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Abstract: Detailed knowledge about tree species composition is of great importance for forest
management. The two identical European Space Agency (ESA) Sentinel-2 (S2) satellites provide
data with unprecedented spectral, spatial and temporal resolution. Here, we investigated the
potential benefits of using high temporal resolution data for classification of five coniferous and seven
broadleaved tree species in a diverse Central European Forest. To run the classification, 18 cloud-free
S2 acquisitions were analyzed in a two-step approach. The available scenes were first used to stratify
the study area into six broad land-cover classes. Subsequently, additional classification models were
created separately for the coniferous and the broadleaved forest strata. To permit a deeper analytical
insight in the benefits of multi-temporal datasets for species identification, classification models were
developed taking into account all 262,143 possible permutations of the 18 S2 scenes. Each model was
fine-tuned using a stepwise recursive feature reduction. The additional use of vegetation indices
improved the model performances by around 5 percentage points. Individual mono-temporal
tree species accuracies range from 48.1% (January 2017) to 78.6% (June 2017). Compared to the
best mono-temporal results, the multi-temporal analysis approach improves the out-of-bag overall
accuracy from 72.9% to 85.7% for the broadleaved and from 83.8% to 95.3% for the coniferous tree
species, respectively. Remarkably, a combination of six–seven scenes achieves a model quality
equally high as the model based on all data; images from April until August proved most important.
The classes European Beech and European Larch attain the highest user’s accuracies of 96.3% and 95.9%,
respectively. The most important spectral variables to distinguish between tree species are located
in the Red (coniferous) and short wave infrared (SWIR) bands (broadleaved), respectively. Overall,
the study highlights the high potential of multi-temporal S2 data for species-level classifications in
Central European forests.
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1. Introduction

The current Global Assessment Report on Biodiversity and Ecosystem Services again depicts an
alarming picture of the Earth with accelerating rates of biodiversity loss [1]. Earth observation (EO)
has a high potential for biodiversity assessments, mainly for the description of vegetation habitats [2].
The synoptic view, and the delivery of detailed, objective and cost-efficient information over large
areas, makes EO data one of the most useful tools for biodiversity assessments [3–5]. Depending on
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the spectral, spatial and temporal resolution of the EO data, various categorical and biophysical traits
can be mapped [6,7]. In forest ecosystems, tree species diversity is a key parameter for ecologists,
conservationists and also for forest managers [8,9]. In addition to the occurrences of tree species,
information about the distribution and the spatial pattern of tree species within larger geographic
extents is also essential.

In the last few years, the number and variety of commercially and publicly funded EO sensors
has increased dramatically. As a result, data with higher spatial, spectral and temporal resolutions are
available. Analysis of hyperspectral data demonstrated the added value of the dense spectral sampling
for the separation of tree species [10–13]. Multi-spectral, very high resolution (VHR) satellite data were
successfully used for mapping tree species distribution for up to ten different species [14–17]. The
small pixel size of VHR data enables the classification of individual tree crowns. However, the use
of VHR satellite data or airborne hyperspectral data is often limited by high data costs and limited
area coverage.

Studies covering larger regions by combining data with different spatial resolution have thus far
only focused on a small number of tree species [18], respectively, on tree species groups [19]. Likewise,
existing continental-scale forest maps such as the Copernicus high resolution forest layer [20], only
distinguish broadleaf and deciduous forests. Studies analyzing several tree species and covering large
geographic extents are still missing [21].

With the launch of the twin Sentinel-2A and 2B satellites since 2015, high quality data with high
spatial, spectral and temporal resolution are now freely available. Despite the fact that individual
tree crowns cannot be separated with the 10–20 m data, the rich spectral information with bands in
the visible, Red-Edge, Near-Infrared (NIR) and Shortwave-Infrared (SWIR) wavelengths has a high
potential for tree species separation [22–29]. An additional advantage is the very high revisit interval
of the two satellites. The twins cover the entire Earth surface every 5 days, with even higher number of
observations in the overlap areas of adjacent orbits.

In many (partly) cloudy areas of the world, the availability of dense time series is paramount to
obtaining reliable and cloud-free observations during key phenological periods [30]. An adequate
number of cloud-free observations also enables a better description of the actual situation and historical
evolution and moreover helps to detect changes [31]. Consequently, the use of multi-temporal
Sentinel-2 data also improves tree species identification. Nelson [32], for example, analyzed six tree
species classes in Sweden testing all possible combinations of three Sentinel-2 scenes from May, July
and August. They achieved overall accuracies of up to 86%. Bolyn et al. [22] classified eleven forest
classes in Belgium with an overall accuracy of 92% using Sentinel-2 scenes from May and October.
In a German test site, Wessel et al. [33] achieved up to 88% overall accuracy for four tree species
classes using Sentinel-2 scenes from May, August, and September. Persson et al. [27] used four scenes
from April, May, July, and October for the separation of five tree species in Sweden and obtained an
overall accuracy of 88%. In a Mediterranean forest, four forest types were separated with accuracies of
over 83% by Puletti et al. [28] using the Sentinel-2 bands together with vegetation indices. Hościło
and Lewandowska [34] used four scenes to classify eight tree species in southern Poland with an
overall accuracy of 76%. Using additional topographic features and a stratification in broadleaf and
coniferous species, the accuracy increased to 85%. Grabska et al. [23] achieved, with five (from 18)
Sentinel-2 images, an overall accuracy of 92% for the classification of nine tree species in a Carpathian
test site. The most important band was the Red-Edge 2 and most important scene were acquisitions
from October. All studies clearly demonstrated the benefit of multi-temporal data and gave some hints
about the importance of individual bands and optimum acquisition times. However, the number of
identified tree species was still relatively small (2–11), and generally only a few (3–5) Sentinel-2 scenes
were analyzed.

