, B, C and D. Instinctively, both the location and orientation of the webcam are needed
for parameters determination. However, these data are generally unavailable because of some field
conditions. For this reason, a new method is proposed in the companion paper [30], which obtains
essential parameters directly from the video image with simply two lines of equal space length in the
image regardless of the camera location and/or its orientation. For the conciseness of this paper, that
method is not elaborated herein.

2.2. Bridge Strain Sensing

BWIM techniques generally take advantage of the bridge strains to recognize the gross vehicle
weight (GVW) based on the static influence line theory. Unfortunately, the raw strain data collected
by strain sensors contains the strain induced not only by vehicle weight, but also by vehicle-bridge
couple vibration and other environmental factors. Therefore, analyzing bridge structural strain and
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conducting strain signal processing are imperative. Typically, the components of bridge strain can be
denoted as the follow equations:

εbridge = εenvironment + εvehicle, (7)

εvehicle = εdynamic + εstatic, (8)

where εbridge is the bridge strain measured from sensors; εenvironment is the bridge strain caused by
environmental factors; εvehicle is the bridge strain induced by vehicles, which consists of dynamic
εdynamic and static εstatic components.

Within the different conponents of strains, the static component εstatic is the one needed for
the GVW estimation according to the influence theory, and it can be extracted from the measured
εbridge by filtering εenvironment and εdynamic. Technically, a local regression algorithm named locally
weighted scatterplot smoothing (LOWESS) is used to realize the extraction approach in time domain.
This algorithm is chosen due to its accuracy and convenience, according to Cleveland and Devlin [31].
The whole procedure is shown in Figure 3 for illustration. Details of implementation are available in
the literature [30].
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It is noteworthy that the above discussion is merely applicable for short and medium span bridges
that are commonly chosen as the targets of BWIM implementation [32]. In contrast to long-span bridges,
short and medium span bridges serve as ideal weighing scales to estimate the GVW for their structural
simplicity, better linear elasticity and more observable responses under traffic loads. Furthermore,
environmental load effects on those bridges, such as wind load, are relatively simple or even negligible.

3. Traffic Load Identification with Redundant Measurements

3.1. Traffic Load and Bridge Reaction

As bridges are basically beam-like structures, the influence lines of bridges reflect the relationship
between structural responses and traffic load. Available studies regarding BWIM suggest two
approaches to obtain the influence line of a bridge, e.g., theoretical derivation based approach [11,33,34]
and field tests based calibration [35,36].

This paper employs a method fitting strain influence line with measured strain data from field
calibration tests. The method includes two steps [30]: first, the shape of the strain influence line of



Remote Sens. 2019, 11, 2651 7 of 21

the target bridge is theoretically obtained with the kinematic method according to Timoshenko and
Young [37]; second, a truck with known weight is arranged to cross the instrumented bridge several
times as the calibration tests. The strain data measured in the tests is used to determine the exact
value of the influence line obtained in the first step. The truck load is simplified as a concentrated
load P = Wg for the sake of calibration convenience, where ‘W’ is the vehicle weight and ‘g’ is the
gravitational acceleration of which the numerical value is 9.8 m/s2. The simplification is reasonable in
mechanics, since for the linear elastic structures, the superposition principle works. The accuracy of
the GVW recognition results in this paper also supports the simplification. Figure 4 demonstrates the
procedure of obtaining the influence line of a four-span continuous bridge for BWIM purpose.
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3.2. Identification with Irredundant Measurement

Now that the static component of the vehicle induced strain and the calibrated strain influence
line are obtained, the inverse influence line theory can thereby be used to calculate the GVW. According
to Timoshenko and Young [37], the influence line theory is expressed as:

ε =
N∑

i=1

Wi · IWi(xi), (9)

where ε is the value of the extracted static bridge strain, N is the total number of vehicles on the bridge
and Wi, IWi(xi) and xi are the GVW, the strain influence value and the position of the ith vehicle when
the extracted strain signal reaches the local peak, respectively.

Equation (9) can also be written in matrix form as follows:

ε = W·I =
[

W1 W2 · · · WN
]
·

[
IW1(x1) IW2(x2) · · · IWN(xN)

]T
, (10)

Since the motivation for BWIM research is to identify the vehicle weight, Equation (10) is supposed
to be used inversely to calculate the W. In case of only one vehicle driving on the bridge, Equation (10)
can be expressed as:

ε = W1 · IW1(x1), (11)

Then, using strain data collected by a single strain sensor is enough to determine the GVW of that
vehicle. The sole GVW can be easily calculated by:

W =
εpeak

Ipeak
, (12)
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where εpeak is the peak value of vehicle induced static strain, Ipeak is the peak value of the calibrated
strain influence line and W is the GVW of the vehicle. For a more intuitive illustration, εpeak and Ipeak

correspond to the εS1 and IW1 in the Figure 4 above, respectively.

