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Abstract: The Landsat record represents an amazing resource for discovering land-cover changes
and monitoring the Earth’s surface. However, making the most use of the available data, especially
for automated applications ingesting thousands of images without human intervention, requires
a robust screening of cloud and cloud-shadow, which contaminate clear views of the land surface.
We constructed a deep convolutional neural network (CNN) model to semantically segment Landsat
8 images into regions labeled clear-sky, clouds, cloud-shadow, water, and snow/ice. For training,
we constructed a global, hand-labeled dataset of Landsat 8 imagery; this labor-intensive process
resulted in the uniquely high-quality dataset needed for the creation of a high-quality model. The CNN
model achieves results on par with the ability of human interpreters, with a total accuracy of 97.1%,
omitting only 3.5% of cloud pixels and 4.8% of cloud shadow pixels, which is seven to eight times
fewer missed pixels than the masks distributed with the imagery. By harnessing the power of
advanced tensor processing units, the classification of full images is I/O bound, making this approach
a feasible method to generate masks for the entire Landsat 8 archive.

Keywords: Landsat; cloud masking; cloud-shadow; convolutional neural network; image
segmentation; deep learning

1. Introduction

The sensors aboard Landsat 8 have been collecting high-quality imagery of the Earth since 2013.
Free and open to the public, with global wall-to-wall coverage of land surfaces at an ecologically
meaningful spatial resolution of 30 m, Landsat imagery is one of the most useful resources for ecological
monitoring and wildland management [1,2]. However, harnessing the power of the Landsat archive to
detect and describe changes on the Earth’s surface hinges on researchers’ ability to detect and aggregate
clear-sky observations uncontaminated by clouds and cloud-shadow [3–6].

Due to this necessity, screening for clouds has always been essential for making the full use of
Landsat’s spectral imagery. Early algorithms were designed to provide scene-level estimates to be
included in metadata and enable human operators to make informed decisions before purchasing and
downloading imagery [7]. Later, more robust algorithms attempted to generate masks of clear-sky
views within scenes and used ancillary information in addition to the spectral values in the image,
such as elevation, sun angle, and cloud temperature [8] or the spatial relationships of predictions within
a scene [9]. Currently, Landsat 8 imagery is accompanied by a bitwise quality mask (BQA) that encodes
information about each pixel’s quality and includes masks for clouds, cloud-shadows, and snow/ice.
These are generated using the CFMask algorithm, which was shown to be both reliable over a large
evaluation dataset as well as computationally suitable for application over the entire archive [10].

In the last decade, deep convolutional neural networks (CNN) have revolutionized image
recognition [11]. Deep CNNs are fundamentally neural networks with two key modifications.
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The ‘deep’ designation means that instead of having only one or a few hidden layers, they have dozens,
enabling complex features to be constructed from more primitive features learned at early layers of the
network. ‘Convolutional’ refers to the network learning sets of two-dimensional convolutional filters
that are applied across the image, as opposed to a traditional neural network that treats each input
pixel of an image independently. Learning small filters greatly decreases the number of total weights to
learn while also allowing flexibility as to where in the image objects are located. Early versions of these
algorithms generated either a single conceptual label or a list of labels with associated probabilities
for the subject of the scene [12–15]. These networks have since been used across a variety of remote
sensors to classify land covers or create cloud masks by feeding the networks chips from the image
and, typically, predicting a single central pixel [16–20].

Recently, CNNs have been applied to the cloud and cloud-shadow detection problem, including
state-of-the-art algorithms to detect atmospheric obstructions in Meteosat [21], Sentinel-2 [22],
and multiple sensors [23,24]. Additionally, several deep learning approaches have been developed for
Landsat imagery [25–27], in part due to free access to the high-quality training and evaluation data for
these sensors that was used to validate the CFMask algorithm, and which is freely available from the
United State Geological Survey. These data includes the Landsat 7 and Landsat 8 Biome Cloud Cover
Assessment Validation Data (Biome) as well as the dataset developed for training and evaluating the
algorithm described in this paper (SPARCS, or Spatial Procedures for Automated Removal of Cloud
and Shadow) [10]. Some of these algorithms also use semantic segmentation approaches and represent
important improvements with classification accuracy rates of approximately 91% on the SPARCS
dataset [28], which approaches human accuracy.