The aim of this study is to assess the suitability of dense multi-temporal Sentinel-2 data for a
detailed description of tree species and other vegetation/land cover classes in the Wienerwald biosphere
reserve in Austria. In protected areas, detailed information on the actual land cover—and possible



Remote Sens. 2019, 11, 2599 3 of 23

changes—are of high importance. Up-to-now, the forest description of the biosphere reserve was
mainly based on management plans from different forest enterprises. These data do not cover the entire
biosphere reserve and are sometimes outdated. The biosphere management would tremendously
benefit from consistent and reliable information about the spatial distribution of the major coniferous
and broadleaf tree species.

The main objectives of our research were:

• To evaluate the potential of multi-temporal Sentinel-2 data for mapping 12 tree species at 10 m
spatial resolution for the entire Wienerwald biosphere reserve.

• To identify the best acquisition dates and scene combinations for tree species separation.
• To identify the most important Sentinel-2 bands for tree species classification and the added value

of several vegetation indices.
• To evaluate the benefits of stratified classifications.
• To apply an additional short-term change detection analysis to monitor forest management

activities and to ensure that the final tree species maps are up-to-date.

2. Materials and Methods

For the land cover classification and the tree species mapping in the Wienerwald biosphere reserve,
18 cloud-free Sentinel-2 scenes acquired between 2015 and 2017 were used. The mapping was done in
three steps using different reference data sets (Figure 1). In the first step, six broad land cover classes
were mapped. Subsequently, the individual tree species were identified within the resulting forest
strata. In the final step, change detection was applied to identify areas where forest activities took place.
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Figure 1. Workflow diagram of the classification approach with three main steps: (1) broad land cover
classification, (2) tree species identification within the forest strata and (3) change detection to mask out
areas where forest activities took place.

For the broad land cover classification, reference data were visually interpreted in a regular
grid using four-band orthoimages with a spatial resolution of 20 cm acquired in the course of the
national aerial image campaign and provided by Austria’s Federal Office of Metrology and Surveying.
The reference data for the tree species were derived from stand maps and other forest management
databases. To enhance the data quality, the reference points were cross-checked by visual interpretation
of color-infrared (CIR) orthoimages. With these reference data, the coniferous and broadleaved tree
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species were classified both separately and together, while testing all possible combinations of the
Sentinel-2 data. The best classification results were merged together and areas where changes could be
detected were masked out.

2.1. Study Site Wienerwald Biosphere Reserve

The Wienerwald biosphere reserve is one of the largest contiguous deciduous beech woodlands
in Central Europe. It is located in the south-west of Vienna (Austria) and covers an area of 105,645
ha. The location of such a large forest on the edge of a metropolitan area is unique. The range of
(micro) climatic and geological conditions in the Wienerwald is the main reason for the large diversity
of vegetation types [35]. The Biosphere Reserve has more than 20 types of woodland—with beech,
oak and hornbeam being dominant—and more than 23 types of meadow [36]. Concerning the forest,
particularly rare woods can be found, such as Austrian’s largest downy oak forests (Quercus pubescens)
and unique stands of Austrian Black Pine (Pinus nigra subsp. nigra) occurring in the eastern part
of the Wienerwald [37]. The inlet in Figure 2 shows the location of the study area within a region
characterized by its diversity of nature and culture, and sustainable ecosystem management.
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Figure 2. Overview of the study area and the 6-class land cover reference data. (a) Regular grid for
reference data collection for the land cover classification covering the biosphere reserve and some
surrounding areas (background: Sentinel-2 bands 8-4-3). (b) Examples (10 and 20 m grid cells) for each
class (background: CIR orthoimage). (c) Location of the biosphere reserve Wienerwald within Austria
and Sentinel-2 orbit cover.

2.2. Reference Data Sets

For the reference data creation, a regular grid (1 km × 1 km) was laid over the entire biosphere
reserve as well as some surrounding areas (Figure 2a). At each point, the grid cell was visually
interpreted using CIR orthoimages (Figure 2b). Table 1 presents the number of samples and class
definitions of the six land cover classes.
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Table 1. Summary of the reference data for the land cover classification.

