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Abstract: Short-range radar has become one of the latest sensor technologies for the Internet
of Things (IoT), and it plays an increasingly vital role in IoT applications. As the essential
task for various smart-sensing applications, radar-based human activity recognition and person
identification have received more attention due to radar’s robustness to the environment and low
power consumption. Activity recognition and person identification are generally treated as separate
problems. However, designing different networks for these two tasks brings a high computational
complexity and wastes of resources to some extent. Furthermore, there are some correlations in
activity recognition and person identification tasks. In this work, we propose a multiscale residual
attention network (MRA-Net) for joint activity recognition and person identification with radar
micro-Doppler signatures. A fine-grained loss weight learning (FLWL) mechanism is presented
for elaborating a multitask loss to optimize MRA-Net. In addition, we construct a new radar
micro-Doppler dataset with dual labels of activity and identity. With the proposed model trained
on this dataset, we demonstrate that our method achieves the state-of-the-art performance in both
radar-based activity recognition and person identification tasks. The impact of the FLWL mechanism
was further investigated, and ablation studies of the efficacy of each component in MRA-Net were
also conducted.

Keywords: smart sensing; human activity recognition; person identification; multitask learning;
radar micro-Doppler signatures

1. Introduction

With the great development of the Internet of Things (IoT), short-range low-power radar sensors
for smart sensing are attracting increasingly more interest mainly due to the advantages of robustness
to weather and lighting conditions, penetrability of obstacles, low power consumption and protecting
visual privacy [1,2]. IoT is treated as the future trend in the global technological development
after the Internet, and it connects all things to the Internet for information sensing and exchange,
and data computing [3]. For the smart sensing function of IoT, human activity recognition and person
identification are crucial steps, and they have been widely adopted in indoor real-time positioning,
activity monitoring, elderly fall detection, and so forth.

Person identification and activity classification have both been investigated in prior work [4].
Most of these systems are based on optical cameras for collecting information. However, optical
devices have many limitations such as sensitivity to light or weather conditions and a high demand for
computational resources, which hinders the application of such devices for human activity recognition

Remote Sens. 2019, 11, 2584; doi:10.3390/rs11212584 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7578-8515
https://orcid.org/0000-0002-1919-2327
http://www.mdpi.com/2072-4292/11/21/2584?type=check_update&version=1
http://dx.doi.org/10.3390/rs11212584
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 2584 2 of 18

and identification, especially with portable devices that have limited computational capabilities. Radar
is considered to be a powerful approach to overcome these drawbacks. Furthermore, radar can be
applied to more scenarios and effectively protect visual privacy.

Recently, radar-based person identification and activity recognition have attracted increasing
attention. When a human target is moving in the line of sight of a radar, the returned signals are
modulated by the movement. In addition to the main Doppler shift caused by the human torso,
the movements of body parts form micro-Doppler (MD) shifts, which is commonly called a target
MD signature. Generally, radar MD signatures are both target and action specific, and can hence be
used to recognize targets and classify activities. For example, Vandersmissen et al. [5] demonstrated
that MD features are able to characterize individual humans in realistic scenarios, which makes
radar-based person identification possible. Handcrafted features such as extreme frequency ratio, torso
frequency, period of motion and total Doppler bandwidth [6] are extracted from MD spectrograms to
characterize human motions. However, the activity recognition and person identification solutions
based on hand-crafted features are not reliable enough since Doppler and MD signatures are individual
and action specific. In addition, professional knowledge is indispensable during the manual feature
extraction process. Hence, automated and optimized feature extraction approaches are desired.

Recent trends in deep learning have led to a renewed interest in radar-based person identification
and activity recognition due to its capability of automatically extracting features and encouraging
precision. Furthermore, with the development of GPUs, it is possible to process vast amounts of data
in a limited time via parallel computing techniques. Convolutional neural networks (CNNs) play a
vital role in numerous deep-learning-based systems, and they have been successfully applied in the
areas of object detection, image classification and so forth [7,8]. Although not as intuitive as natural
images, an MD spectrogram, which is a two-dimensional representation of radar signals, could also
be analyzed as an image. In this circumstance, a CNN that is adept at learning embedding from
two-dimensional images is often utilized to process radar MD spectrograms [5,9].