Two insights make training semantic segmentation with CNNs functional. First, deconvolution
layers enable the network to produce outputs in a higher resolution than the inputs; these are
applied after pooling several times to re-expand the receptive field back into the original resolution.
The convolution plus pooling ensures that the network learns spatially relevant information about
the image set, and the deconvolution allows the network to meaningfully apply that information
when determining relationships between nearby pixels [29]. Second, if all layers in the network are
convolutional (i.e., a fully convolutional network, FCN), then the input size of the image to be classified
is constrained only by hardware, rather than being fixed to the size chosen during training [30]. In the
cases where a typical CNN architecture with an intermediate dense, fully connected layer predicts a
central region of the input image, that central region size is fixed, and the strided chips of the original
image need to be fed into the network and then reassembled. In the most extreme cases, only a single
central pixel is predicted from the strided chip. Many of the convolutions from the border around that
central region, which inform the central classifications, could also be used to predict pixels neighboring
that central region, but are instead discarded between strided predictions. This wastes significant
computation, since many of the same convolutions are performed multiple times on the same data. In a
FCN, the size of the central region is not fixed (though the ‘border’ size is), so one can simply supply
more of the original image and receive a larger area of predictions, reducing repeated computation.

Technological advances in the form of graphical processing units specially designed for training
neural networks, dubbed tensor processing units (TPUs), enable comparatively rapid training and
evaluation of complex network architectures. TPUs reduce training time from weeks (typical when
running on CPUs) to hours and image prediction from hours to the few seconds needed to read and
write the data with negligible processing time [31].

Humans can easily identify clouds and cloud shadows in most single-date Landsat imagery when
given spatial context. This insight led to the SPARCS algorithm (Spatial Procedures for Automated
Removal of Cloud and Shadow), which was developed in 2014 for the Landsat 4 and 5 Thematic
Mapper [9], and here we extend it to Landsat 8. Similar to the original SPARCS, we take a neural
network approach, although here we use a many-layer network instead of the original single-layer
network. Further diverging, the “Spatial Procedures” are built into the network in the form of
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convolutional and deconvolutional layers, which the network uses to learn which spatial features are
important to the cloud and cloud-shadow identification task.

In this manuscript we present a fully automated algorithm capable of identifying clouds and
cloud-shadows in Landsat 8 imagery that produces errors on par with humans while also being
sufficiently computationally efficient to feasibly process the entire archive. We describe the neural
network architecture of our method and compare the method to the quality bands distributed with
Collection 1 Landsat data and an additional third-party dataset of imagery.

2. Materials and Methods

2.1. Training and Evaluation Data

Landsat imagery is captured and organized geographically along the WRS2 path/row system.
Eighty unique path/rows were selected by stratifying across each of the 14 World Wildlife Fund
terrestrial Major Habitat Types (MHTs) plus ‘Inland Water’ and ‘Rock and Ice’ for each of the seven
biogeographical realms (64 scenes, not all habitat types occur in each realm), plus an additional scene
from each MHT chosen randomly [32] (Figure 1). For each path/row, a single Landsat 8 image acquired
during 2013 through 2014 was selected at random and downloaded from the USGS Earth Explorer.
Since data from different areas within a single Landsat image have similar land cover and share
atmospheric conditions and acquisition variables such as sun angle, manually classifying an entire
scene is a redundant use of classification effort. Instead, a single 1000 px × 1000 px subscene was
selected non-randomly from each image to ensure the presence of the habitat type of interest and,
where possible, a mix of clouds, clear-sky, and water.
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blue. A single interpreter labeled each pixel based only on visual interpretation using Photoshop; no 
thresholding, clustering, or other automated/mathematical approaches were used to assist labeling. 

Figure 1. Locations were selected by identifying one path/row from each of the 14 World Wildlife Fund
terrestrial Major Habitat Types plus ‘Inland Water’ and ‘Rock and Ice’ (these 16 types represented in
shades of green) for each of the seven biogeographical realms, plus an additional scene from each
habitat type chosen at random. Not all combinations occur; a total of 80 scenes were selected and split
into 72 used during training (black) and eight used during evaluation (orange).

To facilitate manual labeling, false-color images were generated by mapping the
shortwave-infrared-1 band (B6) to red, the near-infrared band (B5) to green, and the red band
(B4) to blue. A single interpreter labeled each pixel based only on visual interpretation using Photoshop;
no thresholding, clustering, or other automated/mathematical approaches were used to assist labeling.
This is in contrast to other publically available datasets, such as the Landsat 8 Biome Cloud Cover
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Assessment Validation Data (Biome) [10]. Generating the training data in this manner removes many
telltale artefacts in label masks—areas that are a speckled mixture of two classes, halos between objects
and backgrounds arising from gradients, and small or thin objects omitted due to minimum mapping
units—and enables more powerful learning algorithms.