Class Name Definition Samples Amount [%]

Broadleaf forest Broadleaf-dominated forests 388 48.68
Coniferous forest Conifer-dominated forests 97 12.17

Grassland Grassland, meadows, lawns,
pastures, parks, etc. 104 13.05

Cropland Agricultural crops, wine yards 77 9.66

Built-up Sealed surfaces - buildings, roads,
infrastructure, etc. 116 14.56

Water Lakes, rivers, ponds, etc. 15 1.88∑
797 100.00

Six target classes were distinguished for the land cover classification: deciduous forest, broadleaf
forest, grassland, cropland, build-up areas and water bodies. To receive adequate numbers of trainings
samples for the classes cropland, build-up areas and water, the grid was extended to surrounding
areas in the north and east of the study area. Only clearly interpretable samples which contain only
one class were retained for the training of the classification model. In the end, 797 out of 1360 pixels
were useable.

For the tree species classification, additional reference samples were necessary and were derived
from forest management data. First, pure stands of the 12 tree species were identified in the forest
management maps. Next, one or two Sentinel-2 pixels were chosen in the center of each stand and the
correctness of the information was checked using CIR orthoimages (Figure 3).
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Figure 3. (a) Distribution of the reference data set for the tree species classification and (b) examples (10
and 20 m grid cells) for each tree species. Background images: Color Infrared composites of Sentinel-2
(a) and orthoimages (b).

In this way, on average 85 reference samples per tree species were distinguished, well distributed
over the entire biosphere reserve (Table 2). The variation in the number of available reference data
reflects the difficulties to identify sufficiently large and pure stands for some of the species.
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Table 2. Summary of the reference data for the tree species classification.

Tree Species Scientific Name Acronym Samples Amount [%]

European beech Fagus sylvatica FS 215 21.37
European alder Alnus glutinosa AG 52 5.17
European ash Fraxinus excelsior FE 60 5.96

Oaks Quercus sp. QU 130 12.92
Cherry Prunus sp. PR 25 2.49

European hornbeam Carpinus betulus CP 65 6.46
Maple Acer sp. AC 33 3.28

Norway spruce Picea abies PA 135 13.42
Austrian pine Pinus nigra PN 107 10.64

Scots pine Pinus sylvestris PS 79 7.85
European larch Larix decidua LD 49 4.87

Douglas fir Pseudotsuga menziesii PM 56 5.57∑
1006 100.00

2.3. Sentinel-2 Data Sets

The study area is located in the overlapping area of two Sentinel-2 orbits (122 and 79—Figure 2),
and therefore, the number of acquisitions twice as high as normal in this latitude. For the analysis,
all available Sentinel-2 scenes were visually checked. Only cloud-free data were selected. From the
188 scenes acquired between June 2015 to end of 2017, 18 scenes were perfectly useable. Summary
information about selected scenes can be found in Table 3. All scenes were atmospherically corrected
using Sen2Cor [38] Version 2.4 using the data service platform operated by BOKU [39] on the Earth
Observation Data Centre (EODC) [40]. The 20 m bands B5, B6, B7, B8a, B11 and B12 were resampled to
10 m and the 60 m-bands B1, B9 and B10 were excluded from the analyses.

Table 3. Summary of the selected Sentinel-2 data sets (granule T33UWP). Over the region of interest,
the images were free of clouds. The percentage cloud cover of the entire scenes was in the range 0-15%.

Sentinel-2 Satellite Date Orbit Sun Zenith Angle Sun Azimuth Angle

A 30.08.2015 122 40.64 160.67
A 25.12.2015 79 72.89 165.72
A 27.03.2016 122 46.92 161.03
A 13.04.2016 79 40.99 157.03
A 06.05.2016 122 32.93 159.34
A 31.08.2016 79 41.81 157.47
A 13.09.2016 122 45.77 164.04
A 30.09.2016 79 52.43 164.31
A 11.01.2017 122 71.18 165.83
A 01.04.2017 122 45.04 160.96
A 28.05.2017 79 29.06 151.92
A 20.06.2017 122 26.83 153.18
A 01.08.2017 79 33.19 150.41
A 29.08.2017 122 40.48 160.55
A 08.09.2017 122 43.90 162.88
A 28.09.2017 122 51.20 167.02
B 30.09.2017 79 52.35 164.20
A 15.10.2017 79 57.79 166.70

2.4. Random Forest Classification Approach

For all classifications, the ensemble learning random forest (RF) approach developed by
Breiman [41] was used. The two hyper-parameters mtry (number of predictors randomly sampled
for each node) and ntree (the number of trees) were set to the square root of available input variables
(default) and, to 1000, respectively.
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One advantage of the bootstrapping is that it yields relatively unbiased ‘out-of-bag’ (OOB) results,
as long as representative reference data are provided [42]. Another benefit is the computation of
importance measures which can be used for the evaluation of the input data and subsequent feature
reduction. In this study, a recursive feature selection process using the ‘Mean decrease in Accuracy’
(MDA) was applied similarly to other studies [18,43,44]. More information about the algorithm and its
advantages, such as the importance measure for the input variables and the integrated bootstrapping,
can be found in the literature [16,41,45,46].