Although closely related, activity recognition and person identification are generally treated as
separate problems. It has recently been demonstrated that learning correlated tasks simultaneously
can enhance the performance of individual tasks [10,11]. Joint activity recognition and person
identification has two advantages. (1) Sharing the model between the two tasks accelerates the
learning and converging process compared with applying it to a single task. (2) Multiple labels supply
more information about the dataset, which is capable of regularizing the network during training.
Furthermore, the computational complexity can be improved by sharing the feature extractor between
the activity recognition and person identification tasks. Motivated by these advantages, we go one
step beyond separate person identification and activity recognition by proposing a novel CNN-based
multitask framework to complete the two tasks simultaneously. Multitask learning (MTL) [12] aims
at leveraging the relatedness among the tasks and learning embedding of each task synchronously
to improve the generalization performance of the main task or all tasks. In this paper, our goal is to
enhance both tasks with an MTL-based deep neural network.

We propose a multiscale residual attention network (MRA-Net) for joint person identification
and activity recognition with radar. As shown in Figure 1, MRA-Net is composed of two parts:
feature extractor and multitask classifier. MRA-Net firstly extracts a common embedding from the MD
signature, and then the embedding is input into fully connected (FC) layers to perform the classification
of each task. In the CNN-based feature extractor, two scales of convolutional kernels are applied for
extracting different-grained features from the input. The shared features entangle attributes for both
activity recognition and person identification. Furthermore, the residual attention mechanism [13] is
adopted in the feature extractor to facilitate the feature learning process. Finally, a fine-grained loss
weight learning (FLWL) mechanism is proposed in contrast to the methods in previous work that
either treat each task equally [14] or obtain the loss weights by greedy search [15].
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Figure 1. The CNN-based framework of the proposed MRA-Net. The model is composed of two parts:
feature extractor and multitask classifier. In the multitask classifier part, there are three branches:
activity recognition branch Pr, person identification branch Pi and FLWL branch Pw. There is a FC layer
and a Softmax layer in Pi and Pw, respectively, and Vi and Vr denote the corresponding output vectors
that are utilized for the final classifications of the two tasks. W denotes the output vector that is utilized
for the automatic loss weight learning.

In summary, our contributions mainly include the following three aspects.

• A novel multiscale residual attention network, named as MRA-Net, is proposed to jointly perform
human identification and activity recognition tasks based on radar MD spectrograms. MRA-Net
outperforms the state-of-the-art methods for both tasks by jointly recognizing human activities
and identifying persons.

• A fine-grained loss weight learning mechanism is proposed to automatically search for proper
loss weights rather than equalizing or manually tuning the loss weight of each task.

• Extensive experiments with state-of-the-art results have validated the feasibility of radar-based
joint activity recognition and person identification, as well as the effectiveness of MRA-Net
towards this issue.

The rest of this paper is organized as follows. Section 2 briefly introduces the related work
of person identification, human activity recognition and multitask learning. Section 3 details the
proposed deep multitask learning network. A measured radar micro-Doppler signature dataset is
described in Section 4. The performance metrics and implementation details are presented in Section 5.
Experimental results and analysis are provided in Section 6. Section 7 concludes this paper.

2. Related Work

2.1. Person Identification

Person identification is a key technology in various fields, for example, terrorist attack preventing,
criminal seeking and defense. In prior work, person identification always depends on biological or
vision-based features. Liang et al. [16] proposed a method that combines inaccurately estimated human
pose and inferred confidence metric for cross-view person identification. A fingerprint recognition
system that applies information from multiple feature extractors is built for person identification [17].
Recently, WIFI has been applied to person identification [18]. Meanwhile, radar-based person
identification has attracted more attention. Compared with other sensors, radar is more stable in weak
light and bad weather conditions. It is penetrable and able to protect visual privacy. In addition,
radar systems do not need any tag attached to the human body. Vandersmissen et al. [5] utilized a
low-power FMCW radar for indoor person identification based on gait characteristics. Cao et al. [19]
applied radar MD signatures for person identification with a deep CNN.
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2.2. Activity Recognition

There are two main categories for human activity recognition methods [20]: vision-based and
sensor-based methods. Vision-based methods take advantage of the high resolution of optical
sensors and the rapidly evolving computer vision techniques, and fruitful results have been obtained.
Zhang et al. [21] proposed an active action proposal model that aims to find actions through
continuously adjusting the temporal bounds in a self-adaptive way. A reinforcement learning algorithm
is also adopted in this work. Wearable sensors are another commonly used tool for activity recognition
and have achieved high accuracies [22]. However, this method requires subjects to wear sensors in a
strict way to ensure correct operations, and the sensors are always on the body, which makes people
uncomfortable and burdened. Following the work in [23], radar-based activity recognition approaches
have been gradually receiving attention. Seyfioğlu et al. [9] proposed a deep convolutional autoencoder
architecture for similar aided and unaided human activities with MD signatures. Le et al. [24]
developed a Bayesian-optimized CNN model for human motion classification with a Doppler radar.