3.3. Least Square Based Identification with Redundant Measurements

More generally, there are multiple vehicles driving on the bridge at the same time. In this
multiple-vehicle scenario, no determined solution of the W in Equation (10) can be found, unless
redundant measurements from multiple strain sensors are available. If strain sensors outnumber the
vehicles, which is usually the case, Equation (10) is the form below.

ε =
[
ε1 ε2 · · · εM

]
= W·I =

[
W1 W2 · · · WN

]
·


Iε1
W1(x1) Iε2

W1(x1) · · · IεM
W1(x1)

Iε1
W2(x2) Iε2

W2(x2) · · · IεM
W2(x2)

...
...

. . .
...

Iε1
WN(xN) Iε2

WN(xN) · · · IεM
WN(xN)


N×M

, (13)

where εN is the maximum strain data collected by the Nth strain sensor, IεM
WN(xN) is the Nth vehicle’s

influence value belonging to the Mth strain sensor (M > N) and xN is the position of the Nth vehicle
when the bridge strain reaches the maximum. Based on Equation (13), the inverse influence line
equation aiming at determining the GVW of multiple vehicles is written as:

W = ε·Ig =
[
ε1 ε2 · · · εM

]
·


Iε1
W1(x1) Iε2

W1(x1) · · · IεM
W1(x1)

Iε1
W2(x2) Iε2

W2(x2) · · · IεM
W2(x2)

...
...

. . .
...

Iε1
WN(xN) Iε2

WN(xN) · · · IεM
WN(xN)


g

, (14)

It is noteworthy that the influence value matrix I is not a square matrix, which means it only has a
pseudo inverse instead of a regular inverse. The pseudo inverse of I is denoted as Ig, satisfying IIgI = I.

The influence value I(x) of the vehicles is unknown without the position information, x, of the
vehicles. Vehicles do not always simultaneously pass the bridge cross-section where I reaches its
maximum; hence, Equation (12) is ineffective in the multiple vehicles situation. Such is the reason why
identifying the presence of multiple-vehicle is still one of the main challenges faced by BWIM technology,
as Yu et al. [16] stated. Fortunately, in this paper, the position of vehicles can be quantitatively identified
by the deep learning based computer vision technique, which means that the influence values of every
vehicle driving on bridge in every moment are available. The multiple-vehicle problem is thus solved.

In addition, Equation (14) is overdetermined, as the equations outnumber the unknowns (M > N).
The redundant information in the overdetermined equation helps to reduce the GVW recognition error
caused by inaccurate vehicle position or influence line calibration.

An overdetermined equation, however, gives no exact solutions based on matrix algebra.
According to Lawson and Hanson [38], the method of ordinary least squares can be used to find an
approximate solution to the overdetermined systems. For the equation ε = WI, the least squares
formula is obtained from the problem:

min
W
‖WI− ε‖, (15)

The solution of which can be written in the normal equation:

W =
(
ITI

)−1
ITε, (16)

Then, the GVW results, W, are successfully calculated with better accuracy. It is noteworthy that
the approach solving the overdetermined equation is effective for both one-vehicle and multiple-vehicle
scenario, which helps to reduce the complexity of calculating the GVW in engineering practice.
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Furthermore, considering the fact that GVW recognition results of different strain sensors might
have different accuracy, the weighted least square method is adopted to reduce the error caused by
singular values. Expression of the method is denoted as:

W =
(
ITwI

)−1
ITwε, (17)

where w is the diagonal weight matrix and can be calculated using wii = 1/σi
2, in which σi is the

variance of the GVW recognition results of the ith sensor.

4. Traffic Load Monitoring Framework

Combining the two sensing techniques presented above, the overall data integration framework
proposed in this paper can be described as follows.

In the part of strain sensing, since the influence theory is a static mechanics concept, a local
regression algorithm named LOWESS is used to extract the static component from the dynamic bridge
strain response induced by vehicles. Then, calibration field tests are conducted to obtain the traffic
lane influence line of the target bridge with the static strain induced by vehicles.

In the part of visual sensing, after its training, the Mask-RCNN algorithm is used to recognize
vehicles in every video frame and pick up vehicle information such as position, type and size etc.