To classify the six land cover classes, first a model based on all Sentinel-2 datasets was developed
using the land cover reference data from the visually interpreted regular grid. The tree species models
were developed separately for the broadleaf and coniferous species—for testing purposes we also
pooled all tree species together. The tree species classification models were based on the tree species
reference data set and only applied to areas previously mapped as broadleaf or coniferous forest.

To find the best combinations for the tree species classification, we tested all possible combinations
of the 18 Sentinel-2 scenes. We tested for example 18 individual scenes, 153 combinations of two
scenes, 816 of three and so on. In total, 262,143 different models for each of the two forest strata were
developed. The training of each model, including the feature selection, took on average about 5 min
on a standard PC (CPU i7-2600 3.40 GHz, 16 GB RAM), and therefore, a high-performance computing
(HPC) environment was used.

The modeling was done with two data sets: one contains only the 10 spectral bands, the second
combines the 10 spectral bands with 28 widely used vegetation indices (Table A1 in the Appendix A).

2.5. Input Data Evaluation

The classification models were assessed using the OOB results. Previous studies had demonstrated
that the OOB results of RF classifiers compare well against an assessment based on a separate validation
data set [42,47,48].

To assess the importance of individual Sentinel-2 bands and acquisition times, the ‘Mean decrease
in Accuracy’ (MDA) importance values of the final RF models (after feature selection) were normalized
for each model to 1 by dividing all values by the maximum value of the specific model. Variables
which were eliminated by the feature selection procedure were assigned an importance value of 0. All
normalized values were summed up for all tested combinations and divided by the total number of
tested combinations (Equation (1)):

IMPi =

∑n
j=0

MDA ji
MDA jmax

n
(1)

where IMPi is the normalized and aggregated importance value for variable i (= one band of one
specific Sentinel-2 scene); MDAji the MDA importance value of variable i in the model j; MDAjmax
the maximum MDA importance value in the model j; and n the number of models (combinations of
Sentinel-2 scenes) considering variable i (= 131,072).

When evaluating the importance of the spectral bands, models involving the vegetation indices
were discarded to avoid skewing the results by the chosen indices. This was deemed particularly
important as most indices include the NIR band. However, we applied the evaluation also to
the models with vegetation indices to investigate the most important vegetation indices for tree
species classification.

2.6. Change Detection

As outlined above, for the tree species classification, data from a three-year period (2015 to 2017)
were used. To avoid interference of possibly occurring changes during the three years, a simple change
detection was applied. Changes in the forest cover were detected by comparing the NDVI values from
the respective August scenes of the years 2015, 2016 and 2017. Based on the difference between the
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NDVI of the actual and the previous year, pixels with absolute differences of ≤0.05 were flagged as
‘change’. Negative values indicate a decrease in leaf biomass and were interpreted as an indicator
of forest management activities such as thinning, harvesting or calamities. This interpretation was
cross-checked by visual interpretation of the data sets and consultations with the forest management.
All areas where forest management activities were detected were masked out from the tree species map.

3. Results

3.1. Land Cover Classification

The land cover classification based on all input data using the random forest modeling approach
including the feature selection achieved an overall accuracy of 96%, and nearly all class-specific
accuracies were higher than 90% (Table 4). The highest misclassifications can be found between the
two agricultural classes grassland and cropland. The two forest classes (broadleaf and conifer forest)
achieved very high producer and user accuracies (>93%).

Table 4. Confusion matrix based on OOB results of the land cover classification model based on all 18
Sentinel-2 scenes. (UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy).

Reference
BF CF GL CL BU WB UA

C
la

ss
ifi

ca
ti

on

Broadleaf forest (BF) 387 7 2 0 2 0 97.3%
Conifer forest (CF) 0 90 0 0 0 0 100.0%

Grassland (GL) 1 0 94 5 0 0 94.0%
Cropland (CL) 0 0 6 70 3 0 88.6%
Build-up (BU) 0 0 2 2 111 0 96.5%

Waterbody (WB) 0 0 0 0 0 15 100.0%∑
reference data 388 97 104 77 116 15 797

PA 99.7% 92.8% 90.4% 90.9% 95.7% 100%

OA 96.2% Kappa 0.946

3.2. Tree Species Classification

The boxplots in Figure 4 illustrate the overall accuracies based on the out-of-bag results after
feature selection. Each bar summarizes the different image combinations (1–18 images). For the
coniferous species (middle row), overall accuracies of around 90% were achieved. Occasionally, a
combination of five to six scenes was sufficient for such high classification accuracies. For the broadleaf
trees (top row), the overall accuracies leveled out at around 80%. Here, a slightly higher number of
scenes was necessary to reach optimum performance (7–8 scenes). The OA of the model trained on
the pooled set of tree species was somewhere between the two class-specific results (bottom row). In
all three cases, the use of vegetation indices (right column) improved the classification compared to
the sole use of the reflectance data (left column). The average improvement of the OA was around
5 percentage points: The highest OA of the best models improved from 82.1% to 85.9% for the broadleaf
strata, from 90.4% to 95.3% for the coniferous strata and from 83.5% to 88.7% for all tree species pooled
together. Compared to the best mono-temporal results the use of multi-temporal data (both including
vegetation indices) improved the out-of-bag overall accuracy from 72.9% to 85.7% for the broadleaved,
from 83.8% to 95.3% for the coniferous and from 74.4% to 88.7% for all tree species together.
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Figure 4. Overall accuracies of all possible Sentinel-2 combinations based on models using only spectral
bands (a–c) and using spectral bands and vegetation indices (d–f). Strata-specific results are displayed
in the rows: results for broadleaf species (a,d), coniferous species (b,e) and all tree species together (c,f).