2.3. Multitask Learning

MTL is an inductive transfer mechanism that aims to train tasks in parallel and learn sufficiently
generalized representations. MTL can be combined with various learning algorithms and is applied in
many fields. HyperFace [14], which is a multitask framework, is proposed for face detection, landmark
localization, pose estimation, and gender recognition. The idea of MTL is also incorporated in object
detection algorithms [25]. In addition, Miranda-Correa et al. [26] applied a multitask cascaded network
for predicting affect, personality, mood and social context with EEG signals.

Prior MTL approaches either treat the loss weights equally or utilize a manual greedy search
to train the model. Kendall et al. [27] utilized homoscedastic uncertainty, which is explained as
task-dependent weighting, to combine multiple loss functions. The efficiency of the proposed method
in learning scene geometry and semantics has been demonstrated with three tasks. Yin et al. [28]
proposed a dynamic-weighting scheme to learn the loss weights of each side task automatically.
In our work, we propose an FLWL mechanism that makes MRA-Net automatically learn weights for
both tasks.

3. Multiscale Residual Attention Network

In this paper, we propose MRA-Net, which is a multiscale residual attention network for joint
radar-based person identification and activity recognition. The unified network is learned end-to-end
and is optimized with a multitask loss. The feature extractor part of MRA-Net is illustrated in Figure 2.
In this part, multiscale learning and residual attention learning mechanisms are employed to facilitate
the feature extracting process. Specifically, the feature extractor is composed of three blocks, and there
are three branches in every block: coarse-scale learning branch, fine-scale learning branch and residual
attention branch. For the multitask classifier, we propose an FLWL mechanism to automatically set the
loss weights for MTL.
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Figure 2. The feature extractor part of MRA-Net, which is composed of three blocks. There are three
branches in each block: coarse-scale learning branch, fine-scale learning branch and residual attention
learning branch. All branches are able to facilitate the feature learning process. In the CNN-based
feature extractor, the convolution operation with a kernel size of 3 × 3 and a stride of 1 is denoted as
3 × 3/1, and the pooling operation is denoted as the same way.

3.1. Multiscale Learning

Multiscale learning mechanism is able to extract features from various granularities and learn
more efficient representations [29]. In MRA-Net, we apply two types of convolution kernels with
different receptive fields: the 3 × 3 kernel is used for fine-scale learning in Branch 1, while the 5 × 5
kernel is utilized for coarse-scale learning in Branch 2 (see Figure 2). The intuition of employing
multiscale convolution kernels is that the MD characteristics of different activities vary. For example,
the MD effect of “box” is more delicate, while the MD effect of “walk” is stronger. The receptive fields
of different convolution kernels match the MD features of different scales, as illustrated in Figure 3.
Due to the complementary information between different scales of convolution kernel, multiscale
learning can significantly improve the performance of MRA-Net.

Figure 3. Convolution operations with different convolution kernels. The 5 × 5 kernel is suitable to
learn coarse-scale features while the 3× 3 kernel is suitable to learn fine-scale features in MD signatures.

In addition, the 1 × 1 kernel is also adopted for fusing the features in every block. By flexibly
adjusting the number of channels, the 1 × 1 convolution kernel is capable of significantly increasing
the nonlinear characteristics of the network without a loss of resolution and realizing cross-channel
interaction and information integration.
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3.2. Residual Attention Learning

We introduce the residual attention learning mechanism into our model to make MRA-Net learn
more attention-aware representations from the input MD signatures. The output of every block in
Figure 2 can be denoted as:

Ob(x) = (M(x) + 1) · f (Op1(x) + Op2(x)) (1)

where x represents the input of the block; M(x) represents the residual attention mask; Op1(x)
and Op2(x) represent the outputs of the coarse-scale and fine-scale learning branches, respectively;
f represents the convolutional operation with a kernel size of 1 × 1; and Ob(x) represents the output
of the block.