Finally, by combining the calibrated influence line, the obtained static bridge strain and the vehicle
position, gross vehicle weight (GVW) can be calculated regardless of the presence of multiple vehicles.
The whole procedure is summarized in Figure 5.
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It is worth mentioning that the vehicle type and size does not reflect the vehicle weight recognition
tasks in this paper, but they are closely noticed by the traffic and bridge management department.
For example, oversized trucks are often prohibited from driving on some bridges; therefore, recognizing
the type and size of such vehicles and sounding an alarm automatically are of significance in this case.
As for how to achieve this recognition, the vehicle type can be directly output by the Mask R-CNN
because of the feature-based advantage. The vehicle size, namely the length, width and height of the
vehicle, can be recognized through coordinate transformation after the back and the side of the vehicle
are segmented. Since this paper mainly focuses on estimating the vehicle weight in multiple-vehicle
scenarios, more details about the size recognition are omitted for the conciseness.
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5. Field Tests Validation

5.1. Instrumentation and Test Setup

Field tests were conducted on an existing bridge for the verification of the proposed traffic
monitoring methodology. The tested bridge, referred as Fuchang Overpass (Figure 6), is located on
the Baoding-Fuping Highway in Hebei province, China. It is a typical prestressed continuous girder
bridge which has been in operation for many years, with a total length of 133 m (32 m + 37 m + 32 m
+ 32 m). The bridge consists of three traffic lanes in total, and each of them is 3.75 m wide. Lane 3,
as the emergency lane, was ignored in this research, since vehicles are prohibited to drive on this
lane under normal conditions. The first span of the bridge is instrumented with a structural health
monitoring (SHM) system comprising of a pavement-based WIM system, 14 resistance-type strain
sensors (named ‘S1-1’ ~ ‘S3-4’) and a webcam. The SHM system was installed with many kinds of
sensors (strain gauge, thermometer, accelerometer etc.) for general monitoring purpose, but only strain
sensors were employed in this research. The normal strain data in the field tests were recorded by
the strain sensor network placed on three different cross-sections, i.e., at 1/4, 1/2 and 3/4 spans and
numbered as Sections 1–3, respectively. All the discussed information is shown in Figure 6.
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Figure 6. Instrumentation of bridge system for field tests. (a) diagram; (b) longitudinal elevation.
WIM: weigh-in-motion.

The acquired strain data and the video are stored in an online server for long-term and online
monitoring of the bridge structure. As a contrast, vehicle weight and velocity measured by a
pavement-based WIM system are used as a standard to evaluate the accuracy of this proposed
methodology. In addition to all the foregoing, influence lines of traffic lane 1 and lane 2 of bridge
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structure are obtained in the field calibration tests according to the aforementioned procedure in
Section 3.1. Figure 7 illustrates the calibrated influence line on two traffic lanes of all 14 strain sensors
on instrumented bridge cross-sections 1, 2 and 3. The vertical axes of the influence line plots are
the influence value (IV, unit: µε/ton). The calibrated influence lines directly reveal the quantitative
relationship between the GVW and the strain data collected by different strain sensors. As the influence
lines significantly outnumber the vehicles driving on the bridge and each of the lines is different,
they also deliver the deployment foundation for the GVW recognition algorithm using redundant
measurements. Otherwise, it is needless to calibrate the influence lines of multiple strain sensors.
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5.2. Vehicle Trajectory Recognition

The recognition of vehicle trajectory plays a vital role in solving the multiple-vehicle problem.
The influence values of multiple vehicles, which are essential for forming the inverse influence line
equation in order to estimate the gross vehicle weight, cannot be obtained without knowing their
real-time positions. As aforementioned, the computer vision technique makes it feasible to locate
vehicles in every video frame so that the vehicle trajectory can be recognized, as shown in Figure 8,
depicting vehicle trajectories tracked by the aforementioned method.
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5.3. Identification Results for Complex Scenarios

As for simple traffic scenarios such as only one vehicle passing the bridge, the recognition of
vehicle type, velocity and axle numbers has already been performed with certain accuracy [30]. This
paper would focus on a more challenging problem: elaborating the GVW recognition method on the
multiple-vehicle problem that remains to be solved. In general, there are three elementary scenarios of
vehicle distribution: i) single vehicle as seen in Figure 9a, ii) one-by-one vehicles on the same lane as
seen in Figure 9b and iii) side-by-side vehicles on different lanes as shown in Figure 9c.
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(f) strain signal of side-by-side vehicles.