The best results for the broadleaf trees obtained an overall accuracy of 86%. For all species, the
achieved Producer’s and User’s accuracies are good (>70%) to very good (>90%) except for maple
(Acer sp.). For the coniferous the best model reached an overall accuracy of 95.3%. All class specific
accuracies were above 90%. For comparison reason the two results of the best broadleaf and the best
coniferous models were combined into a single confusion matrix in Table 5. The differences to the
result of the best model including all tree species (Table 6) are small. The aggregated overall accuracy
of the stratified approach is slightly higher (89.9% versus 88.7%) and some classes with small numbers
of reference data also benefit from the separated modeling. The best models for the three groups
are based on the following input data after feature selection: (1) broadleaf trees: 159 variables from
nine dates including all spectral bands and indices, (2) coniferous trees: 24 variables from seven dates
including three bands and 13 indices, (3) all tree species together: 126 variables from 13 dates including
eight bands and 26 indices.
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Table 5. Confusion matrix based on the combined OOB results of the best broadleaf and the best
coniferous model using spectral bands and vegetation indices. (UA: user’s accuracy, PA: producer’s
accuracy, OA: overall accuracy).

Reference
FS AG FE QU PR CP AC PA PN PS LD PM UA

C
la

ss
ifi

ca
ti

on

Fagus sylvatica (FS) 211 4 7 7 4 12 8 83.4%
Alnus glutinosa (AG) 0 44 0 1 0 0 0 97.8%

Fraxinus excelsior (FE) 0 0 44 3 0 0 7 81.5%
Quercus sp. (QU) 0 1 5 117 1 4 2 90.0%
Prunus sp. (PR) 0 0 0 0 18 0 0 100.0%

Carpinus betulus (CB) 4 2 3 1 1 48 0 81.4%
Acer sp. (AC) 0 1 1 1 1 1 16 76.2%

Picea abies (PA) 132 0 3 1 1 96.4%
Pinus nigra (PN) 1 101 1 1 2 95.3%

Pinus sylvestris (PS) 1 4 75 0 0 93.8%
Larix decidua (LD) 1 1 0 46 1 93.9%

Pseudotsuga menziesii (PM) 0 1 0 1 52 96.3%∑
Reference data 215 52 60 130 25 65 33 135 107 79 49 56

PA 98.1% 84.6% 73.3% 90.0% 72.0% 73.8% 48.5% 97.8% 94.4% 94.9% 93.9% 92.9%

OA 89.9% Kappa 0.885

Table 6. Confusion matrix based on the OOB result of the best model for all tree species together
using spectral bands and vegetation indices. (UA: user’s accuracy, PA: producer’s accuracy, OA:
overall accuracy).

Reference
FS AG FE QU PR CP AC PA PN PS LD PM UA

C
la

ss
ifi

ca
ti

on

Fagus sylvatica (FS) 210 3 4 7 4 11 8 0 0 0 0 0 85.0%
Alnus glutinosa (AG) 0 43 0 1 0 0 1 0 0 0 0 0 95.6%

Fraxinus excelsior (FE) 0 0 46 2 0 0 7 0 0 0 0 0 83.6%
Quercus sp. (QU) 2 2 7 115 1 4 2 1 0 0 0 0 85.8%
Prunus sp. (PR) 0 0 1 0 17 0 0 0 0 0 1 0 89.5%

Carpinus betulus (CB) 2 3 0 3 2 49 0 0 0 0 0 0 83.1%
Acer sp. (AC) 0 1 2 1 1 1 15 0 0 0 0 0 71.4%

Picea abies (PA) 0 0 0 0 0 0 0 132 0 3 1 5 93.6%
Pinus nigra (PN) 0 0 0 0 0 0 0 1 98 1 1 1 96.1%

Pinus sylvestris (PS) 0 0 0 0 0 0 0 1 7 74 1 0 89.2%
Larix decidua (LD) 1 0 0 1 0 0 0 0 2 1 45 2 86.5%

Pseudotsuga menziesii (PM) 0 0 0 0 0 0 0 0 0 0 0 48 100.0%∑
Reference data 215 52 60 130 25 65 33 135 107 79 49 56