Pixels were labeled as either no-data, clear-sky, cloud, cloud-shadow, shadow-over-water, snow/ice,
water, or flood. During training and validation, the shadow-over-water class was combined with the
shadow class. The flood class was re-coded as water or clear-sky, as appropriate for land-cover type,
due to insufficient examples and high spectral variability. Water and snow/ice are both land-cover
types and the result of short-term weather conditions. Including them in masks enables analysts to
decide how to treat these conditions for a specific problem while also providing additional information
to time-series algorithms in support of automated decision making.

This dataset (Dataset S1) is available at http://emapr.ceoas.oregonstate.edu/sparcs/.

2.2. Neural Network Architechture

The machine learning classifier used for the cloud screening task is a deep, fully convolutional
neural network with 20.4 million weights (Figure 2). It predicts six classes of interest: no-data, clear-sky,
cloud, cloud-shadow, snow/ice, and water. The classifier can be conceptually separated into three
phases: 1. convolution, 2. deconvolution, and 3. output.

The convolution phase is characterized by a series of two-dimensional (2D) convolution layers
interrupted by 2 × 2 max pooling layers. Each 2D convolution layer learns N filters of size 3 × 3 ×
Depth, with N (and thereby the depth of the following convolution) increasing as the max pooling
layers decrease the effective resolution. The max pooling layers examine each non-overlapping 2 × 2
window and pass through only the maximum value, reducing resolution. Through this process, spatial
information is aggregated across the image, trading resolution for an increasing number of filters
describing increasingly complex spatial relationships. The CNN architecture in this stage contains
approximately 16.5 million weights, out of approximately 20.5 million weights for the entire network,
and is identical to that in VGG-16 [12]. To benefit from transfer learning, weights in analogous layers are
initialized to those from VGG-16 and are prevented from updating for the first 10 epochs to encourage
later layers to converge toward using the VGG-16 outputs.

In the deconvolution phase, the information encoding spatial structure is used to reconstruct the
spatial resolution. This phase makes use of 2D deconvolution layers, also referred to as the transpose
of 2D convolution. These layers learn filters of size learn 2 × 2 × Depth that each have four separate
outputs arranged as a 2 × 2 window. In this way, the output from each deconvolution layer doubles
the resolution of the input. As the resolution increases, the number of filters learned and used for
prediction decreases, in an inverse pattern to the convolution phase. After two of these upscaling
steps, the moderate resolution features from Phase 1 are directly added to the deconvolution outputs,
allowing the network to use both the spatial information reconstructed from the large-scale features
and the more moderate-scale features. The deconvolution phase fully returns the data back to its
original resolution.

The output phase contains a novel feature of our network: data flow splits into two branches
to discourage the network from simply using fine-scaled features. Both branches predict the same
labels, but in the first, no fine-scale spatial features are included, forcing the network to learn useful
features for the classification task in the convolution and deconvolution phases. In the second, the early
fine-scale features are combined with the output from the deconvolution phase to enable the network
to fine-tune spatial structure. The loss from these outputs is combined, with the loss from the first
weighted twice as strongly as the loss from the second. Only the second branch, which includes
the fine-scale features, is used during prediction. Additionally, 2D spatial dropout [33] is used as a
regularization layer. During training, this sets 3/8 of the features to 0, forcing the network to learn
redundant patterns that ideally correspond with different avenues of evidence. During prediction,
the dropout is omitted to allow all features to contribute to classification.

http://emapr.ceoas.oregonstate.edu/sparcs/
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Due to memory constraints during training, a 28-pixel border is clipped from all sides of the
output within the network. This could have been resolved by using a smaller window size during
training, but since the edges of each input image incorporate many no-data pixels, clipping has the
benefit of removing the least informed predictions.

All layers prior to the final prediction layer use a reticulated unit activation function; the final
layer uses a softmax activation to convert activation energies to class probabilities.
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Figure 2. Convolutional neural network (CNN) architecture for the cloud and cloud-shadow screening
task. In phase one, increasingly complex spatial features are extracted by a series of two-dimensional
convolution layers (blue) and max pooling. Blue numbers within convolutional blocks denote the
number of features each convolutional filter uses. For each labeled image (IN, P1-P5), the resolution
is half of the one preceding it. In the second phase, these features are used to reconstruct the spatial
resolution through a series of deconvolution layers (orange), with selected earlier layers (P2, P3)
summed into outputs to contribute earlier detail (green). In this phase, the resolution of images
re-doubles between numbered images (D5–D0). In the final phase, two outputs are predicted, one from
only the deconvolution output (OUT1) and one that also combines fine-scale features from early in the
network to ensure fine-scale predictions (OUT2); only the second output is used during prediction.
Outputs are clipped to remove a 28 pixel border from all sides.