In this paper, we tend to learn discriminative embedding from MD signatures for both radar-based
activity recognition and person identification tasks. In a CNN, the convolution operation is achieved
by sliding the convolution kernel over the feature map. Thus, the feature learning process treats each
area of the input equally. However, it is obvious that the MD frequency parts in an MD signature are
more representative of the corresponding activity, and thus should receive greater attention. To this
end, the elaborate residual attention learning is adopted to make MRA-Net focused, as shown in
Branch 3 in Figure 2. Residual attention learning is composed of two components: residual learning
mechanism and mixed attention mechanism [13]. The bottom-up, top-down feedforward residual
attention mechanism is realized by multiple stacked attention modules that generate attention-aware
features and aim at guiding more discriminative feature representations. The stacked structure is the
basis of mixed attention mechanism, where different types of attention can be obtained from different
attention modules. Due to the obvious performance drop caused by module stacking, residual learning
mechanism is adopted for optimizing the deep model.

3.3. Fine-Grained Loss Weight Learning

To make the multitask classifier recognize activities and identify persons more accurately,
we present the FLWL mechanism in the multitask classifier, aiming to automatically assign a proper
loss weight to each task and to simultaneously retain good multitask classification performance.

Given a training set T composed of N MD signatures and their labels: T = {Sn, Lrn, Lin}N
n=1 ,

where Sn denotes the nth input MD signature, Lrn denotes the corresponding label of human activity,
and Lin represents the corresponding label of person identification. Xn ∈ Rd×1 represents the high-level
embedding vector of Sn:

Xn = g(Sn; Θ), (2)

where Θ denotes all parameters to be optimized in the feature extractor layers of MRA-Net, and g
denotes the nonlinear mapping from the input signature to the shared embedding.

For a multitask classifier, the loss weight setting for the tasks are vital to the classification
performance. During the multitask training process, suppose that the training losses of the activity
recognition task and person identification task are represented as Lossr and Lossi, respectively. Then,
the overall loss is computed as the weighted sum of the two individual losses, which is written as,

Lossoverall = wr ×
N

∑
n=1

Lossr(Sn, Lrn)

+wi ×
N

∑
n=1

Lossi(Sn, Lin)

(3)

where Lossoverall represents the overall loss of the model, wr represents the loss weight parameter of the
activity recognition task, and wi represents the loss weight parameter of the person identification task.
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The conventional approach to set the loss weights is the greedy search algorithm, which is
affected by the search step size. A large step size causes the search process difficulty in converging,
while a small step size is time-consuming. Under this circumstance, we first utilize a greedy search
algorithm for initialization and locate the rough ratio range of the two loss weights. Several typical ratio
values rw are adopted for the experiment and the results are illustrated in Figure 4. As shown in this
figure, the person identification task is more sensitive to rw compared with the activity classification

task. Furthermore, when rw is between
2
3

and 1, the accuracies of person identification and activity
classification both retain at a high level.

Figure 4. The initialization process of loss weights. From the accuracy curves of the activity recognition

task and person identification task under several typical ratio values rw, it is shown that [
2
3

, 1] is the
proper initial range for rw.

Based on the result of the rough greedy search, we elaborate the multitask classifier illustrated
in Figure 1. Specifically, in addition to the two branches Pi and Pr for activity recognition and
person identification, we propose another branch Pw for automatic weight learning. Suppose that
αp ∈ Rd×2 and βp ∈ R2×1 are the weight matrix and bias vector in the FC layer of Pw, respectively.
Then, the output is fed into a Softmax layer,

w = So f tmax(αT
p Xn + βp) (4)

Consequently, the output of Pw is w = [w1, w2]
T , where w1 + w2 = 1 and 0 ≤ w1,2 ≤ 1.

Then, we design an overall loss function Lossoverall for MRA-Net as follows:

Lossoverall = (2 + max(w1, w2))Lossr

+(2 + min(w1, w2))Lossi
(5)

where Lossi denotes the cross-entropy loss function of the person identification task and Lossr denotes
the cross-entropy loss function of the activity classification task. Therefore, the weight ratio rw can be
expressed as:

rw =
wr

wi
=

2 + min(w1, w2)

2 + max(w1, w2)
=

2 + min(w1, w2)

3−min(w1, w2)
(6)
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where wr represents the loss weight for activity recognition and wi represents the loss weight for
person identification. In this way, MRA-Net is optimized under the limit of rw, which is between 2

3
and 1. Then, the fine-grained and optimal weights are automatically assigned for both tasks. With the
proposed FLWL algorithm, the multitask classifier is able to automatically assign the loss weights and
learn discriminative features for both tasks subsequently.