5.3.1. Scenario: One-By-One Vehicles

The highway bridge chosen in the field tests has the span length of 32 + 37 + 32 + 32 = 133 m.
Oftentimes, one-by-one vehicles drive simultaneously on the bridge. However, a sizeable safety
margin, no less than 50 m, between the front and rear vehicles is demanded when driving on highways
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in China. That explains why two peaks can be observed clearly in the bridge strain signal caused by
moving vehicles, as Figure 9d illustrates. Moreover, the demand provides the advantage that the front
vehicle would add little to the bridge strain caused by the rear one. A 50 m margin means when the
rear vehicle enters the first span of the bridge, the front vehicle has already reached the third or fourth
span. According to the influence line in Figure 7, the influence value of the third and fourth span is
far smaller than the first span. In conclusion, the one-by-one vehicles scenario in this research can
be simplified as the single vehicle scenario and the GVW of each vehicle can be calculated using the
aforementioned Equation (12) with the corresponding peak of the strain signal.

To verify the accuracy of the simplification above, the GVW of the two trucks in Figure 9c are
calculated and the process is listed in Table 1. Errors of the recognition results are acceptable, as listed
in Table 1.

Table 1. GVW recognition process in a one-by-one vehicles scenario.

Vehicle Name Truck1 Truck2

1OMaximum strain 64.21 73.00
2OMaximum influence value of sensor S2-6 1.396 1.396

3OGVW = 1O/ 2O 46.00 t 52.29 t
4OGVW measured by pavement-based WIM 50.37 t 50.69 t

Error = ( 3O− 4O)/ 4O −8.67% 3.16%

5.3.2. Scenario: Side-By-Side Vehicles

Challenge arises when two vehicles are driving side by side. In this scenario, one single strain
signal peak in Figure 9f comprises two indistinguishable vehicles, making the above GVW recognition
methods ineffective. According to Yu et al. [10], the identification of multiple-vehicle presence is still
one of the main challenges faced by BWIM technique.

In order to solve this problem, it is necessary to integrate strain data of multiple strain sensors so
that the previous Equation (14) can be used. Theoretically, two sensors are enough to determine two
unknown GVW according to the linear algebra. However, the GVW results might vary considerably
due to the inevitable measuring errors existing in field tests. One practical method to mitigate the
variation is augmenting additional strain sensors to make the constraints exceed the unknowns and
use the least squares to solve the overdetermined problem, as the text Section 3.3 has stated.

Taking the two trucks in Figure 9e as an example, a comprehensive explanation is given as follows.
At the moment shown in the figure, the distances between the two trucks and the start line of the
bridge are 16.1 m and 17.8 m, respectively, given by the visual sensing technique. According to the
distances and the calibrated influence line, corresponding influence values of the trucks can be found
as listed in the Table 2. The strain values at that moment are listed as well.

Table 2. GVW recognition information in side-by-side vehicles scenario.

Sensor Name Strain (µε) Influence Value (µε/ton)

Truck1 Truck2

S2-2 94.3 1.01 0.75

S2-3 158.5 1.62 1.22

S2-5 112.8 0.71 1.33

S2-6 179.6 1.20 2.14
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Based on the information of sensor ‘S2-2’ and ‘S2-3’ in Table 2, the formula for calculating the
GVW of the side-by-side vehicles is written as follows:{

1.01W1 + 0.75W2 = 94.3
1.62W1 + 1.22W2 = 158.5

, (18)

where W1 and W2 are the GVW of truck1 and truck2 in Figure 9e. The recognition results are
W1 = −222.62 t and W2 = 425.52 t, which are clearly wrong.

Then, the recognition equation is rewritten using information of four sensors as follows:
1.01W1 + 0.75W2 = 94.3
1.62W1 + 1.22W2 = 158.5
0.71W1 + 1.33W2 = 112.8
1.20W1 + 2.14W2 = 179.6

, (19)

The least square method is used to solve the overdetermined equation and the results are
W1 = −57.06 t and W2 = −52.63 t. The GVWs measured by the pavement-based WIM system are 51.12
t and 49.12 t. The error between the BWIM and the pavement-based WIM is acceptable, which means
the problem of when two vehicles drive side-by-side is successfully solved.