Remote Sens. 2019, 11, 2591 6 of 20

2.3. Processing

Prior to processing, reflectance values in Landsat 8 imagery were corrected to top of atmosphere
reflectance [34]. All spectral bands were used except for the 15 m panchromatic band (B8). The two
thermal bands were summed to create a single thermal feature to avoid any spurious information
arising from varied processing around the stray light issue and to facilitate adapting the network to
other Landsat sensors, resulting in a total of nine predictive features. Each feature was normalized
using the feature-wise mean and standard deviation of the training dataset.

Six subscenes were set aside for validation and two were set aside for testing, leaving 72 for
training. These 1000 px × 1000 px subscenes were padded to include a 64 px border of no-data to
simulate predicting at the edges of the Landsat scenes. During training, each requested example was a
256 px × 256 px window randomly clipped from one of these padded subscenes. Each epoch consists
of 1440 samples from all subscenes, and the network was allowed to proceed for up to 100 epochs or
until the validation sample stopped improving for five epochs, whichever occurred first. In practice,
all epochs ended early due to a lack of validation improvement. Training examples were batched and
randomized following best practices [35]. The network predicts a central 200 px × 200 px region from
the 256 px × 256 px window during training.

Each training example presented to the network is equivalent to 40,000 single-pixel examples.
Since these are all contiguous, stratified sampling based on class is not possible. To partially mitigate
this issue, weighted Kullback–Leibler divergence [36] was used as the loss function, with pixels labeled
clear-sky given half weight. Clear-sky pixels make up approximately 65% of the total dataset, but are
also the most spectrally diverse class. This simple reduction was sufficient to allow the network to
reliably discern less frequent classes.

The model was fit using the Adam optimizer with default parameters [37].
During prediction, the network produces classifications for a region equal to the input size minus

a 28-px buffer along each edge. For this paper, the full 1000 px × 1000 px validation and testing
subscenes were no-data buffered by 28 pixels and predicted in a single pass through the network.

Training and evaluation were performed using TensorFlow in Python, with the CNN model
specified with Keras. Computation was performed using Google Cloud Services and the TensorFlow
Research Cloud. Data was stored in the TFRecord format in Google Cloud Bucket, program control
was executed using Google Compute Engine, and training was accelerated using tensor processing
units (TPUs). TFRecord is the format recommended by the TensorFlow Data Input Pipeline best
practices manual [35], and provides a way to compactly serialize and store information for efficient
retrieval across the Google Compute Engine network. This stack decreased computation time by
several orders of magnitude compared to a multi-processor CPU scenario, allowing rapid exploration
and the experimentation of different architectures and hyperparameters.

2.4. Evaluation

The CNN model was evaluated against the two test scenes as well as the six validation scenes.
The test scenes were not used during training, whereas validation scenes were used to monitor progress
and determine early stopping. Cohen’s kappa [38], full confusion matrices, and accuracy and recall
metrics are calculated between the predicted labels and the manual labels for each subscene. Then,
these results were compared to those calculated between the quality bands included by USGS with the
Landsat data and the manual labels. For the quality band masks, a pixel defaulted to clear-sky but was
considered cloud if the cloud flag was set (bit 4), a cloud-shadow if the high cloud-shadow bit was set (bit
8), and snow/ice if the high snow/ice bit was set (10). For cloud-shadow and snow/ice, this corresponds
to labeling pixels when the CFMask algorithm has medium or high confidence in the condition.
CFMask does not distinguish water; these pixels were considered clear-sky during evaluation.

Since clouds and cloud-shadows have fuzzy boundaries, we allowed two pixels of leeway at
cloud and cloud-shadow borders within the manual labeled masks, where either of the classes at the
boundary were counted as correct. This was used for masks generated with both SPARCS and CFMask,



Remote Sens. 2019, 11, 2591 7 of 20

and assures that reported errors are not simply confusing small amounts at edges but are real failures
to detect objects or the full extent of objects.

Finally, four subscenes were selected to be manually labeled twice to measure interpreter
consistency and the limit of human accuracy. These subscenes were reflected and rotated and then
reinterpreted a year after the initial interpretation. The results between these interpretations are
combined and presented as a single confusion matrix.