4. Dataset Description

In this work, we construct a measured radar MD signature dataset and verify the performance
of MRA-Net with an FLWL mechanism. The measured MD signature data are collected with a UWB
radar module named PulsON 440 (see Figure 5a), and the recording parameters are given in Table 1.
The experiment is performed in an indoor environment. The radar is placed at a height of 1 m,
and activities are performed in the line of sight of the radar. The measurement range of the radar is
between 1.5 m and 7.5 m. The experimental deployment diagram is illustrated in Figure 5b. In each
experimental scenario, a subject performs a specified activity continuously for approximately 1.5 s.
Thirty scenarios corresponding to five activities performed by six subjects are included in this dataset.
Basic characteristics of the six subjects are recorded in Table 2, and the five activities are listed as
follows: (a) directly walking towards/away from the radar (walk); (b) boxing while standing in place
(box); (c) directly running towards/away from the radar (run); (d) jumping forward (jump); and (e)
running in circle (circle).

Table 1. Radar configuration parameters.

Center Frequency 4.0 GHz
Chirp Bandwidth 1.8 GHz
Pulse Repetition Frequency (PRF) 290 Hz
Coherent Processing Interval (CPI) 0.2 s

Table 2. Subject information.

Sub #1 Sub #2 Sub #3 Sub #4 Sub #5 Sub #6

Gender male male male female male female
Age 23 25 23 23 23 24
Height (cm) 173 178 172 166 188 169
Weight (kg) 73 71 75 66 92 52

Figure 5. (a) Photo of UWB radar module named PulsON 440; and (b) experimental deployment
diagram where a tested person is running towards the radar at a velocity v.

The radar data preprocessing is shown in Figure 6. Background clutter suppression via the moving
target indicator approach is firstly performed on the raw data, and short-time Fourier transform (STFT)
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with a sliding window of 1 s is conducted subsequently. To take full advantage of the continuous
radar motion data acquired in each scenario, the overlap of consecutive frames when using the sliding
window is 0.36 s. Then, the radar motion data acquired in a scenario are transformed into a series of MD
signatures. Several typical MD signatures in the dataset are shown in Figure 7. Each datum represents
an activity that lasts 1 s, and the radical velocity ranges of all activities are between −5.14 m/s and
5.14 m/s. Consequently, a dataset composed of approximately 7498 spectrograms is obtained, and the
concrete distribution is shown in Table 3. Then, we resize the spectrograms into 100 × 150 and feed
them into the models.

Figure 6. Radar data preprocessing: (a) Raw radar data; (b) radar data with background clutter
suppression; and (c) radar MD signature.

Figure 7. Typical MD signatures of five activities performed by six subjects. From top to bottom: box,
circle, jump, run and walk. From left to right: Sub #1, Sub #2, Sub #3, Sub #4, Sub #5 and Sub #6. In each
spectrogram, the radial velocity range is from −5.14 m/s to 5.14 m/s, and the activity duration is 1 s.
It is shown that every piece of MD signature is both activity-specific and individual-unique.
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Table 3. Dataset composition.

Sub.

Num. Act.
Walk Run Jump Circle Box

Sub #1 340 338 166 396 266
Sub #2 388 282 160 356 197
Sub #3 233 237 220 430 158
Sub #4 208 211 100 242 141
Sub #5 256 175 190 320 145
Sub #6 177 414 197 316 239

5. Evaluation and Implementation

5.1. Performance Metrics

Due to the imbalance existing in the dataset, an appropriate performance metric is indispensable
for evaluating the performance of activity recognition and person identification. As illustrated in
Table 3, for several items, such as “jump” performed by Sub #1 and #2, and “walk” performed by Sub
#6, there are only half as many as the other items, which causes a data imbalance issue. The overall
accuracy is not able to measure the performance of these skewed classes. In this circumstance,
in addition to Accuracy, more metrics should be introduced for comprehensively evaluating the
performance of the two tasks. Four types of measurements, namely True Negatives (TN), False
Positives (FP), False Negatives (FN) and True Positives (TP), are often utilized for assessing the
performance of machine learning algorithms. TP, FP, TN, and FN are the numbers of instances of true
positive, false positive, true negative and false negative, respectively. Then, Accuracy, Precision, Recall
and F1-score for the two tasks are calculated with TN, FN, TP and FP as follows:

Accuracy =
TN + TP

TN + TP + FN + FP
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1− score = 2× Recall × Precision
Recall + Precision

(10)

where F1-score is an indicator designed to comprehensively consider Precision and Recall.