5.3.3. Statistical Analysis for Identification Results

For a more persuasive verification, a segment of a 5 min strain signal and a video when all the
three scenarios of vehicle distribution exist are statistically analyzed for illustration. Cars are ignored,
because cars (less than 3 tons) are much lighter than trucks (20~60 tons); thus, neglecting cars will not
bring significant weighing error. Additionally, heavy trucks are more dangerous to bridge structures
compared to ordinary cars. In fact, most BWIM research mainly focus on trucks as only trucks are
closely noticed by the traffic and bridge management department. The GVWs of a total of 38 trucks
were calculated. Different numbers of strain sensors were used to investigate the effects of taking the
least square method to solve the inverse influence line theory equations. The recognition results of the
GVW are presented in Table 3, in which the ‘GVW-WIM’ is the GVW measured by the WIM system,
‘GVW-BWIM-4 Sensors’ are the GVW identified with strain sensors ‘S2-2’, ‘S2-3’, ‘S2-5’, and ‘S2-6’. The
‘GVW-BWIM-6 Sensors’ are the GVW identified with strain sensors ‘S2-2’, ‘S2-3’, ‘S2-5’, ‘S2-6’, ‘S1-2’,
and ‘S1-4’. The ‘GVW-BWIM-8 Sensors’ are the GVW identified with strain sensors ‘S2-2’, ‘S2-3’, ‘S2-5’,
‘S2-6’, ‘S1-2’, ‘S1-4’, ‘S3-2’, and ‘S3-4’. The ‘GVW-BWIM-14 Sensors’ are the GVW identified with all the
strain sensors mounted on the bridge.

Table 3 gives detailed identification results of a total of 38 vehicles in various traffic scenarios.
The GVW of each vehicle was identified using partial or all of the available 14 strain sensors in
order to compare and quantitatively optimize the number of sensors and the location of sensors.
Comprehensively, Table 3 concludes as follows:

i. The recognition results of the GVW are of acceptable accuracy when using data from less than
eight strain sensors;

ii. Errors in one-by-one and side-by-side vehicle scenarios are slightly larger in contrast to the
single vehicle scenario. The difference is reasonable because the position of vehicles is essential
to obtain their influence value when recognizing the GVW in complicated traffic scenarios, and
the positioning error is inevitable in the process of coordinate transformation.

iii. An interesting phenomenon is the obvious larger error when using the data from all 14 strain
sensors. Detailed reason would be particularly discussed later.
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Table 3. Recognition results of the GVW.

Truck
Number Scenario GVW-WIM(t) GVW-BWIM-4

Sensors(t)
GVW-BWIM-6

Sensors(t)
GVW-BWIM-8

Sensors(t)
GVW-BWIM-14

Sensors(t)