3. Results

3.1. Performance of CNN SPARCS

The results from the two test scenes (path/row (PR) 201/033 and PR 148/035) were within the range
of the results from the six validation scenes, and so the eight were combined for analysis. Confusions
are combined into a single matrix for all evaluation scenes for presentation.

The new CNN version of SPARCS performs very well, with a total accuracy of 97.1% (Table 1)
and a Cohen’s kappa of 0.947 over the eight subscenes. The recall percentages for each class fall
between 92% and 98%, meaning that users can trust masks resulting from the method to be consistent.
In comparison, the quality bands (Table 2) achieve a total accuracy of 90.9% and a Cohen’s kappa
of 0.796. The quality bands perform worst for cloud-shadow, finding only 60.4% of cloud-shadows
while also only correctly labeling shadows 69.9% of the time. For automated methods, detecting
clouds and cloud-shadows in order to mask out those pixels is the most important task, and the CNN
SPARCS algorithm omits only 3.5% of cloud pixels and 4.8% of cloud-shadow pixels. This is nearly an
order of magnitude improvement over CFMask, which omitted 23.8% of clouded pixels and 39.8% of
cloud-shadow pixels.

Table 1. Agreement between the CNN Spatial Procedures for Automated Removal of Cloud and
Shadow (SPARCS) method described in this paper and the manually labeled imagery across all eight
evaluation scenes, with class-wise accuracy and recall statistics (italics).

Clear-Sky Cloud Shadow Snow/Ice Water Recall

Clear-Sky 5,185,970 27,372 18,209 35,057 15,755 98.2%
Cloud 37,807 1,004,243 3399 2052 1563 95.7%

Shadow 26,711 5993 494,661 1541 10,199 91.8%
Snow/Ice 14,509 1837 1973 407,209 212 95.6%

Water 20,419 2057 3154 4229 673,863 95.8%
Accuracy 98.1% 96.4% 94.9% 90.5% 96.0% 97.1%

Table 2. Agreement between CFMask quality masks and the manually labeled imagery across all
eight evaluation scenes, with class-wise accuracy and recall statistics (italics). The ‘water’ class is not
distinguished by CFMask and is included with clear-sky.

CFMask Clear-Sky Cloud Shadow Snow/Ice Recall

Clear-Sky 5,874,317 218,065 204,209 19,264 93.0%
Cloud 27,099 793,830 693 114,182 84.8%

Shadow 85,715 18,543 313,738 31,022 69.9%
Snow/Ice 195 365 1143 285,620 99.4%
Accuracy 98.1% 77.0% 60.4% 63.5% 90.9%

The spatial relationship of errors varies between the CNN SPARCS and CFMask results, which
can be seen in the results from the two test scenes (Figures 3 and 4). For each scene, the false color
image and the manual labels are presented along with the predicted results from SPARCS and CFMask,
with the differences (minus the two pixel buffer) highlighted below the results from each algorithm.
Water is combined with clear-sky for CFMask.
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For the CFMask masks, most of the errors come from missing clouds and shadows, which are
shown as red and purple in the error images. This is strongly in evidence in the image from PR 201/033
(Figure 3). These types of errors are most important for automated methods because they contaminate
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the data stack used for multi-temporal analysis or building mosaics. CFMask especially misses parts
of cloud-shadows, due to attempting to predict their position based on properties of the cloud object
rather than relying on the spatial information in the image. The error in the SPARCS masks is more
balanced among confusion between classes. Most missed cloud and cloud-shadow occurs as a few
extra pixels around detected objects, and can be mitigated by dilating the masks. A substantial error
occurs in the PR 148/035 image (Figure 4), where the algorithm erroneously identifies a terrain shadow
near a cloud as a cloud-shadow in the northeastern corner of the image.

Results for the six validation scenes can be found in Appendix A (Figures A1–A6).
The algorithm was further evaluated using 24 cloud and cloud-shadow masks from the Landsat

8 Biome Cloud Cover Assessment Validation Data (Biome) [10], which was used in evaluation of
the CFMask algorithm. Masks were generated using the CNN SPARCS algorithm and compared
to Collection 1 BQAs generated by CFMask for the same scenes (masks provided with the Biome
dataset are pre-Collection 1). These 24 scenes were selected from the 32 validation scenes that included
cloud-shadow and represent a range of land-cover types. Since the CNN SPARCS algorithm also
predicts water and snow/ice in addition to clouds, cloud-shadow, and clear-sky, predictions of water
and snow/ice were counted as ‘clear-sky’ for this comparison, as the Biome masks do not include these
classes. The same two-pixel allowance around objects used in other comparisons was also used here.