5.2. Implementation Details

The model was implemented on Tensorflow, which is developed by Google Brain. The model
was trained in a fully supervised way, and the gradients were backpropagated from the softmax layers.
The network parameters were updated with an Adaptive Moment Estimation (Adam) optimizer,
and the mini-batch size was 128. The cross-entropy function was adopted to compute the losses
between the predictions and the targets for each task. In addition, we added an L2 penalty to the losses.
All weights and biases were randomly orthogonally initialized with a learning rate of 5× 10−5, and the
momentum was set to 0.9. We trained the model for 400 epochs. All experiments were performed on
4 Ti 1080 GPUs with 11 GB of memory, applying CUDA for acceleration.
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6. Experiments and Discussion

6.1. Experimental Results

We employed five-fold cross validation on MAR-Net, and Table 4 shows the test F1-scores of
MRA-Net for the person identification and activity recognition tasks. The architecture of MRA-Net
can be used for not only MTL but also single-task learning. When applying MRA-Net to single-task
learning, such as the activity classification task, the Pw and Pi of MAR-Net in Figure 1 are expired and
Pr remains. In this way, MAR-Net is transformed into a single-task learning model. As shown in Table 4,
irrespective of whether it is used in MTL or single-task learning, MRA-Net is capable of providing
good performance for the two tasks, with the F1-scores of above 90%. As illustrated in Equation (10),
F1-score is more comprehensive, which derived from precision and recall. A high F1-score means that
the corresponding precision and recall are high enough. Consequently, it is indicated that the proposed
MRA-Net architecture is effective and robust enough in both single-task learning and MTL. Specifically,
the F1-score of activity classification is stable between 97% and 98% in both multitask and single-task
learning. Meanwhile, the performance of person identification in MTL is better than that in single-task
learning, with a margin of 4.53% in F1-score. This result shows that the shared representations learned
in MTL are more generic and better facilitate the person identification task.

Table 4. Test F1-scores of MRA-Net for multitask learning and single-task learning.

Activity Recognition Person Identification

MRA-Net for multitask learning 98.29% 95.87%
MRA-Net for activity recognition 97.61% ×
MRA-Net for person identification × 91.34%

Next, Figure 8 displays the confusion matrix of activity recognition and person identification in
MTL. As shown in Figure 8a, Sub #5 is the easiest person to be identified according to his activities.
From Table 2, we know that Sub #5 has a larger radar cross-section (RCS) because of his physiological
properties, such as height and weight; thus, the backscattering echoes of his activities are more intense
and more distinguishable. Additionally, Sub #1 and #3 are easily confused, which is probably due to
their similar physiological properties and behavior styles. In Figure 8b, “walk” is the easiest activity to
be recognized, which demonstrated the MD signature of “walk” is more discriminative than the other
activities. “Circle” has a lower recall than the others because when a person is running in a circle in front
of the radar, the aspect angle between the person and the radar changes dynamically. Consequently,
the produced MD signatures are changeable and more difficult to recognize [30]. In addition, “run”
and “circle” are more confused due to the action similarity.

Then, we investigated the performance of the five activities for person identification, respectively.
Figure 9 illustrates the F1-scores of “walk”, “run”, “box”, “jump” and “circle” for person identification.
This figure shows that the five activities are all able to be utilized for identifying persons with F1-scores
of more than 90%, which demonstrates the feasibility of MD-based person identification with the
five activities. In detail, the spectrogram of “walk” is the most efficient for person identification
with an F1-score of 96.50%, indicating that the motion of “walk” probably retains more personal
information than the other counterparts. By contrast, the F1-score of the spectrogram of “box” for
person identification is the lowest, approximately 91.38%. Since the RCS of “box” is smaller than
those of the other motions, its MD signature is not as obvious as those of the others. Consequently,
the identification performance with the MD signatures of “box” is slightly worse.
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Figure 8. (a) Confusion matrix of the person identification task. (b) Confusion matrix of the activity
recognition task. To illustrate the classification performance more clearly with confusion matrix, color
is used to indicate the value log(Recall) instead of Recall.