PA 97.7% 82.7% 76.7% 88.5% 68.0% 75.4% 45.5% 97.8% 91.6% 93.7% 91.8% 85.7%

OA 88.7% Kappa 0.871

Huge differences in feature importance were found within and between the model tree species
groups (Figure 5). The dot size indicates the importance of a specific band (y-axis) and date (x-axis)
in the classification models. Larger dots indicate a higher importance. To generate this information,
the results of all combinations were aggregated, excluding models with vegetation indices. For the
broadleaf species, the most important Sentinel-2 bands are the SWIR bands B12 and B11 followed by
the Red-Edge band 1 (B5) and acquisitions from May, April and June are more useful compared to
those from late summer and autumn. For the coniferous species, a higher number of scenes showed
high importance compared to the broadleaf species. Again, the acquisition End of May, as well as the
August acquisitions, showed the highest contribution. For the separation of the coniferous species
the Red band is the most relevant band. The results for the aggregated modeling with all tree species
together is a mixture of the results of the modeling for the two strata. Only the high importance of the
NIR band B8 is striking.
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Figure 5. Aggregated feature importance derived from the combination of all classification models,
excluding models involving spectral vegetation indices. A larger dot size indicates a higher importance
of the specific band and date combination. The bars on the top and right side of the graphs summarize
the importance of the individual months and spectral bands, respectively. (a) Results for the broadleaf
stratum, (b) coniferous species and (c) all tree species pooled together. Different colors indicate the year
of the Sentinel-2 acquisition.

Similar results can be found for the models using spectral data and vegetation indices together.
For all three groups, the same Sentinel-2 bands show the highest importance (Figures A1–A3). The
vegetation indices with the highest contributions to the classification performance for the broadleaf
species were again indices which consider the SWIR, NIR and Red-Edge bands in different variations
such as simple ratios, differences, and normalized differences (Figure A1). For the coniferous species
mainly indices based on the NIR and Red bands (simple ratios and normalized differences) and the
ratio between Green and Red showed the highest importance values (Figure A2). The result for all tree
species together is again a mixture of the two strata. The highest ranked variable in the aggregated
modeling was the Difference between Red and SWIR (Figure A3).

Figure 6 shows the final result of the tree species mapping for the entire Wienerwald biosphere
reserve. The map combines the results of the land cover classification, the stratified tree species
models (separated for broadleaf and coniferous species) and the change detection (forest management
activities).
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Figure 6. Final map based on aggregation of the best models of the land cover, broadleaf trees and
coniferous trees classifications and the results of the change detection.

A qualitative check was done by the biosphere reserve management and the validity was confirmed.
The different forest types mainly result from geological differences (e.g., Black pine forests in the
southeast grow on limestone) and different management strategies (e.g., higher amount of coniferous
trees in other regions).

For the detection of forest changes, the simple comparison of NDVI values from August scenes of
different years was useful, as for each year, changes were captured on around 1% of the forest area.
Areas where changes were detected in first period (2015–2016) often showed a clear regrowth in the
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second period. First trials aggregating the values to stand maps and interpreting the absolute values
showed promising results to distinguish between different forest management activities (not shown).
Both the affected area and the grade of the thinning can be determined based on the change in the
NDVI values and the number of pixels with changes.

4. Discussion

4.1. Classification Accuracy

The classification of 12 tree species revealed very good results. We obtained an overall accuracy of
89% in line with comparable studies. However, most of the previous studies used only three to five
S2 scenes and considered only fewer classes: Nelson [32] achieved 86% for six tree species classes,
Bolyn et al. [22] 92% for 11 forest classes, Wessel et al. [33] 88% for four tree species classes, Persson et
al. [27] 88% for five tree species, Soleimannejad et al. [49] 77% for three tree species and Hościło and
Lewandowska [34] 76% (using only S2 bands) and 85% (using a stratified approach and including
topographic features), for eight tree species. Grabska et al. [23] achieved with five (out of 18) S2 scenes
an overall accuracy of 92% for nine tree species. We attribute our favorable results to the high quality
of the reference data and the acquisition density, which allowed covering the temporal changes in the
spectral signatures well, which in turn contributed to the successful classifications.

Several studies showed that higher accuracies can be achieved using data with higher spatial
resolution such as WorldView-2 or Pleiades [25,26,49]. The accuracies of the present study are even
higher compared to studies using WorldView-2 data for tree species classification under similar
ecological conditions. For example, Immitzer et al. [16] obtained for 10 tree species overall accuracies of
82%, Waser et al. [17] for seven species 83% and Fassnacht et al. [15] for 10 species 80%. In the present
study, we found clear indications that the use of multi-temporal data contributed to the successful
classifications, further enhanced by the availability of spectral bands in the SWIR.

Only maple, cherry and European hornbeam were classified with low accuracies (46–75%). All
other classes reached high (≥77%) to very high (≥85%) producer’s and user’s accuracies. Coniferous
species were generally very well identified, in line with results published by Grabska et al. [23] and in
contrast to Hościło and Lewandowska [34]. Further research is warranted to determine why not all
species show distinct spectral-temporal features.

Similar to other studies [15,16,23–25,30], we found that class imbalances negatively affect the
class-specific results. For ‘hard-to-separate classes’, the class with more samples is obviously preferred
by the RF classifier and consequently obtains higher accuracies. This underlines again the importance
of an adequate number of high quality reference samples. Although desirable, in practice, such a
request is not always feasible, as some tree species hardly occur in pure stands, respectively, do not
cover large enough areas for being detectable with 10 m resolution data.