Results for both the CNN SPARCS method and CFMask over the Biome dataset are comparable to
the results using our own dataset. The SPARCS algorithm achieved 96% accuracy over all 24 scenes,
with a 6% omission error and a 9% commission error. In comparison, CFMask produced 91% accuracy
with a 14% omission error and a 14% commission. Appendix A contains afull table of results for each
scene (Table A1) along with representative graphical examples (Figures A7–A10).

3.2. Human Interpreter Consistency

Since clouds and cloud-shadows have indeterminate boundaries, some degree of subjectivity in
manual labeling is expected. To explore reasonable upper bounds for accuracy results, four images
were manually labeled twice by the same interpreter, one year apart. These scenes were selected to
provide a range of cloud and land-cover types, and do not represent a statistical sample. The interpreter
agreed with himself approximately 96% of the time (Table 3).

Table 3. Self-agreement across four images manually labeled twice by the same interpreter, one year
apart, with class-wise agreement rates (italics).

Clear-Sky Cloud Shadow Snow/Ice Water

Clear-Sky 2,573,774 22,919 19,882 9655 8456 97.7%
Cloud 22,506 605,888 2289 36,063 2943 90.5%

Shadow 675 7 240,210 4 417 99.5%
Snow/Ice 5583 911 47 124,801 3 95.0%

Water 30,341 107 501 1783 290,235 89.9%
97.8% 96.2% 91.4% 72.4% 96.1% 95.9%

As expected, the spatial distribution of disagreement is primarily at the edges of objects and land
covers, such as the boundary of the water in the PR 183/064 scene, although there are some cases
where dark land cover near cloud-shadow is included in the shadow in PR 201/033 (Figure 5). Much of
the disagreement, though, stems from a single scene with a large, diffuse cloud where the interpreter
delineated its shadow quite differently, highlighting the ambiguity of images with thin clouds and haze.
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Figure 5. Interpreter self-disagreement for two images from PR 201/033 (top) and PR 183/064 (bottom).
Both images were manually labeled by the same interpreter twice, each one year apart. Within each
inset: false color image (A,E), both interpretations (B,C,F,G), and the areas of disagreement highlighted
in grey (D,H).

4. Discussion

The neural network architecture used here has several design features useful for pixel-wise
image segmentation. First, it uses only convolutional operators; therefore, at no time is the 2D spatial
arrangement of the input image lost or constrained to be a specific size. This allows for images of any
size greater than the reduction by down-sampling (here, 32) to be used during prediction. This provides
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flexibility and convenience, as the same network can be used for whole Landsat scenes, small regions
of interest, or arbitrarily sized tiles.

Second, the network is able to provide labels for a large number of pixels per pass—omitting
only a small border where estimates lose reliability due to edge effects. Compared to CNN methods
that provide only a single central output, this method greatly reduces the number of redundant
computations, since many of the same convolutions over the same data are needed when estimating
neighboring pixels.

This network is large, with 20.5 million weights; so many weights introduces the risk of overfitting
the network. Here, we attempt to mitigate that risk using transfer learning. The convolutional phase
of the network is initialized with VGG-16, and the remainder of the network is coerced into using
those filters by not allowing those weights to be updated in the first few epochs. Such a large network
is necessary to provide a large receptive field—i.e., the area around each pixel that is able to inform
its classification. One solution to reducing network size while preserving the receptive field is to use
convolutions with larger strides in early stages to quickly decrease resolution and then omit later
convolution layers with hundreds of layers. However, this also reduces the number of features used to
include spatial structure. Dilated convolutions [39] can enlarge the receptive field using fewer layers
while retaining feature density. This is a strategy used successfully on similar classification problems
discriminating only clouds and cloud-shadows from clear-sky pixels [24,26]. However, early trials in
this study with dilated convolutions produced unacceptable outputs with a structured speckle pattern
when discriminating between water and shadows from both terrain and clouds; future work may be
able to overcome this issue.

For machine learning algorithms to achieve exceptional accuracy, the training data used must
itself be of exceptional accuracy. However, the cloud and cloud-shadow classification task has an innate
subjectivity given that clouds and their shadows have diffuse edges. Our assessment of this subjectivity
found that there was actually more disagreement between images reinterpreted a year apart than
disagreement between the CNN classifier and the evaluation scenes. Some of the disagreement in
reinterpreted images comes from choosing images with a representative range of land-cover and
atmospheric conditions rather than being a statistically representative sample. However, this does
not fully explain the image from path/row 201/033, which was used in both the reinterpreted and the
evaluation sets. On this image, the algorithm achieved a 98.4% accuracy whereas the reinterpretation
only agreed over 96.2% of the image. This is surprising and reflects how the algorithm learned the
consistent set of subjective decisions made when the interpreter labeled all of the training imagery,
which was performed within a few weeks. However, those judgement calls made by the interpreter
shifted to different preferences after a year. Due to this inconsistency, we believe that the CNN
algorithm is at or very near the quality that can be performed by human interpreters.