1 single 53.12 51.48 50.49 49.84 47.72

2 single 50.93 48.29 49.02 47.95 47.13

3 side-by-side 51.12 55.56 56.22 56.15 56.64

4 side-by-side 49.12 53.33 50.27 49.37 50.91

5 one-by-one 50.37 48.59 49.04 48.85 49.15

6 one-by-one 50.69 47.31 47.39 48.09 61.60

7 single 51.29 50.13 50.44 50.39 56.04

8 single 51.09 47.92 47.83 48.14 54.91

9 single 49.54 44.27 45.01 44.67 62.34

10 single 51.61 49.83 50.06 49.93 48.66

11 single 8.23 8.03 8.01 8.02 9.70

12 single 48.42 44.66 44.80 44.74 56.98

13 single 48.58 46.96 47.49 47.18 48.11

14 single 50.49 45.85 46.00 45.95 54.73

15 single 51.33 47.77 47.74 47.73 43.01

16 single 51.65 47.99 48.47 48.34 42.72

17 side-by-side 52.16 47.01 47.33 47.12 55.57

18 side-by-side 48.43 40.17 44.19 45.06 57.61

19 single 52.25 51.57 51.46 50.58 66.20

20 one-by-one 50.55 49.17 49.91 49.94 43.72

21 one-by-one 50.78 47.10 46.09 47.06 55.06

22 single 48.51 46.66 46.12 46.49 50.20

23 single 54.68 47.61 48.24 52.44 44.07

24 single 52.67 46.68 45.87 47.39 51.01

25 single 52.05 45.39 45.50 45.49 45.86

26 side-by-side 48.88 46.89 46.95 46.87 58.51

27 side-by-side 49.37 46.87 45.91 46.96 47.18

28 one-by-one 52.66 46.67 46.90 46.91 56.05

29 one-by-one 50.35 45.38 45.68 45.62 44.45

30 single 51.06 46.62 46.71 46.60 56.21

31 single 10.83 9.58 9.46 9.94 10.09

32 single 48.97 44.12 44.48 44.29 55.19

33 single 52.01 48.21 48.09 48.73 59.53

34 single 51.06 46.76 46.96 46.82 59.95

35 single 51.28 45.24 45.62 45.37 52.58

36 single 50.14 45.13 45.76 45.30 42.21

37 single 50.46 45.43 45.81 45.66 46.14

38 single 48.30 48.88 49.49 49.48 60.69

Intuitive plots of the GVW results for different numbers of strain sensors are shown in Figure 10,
in which each point corresponds to a vehicle. In these figures, the further away the point is from the
baseline, the larger the error is.
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Figure 10. GVW recognition results for different numbers of strain sensors. (a) GVW results using four
sensors (b) GVW results using six sensors (c) GVW results using eight sensors (d) GVW results using
14 sensors.

Statistics of the relative errors compared with the results recognized by the pavement-based WIM
system are also listed in Table 4. The statistics show that due to the introduction of more redundant
information, the more strain sensors of the sensor network are used, the smaller the error is.

Table 4. Statistics of the relative errors compared with pavement-based WIM.

Number of Sensors Mean of Errors (%) Standard Deviation of Errors (%) Maximum Error (%)

4 −7.66 4.07 +1.20/−17.06

6 −7.20 3.80 +2.46/−12.91

8 −6.69 3.46 +2.44/−12.60

14 3.69 13.41 +26.70/−19.40

Finally, it is necessary to highlight the reason behind the large error caused by the usage of all
14 strain sensors. Compared with the scenario using eight sensors, the extra six sensors are mounted
close to the neutral axis of the bridge cross-section. According to the Euler-Bernoulli beam theory [39],
the closer a strain sensor is to the neutral axis, the smaller its strain value, making the relative error
lager in contrast. Figure 11 compares the time-history curves and the GVW recognition results of two
strain sensors, S2-1 and S2-6, whose distances to the neutral axis are 100 mm and 800 mm, respectively.
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Errors of the sensor ‘S2-1’ are obviously more significant than those of the sensor ‘S2-6’. To avoid this
problem, strain sensors for BWIM purposes should be installed far from the section neutral axis for
higher accuracy.
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Figure 11. Comparison between two sensors. (a) Bridge strain time-history curves; (b) GVW
recognition results.

Previous studies also point out that road roughness and vehicle velocity will affect the GVW
recognition accuracy because of the vehicle-bridge coupling vibration. The faster the vehicle drives, the
larger the GVW recognition errors are [40]. However, according to the obtained results, this issue is not
significant in this research. This is because, on one hand, vehicle-bridge coupling vibration effects are
almost eliminated by the preceding LOWESS algorithm; on the other hand, road surface of highway
is quite smooth, thus, severe vehicle-bridge coupling vibration will not be excited though vehicles
driving at high velocity. Figure 12 proves that vehicle velocity does not induce GVW recognition errors
in sensors S2-3 and S2-6, as no obvious pattern can be found in the scatter plot.Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 21 
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6. Conclusions

With special focus on complicated traffic scenarios, this paper presents a traffic load identification
methodology using multiple strain sensors and single camera for short and medium span bridges.
Systematic field tests were performed on a concrete box-girder bridge to investigate the reliability
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and accuracy of the proposed method in practice. Based on the results, the following conclusions are
drawn:

1. Deep learning based computer vision technique is a practical tool to extract the key parameters
from traffic video in real time manner, such as position, size, axle number and type of passing
vehicles over bridge. Moreover, traffic mode of multi-vehicle problem is equally important to be
identified as one-by-one, side-by-side or mixed mode.

2. By utilizing the redundant strain measurements, the proposed least square based identification
method is capable of: i) distinguishing complicated traffic mode such as side-by-side vehicles,
which is theoretically unidentifiable with single measurement and ii) solving the overdetermined
inverse influence equations effectively, and hence, reducing the GVW recognition errors.

3. Under the condition that vehicle parameters (especially positions) are identified and available,
the proposed framework successfully recognizes the vehicle weight in spite of the presence of
one-by-one and side-by-side vehicles, with an average weighing error less than 8%. Thus, the
elementary scenarios of the multiple-vehicle problem for BWIM research are solved with an
overall improvement with respect to cost and accuracy.

4. The usage of strain sensors installed at locations with larger response results in smaller recognition
error of vehicle weight. It is suggested that strain sensors for BWIM purposes should be installed
far from the neutral axis of cross-sections for the sake of higher accuracy.
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