4.2. Acquisition Date

In particular for the multi-date classifications, it is difficult to depict the importance of the
acquisition date, as counter-balancing effects occur. For example, for mono-temporal classifications, the
dataset from May achieved the best result for all tree species together. Images acquired in May were
also used in models achieving the highest accuracies based on combinations of two and more scenes,
together with October images. The sole use of October images, however, gave only moderate results.
Hence, whereas individual acquisition dates can be well interpreted in mono-temporal classification,
this is not always possible when multiple scenes are involved. To sustain interpretation, we aggregated
the feature importance information in a new way (Equation (1) and Figure 5). As a general trend
we confirm findings of previous studies, that a well-balanced data set, involving scenes from spring
to autumn, are preferable [23,34,50]. When enough processing power and storage is available, a
simple straight forward solution is to use all available images. Obviously, for very large areas such an
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approach will fail, as clouds will occur at least in parts of the area, making it necessary to use either
compositing techniques [51] or spatio-temporal gap-filling procedures [52].

Species-specific temporal changes of the spectral signatures can be visualized nicely using dense
time-series [23]. The date of leaf flush, for example, varies from species to species. This permits
to distinguish tree species that otherwise show very similar spectral signatures during the summer
months. The same holds for the timing of the leaf coloration. Therefore, both phenomena can be
very helpful for the separation of tree species [23,50,53–57]. However, regional differences related to
altitude, aspect or soil conditions co-influence the phenological development and timing of leaf flush
and coloration, making additional information necessary [58]. Therefore, the quality of the available
reference data is very important, as well as means to define strata in which individual models perform
well. Alternatively, one has to use (auxiliary) proxy variables describing the species-independent
phenological variations that are typically encountered when working across larger regions [59].

In general terms, it is beneficial to acquire and use large representative samples for each species
covering as good as possible the site-specific variations. To leverage species-dependent differences
in phenological development, the highest possible revisit frequencies are optimum. Very dense time
series not only mitigate cloud effects but also permit to extract key phenological indicators such as start
and end of season [50,60]. In our study, the available cloud-free scenes did not cover the entire year in
regular intervals: mainly in July, only very few cloud-free data sets were acquired due to convective
cloud formation; additionally, in spring and autumn, spells of bad weather prevented the acquisition
of useful scenes.

4.3. Sentinel-2 Bands and Vegetation Indices

Our study demonstrates the high suitability of the Sentinel-2 bands for the separation of broad
land cover classes as well as for the identification of various tree species. The most important bands are
the SWIR, Red and NIR. The importance of the NIR and SWIR bands for species classification was also
highlighted by other studies [22,27,28,49]. Our results reveal that the SWIR bands are mainly necessary
for the separation of the individual broadleaf species; the NIR band is useful for the separation of
the two strata coniferous and broadleaf species. In our work, the broader NIR band (band 8 at 10 m)
achieves higher importance values than the narrow NIR band (band 8a at 20 m). This is in contrast
to the work of Bolyn et al. [22] and Persson et al. [27], who found that band 8a was more important.
Additionally, these two studies and Grabska et al. [23] highlighted the significance of the Red-Edge
bands, which cannot be fully confirmed by our study. As the mentioned bands are recorded at different
spatial resolutions, the contradictions may stem from site-specific differences in the patchiness of
the forests. On the other hand, the high importance of the Red band for the coniferous species is in
agreement with Hościło and Lewandowska [34].

We found that the use of vegetation indices improved the classification performance compared to
the sole use of spectral signatures. Similar results were reported by Puletti et al. [28] and Maschler
et al. [12]. The most relevant vegetation indices were based on the same bands, which show high
importance in the models based only on spectral bands. For the broadleaf species, band combinations
involving the SWIR, NIR and Red Edge bands were most useful, for the coniferous indices based
on Red and NIR bands. The highest ranked indices considering all types of indices (simple ratios,
differences, normalize differences).

5. Conclusions

The introduced Sentinel-2 workflow for tree species classification is robust, cost-efficient and
scalable. The workflow was already successfully applied in several test areas across Germany. In
the highly diverse Wienerwald biosphere reserve in Austria, the classification method achieved high
classification accuracies for most of the 12 investigated tree species. However, a noticeable dependence
on tree species, but also on the number and quality of the reference data, was found.
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The NIR band is useful to separate the two tree species groups, coniferous and broadleaf trees, but
much less so for identifying individual species. For the identification of the seven broadleaf species,
the two SWIR bands are the most important. To separate the five individual coniferous species, the
highest importance was found for the Red band. The use of additional vegetation indices further
improved the performance of the classification models, and is therefore highly recommended.

The sensors on-board of Sentinel-2A and 2B provide rich spectral information in 10 spectral bands.
The data are extremely useful for tree species mapping over large areas. The data is freely available,
and due to the regular and dense acquisition pattern (five-day), images covering all phenological
stages can be acquired and used for the classification. Although a few well-placed acquisitions can
possibly yield very good classification results, the easiest way to ensure high classification accuracies is
to combine and use all available cloud-free images simultaneously. This avoids the definition of the
‘perfect’ acquisition date(s), which far too often cannot be obtained due to local weather conditions.