Two challenges hamper the evaluation of cloud and cloud-shadow detection methods. First,
accuracy metrics are conceptually skewed—a method that performs at 85% accuracy naively sounds
good, but produces useless masks. Second, most users are interested in aggressively removing
obstructions; those performing automated time-series analyses are advised to dilate the cloud and
cloud-shadow masks to both ensure the entire fuzzy object is covered and to remove the image
corruption from the thin haze around such objects. This makes errors at boundaries less important
than errors where algorithms miss whole clouds or incorrectly label clear-sky regions as clouds. In the
first, dilation is of no help if there is no seed to dilate, and in the second, dilation will subsequently
remove large amounts of useable imagery, which could be quite valuable in areas with persistent cloud
cover such as the Amazon. Clever methods that perform a size-weighted object detection are needed
for proper evaluation.

5. Conclusions

A deep convolutional neural network was trained from a global dataset of hand-labeled Landsat
8 imagery to identify regions of clear-sky, clouds, cloud-shadow, snow/ice, and water. The algorithm is
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able to perform at the same level as a human interpreter; further increases in accuracy will require either
exceedingly careful human interpretation or advances in machine learning. This algorithm generates
masks with substantially less error than the masks distributed with the Landsat data, omitting just
3.5% of cloud pixels and 4.8% of cloud-shadow pixels, compared to 23.8% and 39.8%, respectively.
By leveraging machine learning techniques to predict large numbers of pixels within images in a single
algorithm pass and modern computational hardware in form of tensor processing units, processing
the entire Landsat 8 archive is a feasible task. These low error rates over the entire archive will
improve the accuracy of—and in some cases, enable—a wide range of algorithms that operate over
continental and global scales without requiring human intervention to screen images for cloud and
cloud-shadow contamination.

Supplementary Materials: The following are available online at http://emapr.ceoas.oregonstate.edu/sparcs/,
Dataset S1: Landsat 8 imagery with manually interpreted labels used for training and evaluating the algorithm
described here.
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Figure A1. Results for validation test image PR 001/081, with false color image used during interpretation
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and respective spatial distribution of errors (D,F).
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Figure A6. Results for validation test image PR 221/066, with false color image used during interpretation
(A), the manually labeled interpretation (B), generated masks from SPARCS (C) and CFMask (E),
and respective spatial distribution of errors (D,F).

Appendix A.2. Comparison with Biome Dataset

Cloud and cloud-shadow masks for 24 additional Landsat 8 scenes from the Landsat 8 Biome
Cloud Cover Assessment Validation Data (Biome), which was used in evaluation of the CFMask
algorithm, were generated using the CNN SPARCS algorithm and compared to Collection 1 BQAs
generated by CFMask for the same scenes (Table A1). The Biome data does not include water or
snow/ice; predictions of these classes were counted as clear-sky. Additionally, cloud-shadow is only
present in some images and may not have complete coverage even in those images. Only scenes
with some cloud-shadow labels were selected. The same two-pixel allowance around objects used
in other comparisons was also used here. The CNN SPARCS algorithm achieved 96% accuracy over
all 24 scenes, with a 6% omission error and 9% commission error. In comparison, CFMask produced
91% accuracy with 14% omission error and 14% commission. On all but two of the Biome scenes,
the CNN SPARCS algorithm produced a higher accuracy than CFMask. In addition, results without
that 2-px allowance are also included to facilitate comparisons between algorithms. Results between
CNN SPARCS and CFMask are similar for this test, each performing approximately 4% worse in
overall accuracy.