Figure 9. F1-score curves of five activities for person identification. “Run” has the highest F1-score,
which indicates that the spectrogram of “run” is the most efficient for person identification among the
five activities.

6.2. Comparison with the State-of-the-Art

To show the advantage of combining radar-based activity recognition and person identification
tasks together with the MTL mechanism, we compare the performance of MRA-Net for the two tasks
with that of several state-of-the-art methods. At present, the deep convolutional neural networks
(DCNNs) in [5,19] are two typical models for radar-based person identification, and we selected
them as baselines. The result is shown in Figure 10a. Our MRA-Net outperforms all the methods,
with an approximately 4% higher F1-score than the DCNN in [19] and an approximately 8% higher
F1-score than the DCNN in [5]. Furthermore, the DCNN in [23], the convolutional autoencoder
(CAE) in [9] and the stacked long short term memory (LSTM) in [31] were treated as baselines for
the radar-based activity recognition task, and the comparison results are illustrated in Figure 10b.
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We found that, for the activity recognition task, MRA-Net with the MTL mechanism also achieves the
best performance among these methods. Specifically, among the three baselines, the CAE obtains the
best performance, with an F1-score of 95.08%, while the stacked LSTM obtains the lowest F1-score.
Furthermore, the performance of the proposed MRA-Net is better than the CAE, with a margin of
approximately 3.21% in F1-score. The results above indicate that MRA-Net with MTL is able to obtain
a better performance for the two tasks than the state-of-the-art approaches. However, for both of
the tasks, MRA-Net converges slightly slower than the other baselines, which is probably due to the
parameter optimization complexity caused by MTL.

Figure 10. (a) Performance comparison for person identification on test dataset. (b) Performance
comparison for activity recognition on test dataset. The proposed MRA-Net for joint activity recognition
and person identification outperforms the state-of-the-art single-task approaches.

Subsequently, we compared the proposed MRA-Net with another MTL network, JMI-CNN [32],
for the person identification and activity classification tasks. Additionally, to more comprehensively
compare the two networks, Gaussian white noise (GWN) with different signal noise ratios (SNRs) was
added on the MD signatures of the dataset. The performance of the two networks for both person
identification and activity classification tasks under different SNRs was investigated. The results
are illustrated in Figure 11. On the whole, the proposed MRA-Net outperforms JMI-CNN for MTL,
indicating that that MRA-Net is more robust and generalized. For the person identification task,
the F1-scores of MRA-Net are higher than JMI-CNN under various SNRs. Especially, when the SNR is
greater than 15 dB, the F1-scores of MRA-Net are higher than 90%. For the activity recognition task,
both of the networks obtain good performance of more than 95% in F1-score. When SNR is 5 dB,
the two networks achieve almost the same classification F1-score, and, when SNR is 0 dB, JMI-CNN
outperforms MRA-Net with a small margin. It is indicated that, when utilized for MTL, the proposed
network outperforms JMI-CNN more markedly on the person identification task.



Remote Sens. 2019, 11, 2584 14 of 18

Figure 11. Performance comparison of MRA-Net and JMI-CNN for MTL under different SNRs.

6.3. Fine-grained Loss Weight Learning

In MTL, setting appropriate loss weights and elaborating a loss function are of crucial importance
for model optimization. How to set the loss weight of each task for MTL remains an open question.
Prior work either treats the tasks equally or acquires the loss weights via greedy search [28]. However,
finding the optimal weights for all tasks via greedy search is time consuming or practically impossible.
In this paper, our proposed FLWL mechanism is able to automatically learn the loss weight for each
task and bring a better performance for MTL. First, we randomly selected a batch of MD signatures
from the test data and fed them into the trained model, and then we visualized the loss weights of these
data for the person identification and activity classification tasks, as illustrated in Figure 12a. As shown
in Figure 12a, for each task, the loss weight assigned to different data is different, as described by
the yellow and blue polylines. This result indicates that the optimal rws of different MD data are not
exactly the same. Furthermore, we count the assigned rws of all test MD data and show the results
in a bar chart, as illustrated in Figure 12b. The values of rw in the bar chart are selected according
to the relationship between wr and wi, as illustrated in Equation (6). When wr increases uniformly
from 2.0 to 2.5 at a rate of 0.1, rw increases from 2