With two Sentinel-2 satellites and their high revisit rate, the acquisition of several scenes per year
should be possible for most Central European regions. However, especially over mountainous regions
such as the Alps, the revisit frequency is probably still not high enough. The high cloudiness also
prevents the application of methods for the extraction of land surface phenology (LSP) parameters,
and their subsequent use in classification models. Unfortunately, in mountainous regions such as the
Alps, microwave sensors are also only of limited use, due to strong terrain effects and radar shadows.
Hence, it is requested to further increase the temporal revisit frequency of optical sensors and to make
better use of virtual constellations, if possible involving the fleet of commercial VHR satellites.

From a methodological point of view, research should focus on further increasing the number
of tree species involved in such classifications, while finding ways to handle strong class imbalances
and missing values. The handling of mixed classes should also have high priority, as long as sensor
resolution does not permit to resolve individual tree crowns. Ultimately, the full benefits of Earth
Observation data will only become visible if such maps are produced and regularly updated at
continental scale. This requires progress in terms of data standardization and feature extraction, and
implementation of suitable code within HPC environments having direct access to the data storage.
More research is warranted to identify the bio-physical factors leading to the observed large variations
in species-specific classification accuracies.
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Appendix A

Table A1. Overview of the used vegetation indices and band combinations together with
the corresponding formula and references (band 8 was used for the NIR = Near − Infrared;
RE = Red − Edge).

Name Formula Reference

Built-up Area Index (BAI) BLUE−NIR
BLUE+NIR [61]

Chlorophyll Green index (CGI) NIR
GREEN+RE1 [62]

Global Environmental Monitoring Index (GEMI)
η− 0.25η2

−
RED−0.125

1−RED

η =
2(NIR2

−RED2)+1.5NIR+0.5RED
NIR+RED+0.5

[63]

Greenness Index (GI) GREEN
RED [64]

Green Normalized Difference Vegetation Index (gNDVI) NIR−GREEN
NIR+GREEN [65]

Leaf Chlorophyll Content Index (LCCI) RE3
RE1 [29]

Moisture Stress Index (MSI) SWIR1
NIR [66]

Normalized Difference Red-Edge and SWIR2
(NDRESWIR)

RE2−SWIR2
RE2+SWIR2 [67]

Normalized Difference Tillage Index (NDTI) SWIR1−SWIR2
SWIR1+SWIR2 [68]

Normalized Difference Vegetation Index (NDVI) NIR−RED
NIR+RED [69]

Red-Edge Normalized Difference Vegetation Index
(reNDVI)

NIR−RE1
NIR+RE1 [65]

Normalized Difference Water Index 1 (NDWI1) NIR−SWIR1
NIR+SWIR1 [70]

Normalized Difference Water Index 2 (NDWI2) NIR−SWIR2
NIR+SWIR2 [65]

Normalized Humidity Index (NHI) SWIR1−GREEN
SWIR1+GREEN [71]

Red-Edge Peak Area (REPA) RED + RE1 + RE2 + RE3 + NIR [67,72]

Red SWIR1 Difference (DIRESWIR) RED− SWIR1 [73]

Red-Edge Triangular Vegetation Index (RETVI) 100 (NIR − RE1) − 10 (NIR − GREEN) [74]

Soil Adjusted Vegetation Index (SAVI) NIR−RED
NIR+RED+0.5 1.5 [75]

Blue and RE1 ratio (SRBRE1) BLUE
RE1 [64]

Blue and RE2 ratio (SRBRE2) BLUE
RE2 [76]

Blue and RE3 ratio (SRBRE3) BLUE
RE3 [67]

NIR and Blue ratio (SRNIRB) NIR
BLUE [77]

NIR and Green ratio (SRNIRG) NIR
GREEN [64]

NIR and Red ratio (SRNIRR) NIR
RED [77]

NIR and RE1 ratio (SRNIRRE1) NIR
RE1 [62]

NIR and RE2 ratio (SRNIRRE2) NIR
RE2 [67]

NIR and RE3 ratio (SRNIRR3) NIR
RE3 [67]

Soil Tillage Index (STI) SWIR1
SWIR2 [68]

Water Body Index (WBI) BLUE−RED
BLUE+RED [78]
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all classification models, based on spectral bands and vegetation indices (please see Figure 4 for more
details about the graph and Table A1 for the Vegetation indices description).
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all classification models, based on spectral bands and vegetation indices (please see Figure 4 for more
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Remote Sens. 2019, 11, 2599 19 of 23

Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 23 

 

 
Figure A3. Aggregated feature importance for all tree species together derived from the combination 
of all classification models based on spectral bands and vegetation indices (please see Figure 4 for 
more details about the graph and Table A1 for the Vegetation indices description).  

Figure A3. Aggregated feature importance for all tree species together derived from the combination
of all classification models based on spectral bands and vegetation indices (please see Figure 4 for more
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