Representative 1000 × 1000 px excerpts of Biome scenes are included for comparison
(Figures A7–A10). The cropping is performed to enable details to be seen in manuscript figures.
In Figure A7, clouds and shadow are over a glacier, emphasizing the continued difficulty in
distinguishing clouds and shadows from ice and snow-packed terrain. In Figure A8, a mixture
of thin and thick clouds covers the landscape; most of the CNN SPARCS errors are around object edges.
Figure A9 includes many small cloud objects; again, most of the disagreement is around object edges,
which the human interpreter included in the mask liberally. Figure A10 contains clouds over water;
note that the Biome masks do not include shadows over water due to the difficulty in distinguishing
between the dark water and the dark shadows. Both CNN SPARCS and CFMask miss some thin clouds
over the water in the bottom of the image.
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Other deep learning networks have been tested against the Biome dataset and achieve overall
accuracies of 94% [27], 95% (Li) [24], and 96.5% [26]. Each of these algorithms is focused on the clouds
and cloud-shadow identification problem and do not produce classifications for water or snow/ice.
Additionally, they each train on a subset of the Biome data and are evaluated on a different subset and
thus are able to internalize any systematic biases, which are more likely to be prominent given that the
Biome data is not generated in a fully manual way. The dataset developed for this study has been
available from the USGS since 2017. Another study [28] that trained a classifier using the SPARCS data
and evaluated it using the Biome dataset provides a better comparison, although again not using the
water and snow/ice classes. That classifier performed at 91% accuracy, which is quite similar to the
results reported here.

Table A1. Kappa scores and overall accuracy (Acc) for SPARCS and the CFMask over 24 Landsat 8
images from the Landsat 8 Biome Cloud Cover Assessment Validation Dataset (Biome).

With 2-px Buffer Without 2-px Buffer

SPARCS CFMask SPARCS CFMask

Scene Identifier Kappa Acc. Kappa Acc. Kappa Acc. Kappa Acc.

LC80010732013109LGN00 0.813 94.2% 0.712 88.3% 0.763 92.1% 0.680 86.3%
LC80070662014234LGN00 0.949 99.0% 0.928 98.5% 0.880 97.6% 0.868 97.2%
LC80160502014041LGN00 0.970 98.2% 0.905 94.0% 0.848 89.7% 0.773 83.9%
LC80200462014005LGN00 0.966 98.8% 0.879 95.6% 0.847 93.7% 0.751 89.4%
LC80250022014232LGN00 0.680 86.3% 0.454 55.8% 0.633 82.7% 0.425 51.4%
LC80290372013257LGN00 0.915 95.7% 0.866 92.9% 0.838 91.1% 0.792 88.3%
LC80750172013163LGN00 0.523 99.9% 0.499 98.8% 0.523 99.9% 0.499 98.8%
LC80980712014024LGN00 0.856 90.9% 0.813 87.7% 0.715 79.0% 0.690 76.9%
LC81010142014189LGN00 0.827 91.5% 0.773 88.6% 0.696 84.4% 0.642 81.4%
LC81020802014100LGN00 0.767 89.6% 0.803 91.3% 0.590 81.0% 0.633 82.9%
LC81130632014241LGN00 0.893 97.9% 0.858 97.0% 0.779 94.3% 0.755 93.5%
LC81310182013108LGN01 0.706 98.3% 0.779 98.8% 0.667 97.9% 0.724 98.3%
LC81490432014141LGN00 0.930 100.0% 0.897 100.0% 0.882 99.9% 0.841 99.9%
LC81620582014104LGN00 0.849 98.8% 0.772 97.8% 0.764 97.7% 0.712 96.8%
LC81640502013179LGN01 0.805 95.3% 0.863 97.1% 0.728 92.6% 0.786 95.1%
LC81750512013208LGN00 0.888 93.7% 0.780 85.6% 0.780 86.2% 0.696 77.8%
LC81750622013304LGN00 0.883 95.9% 0.807 93.2% 0.744 90.1% 0.716 89.3%
LC81770262013254LGN00 0.896 98.5% 0.823 97.1% 0.812 96.9% 0.745 95.1%
LC81820302014180LGN00 0.907 99.8% 0.900 99.8% 0.828 99.7% 0.826 99.7%
LC81910182013240LGN00 0.635 99.5% 0.581 99.1% 0.601 99.3% 0.566 98.9%
LC81930452013126LGN01 0.833 92.1% 0.828 90.7% 0.754 87.2% 0.777 86.9%
LC82020522013141LGN01 0.785 94.0% 0.587 75.4% 0.731 92.0% 0.552 71.3%
LC82150712013152LGN00 0.924 95.8% 0.760 84.2% 0.843 90.5% 0.686 77.7%
LC82290572014141LGN00 0.811 88.4% 0.765 85.0% 0.681 78.4% 0.639 75.1%

All Scenes 0.906 95.4% 0.833 91.3% 0.838 91.4% 0.771 87.2%
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interpretation (A), the manually labeled interpretation (B), generated masks from SPARCS (C) and
CFMask (E), and respective spatial distribution of errors (D,F).
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