3 to 1. Figure 12b demonstrates that rws are mostly
between 23

27 and 12
13 , and secondly between 21

29 and 11
14 . Based on this result, we manually select several

representative loss weight ratios and list the performance for MTL under these ratios, as illustrated
in Table 5. It is indicated that the proposed FLWL mechanism is able to assign proper loss weights
for each task to obtain a better performance. Although the performance of activity recognition is not
obviously improved, the person identification task with the FLWL mechanism obtains the highest
F1-score compared with greedy search. Additionally, the proposed mechanism is more efficient
and labor-saving.
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Figure 12. (a) Visualization of the loss weights for the person identification and activity classification
tasks. (b) Bar chart for the statistical result of rw. It is indicated that the automatically assigned loss

weights for each MD signature vary, and most rw are between
2.3
2.7

and
2.4
2.6

.

Table 5. Performance comparison in F1-score for MTL with different loss weight ratios.

Multitask Learning
Activity

Recognition
Person

Identification

Greedy search

rw = 2
3 95.72% 88.97%

rw = 3
4 97.28% 91.37%

rw = 11
14 98.43 % 94.85%

rw = 12
13 96.13% 93.16%

rw =1 97.45% 90.23%

FLWL mechanism 98.29% 95.87 %

6.4. Ablation Study

To demonstrate the necessity and effectiveness of the components in the model, some ablation
studies on the performance of MRA-Net for activity classification and person identification are
performed, as shown in Table 6. The contributions of three components (coarse-scale learning, fine-scale
learning and residual attention learning) to MTL are investigated. Incorporating the three components
into MRA-Net is able to greatly improve the performance for both activity recognition and person
identification tasks, with limited increase of computational effort. From Rows (1)–(3) in Figure 12,
we can find that applying multiscale learning alone does not significantly improve results. By contrast,
residual attention learning is able to obtain more improvements. For example, when comparing Rows
(2) and (5), residual attention learning obtains obvious improvements of 3.66% in F1-score for the
activity recognition task, and 4.02% in F1-score for the person identification task. At the same time,
the residual attention learning mechanism brings a higher computational complexity, increasing the
execution time by 83.03%. Additionally, the fine-scale learning with a 3 × 3 convolution kernel offers
more improvements for both tasks than the coarse-scale learning with a 5 × 5 convolution kernel when
the residual attention learning mechanism is employed. Moreover, as expected, the incorporation of
all three components results in the highest F1-scores for both tasks. Although the execution time of the
structure in Row (6) is 136.03% longer than that of the structure in Row (1), the performance of the
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two tasks is improved obviously. The analysis of Table 6 indicates that all of the three components are
necessary, with obvious improvements of performance and acceptable increases of execution time.

Table 6. Ablation study on MRA-Net.

Multiscale Learning Residual Attention
learning Mechanism

F1-Score of
Activity Recognition

F1-Score of
Person Identification

Execution
Time

Coarse Scale Fine Scale

(1)
√

× × 92.96% 89.75% 2.31 s
(2) ×

√
× 94.52% 90.14% −13.96%

(3)
√ √

× 96.83% 91.30% +89.28%
(4)

√
×

√
97.71% 93.89% +83.03%

(5) ×
√ √

98.18% 94.06% +75.41%
(6)

√ √ √
98.29% 95.87% +136.03%

‘Execution time’ refers to the duration of the model to be trained once by all of the data in the
dataset. We treat the execution time of the structure in Row (1) as a baseline time, and the execution
time of the other structures is represented as an increment of the baseline time. For example,
−13.96% denotes the execution time of the structure in Row (2) is 13.96% shorter than the baseline.

7. Conclusions

In this paper, a novel end-to-end neural network MRA-Net for joint activity classification and
person identification with radar MD signatures was proposed. We explored the correlation between
activity classification and person identification, and take advantage of the MTL mechanism to share
computations between the two tasks. Multiscale learning and the residual attention mechanism were
adopted in MRA-Net to learn more fully from the input MD signatures. Furthermore, instead of the
conventional greedy search algorithm, we proposed an FLWL mechanism, which is also suitable for
other multitask systems. We constructed a new radar MD dataset, with dual activity and identity
labels for each piece of data, to optimize the proposed model.

The experiments showed that the proposed MRA-Net for joint learning achieved good
performance with F1-scores of 98.29% for activity recognition and 95.87% for person identification.
It outperforms not only MRA-Net for single-task learning but also some state-of-the-art radar-based
activity recognition and person identification methods. In addition, the proposed FLWL mechanism
further improves the performance of MRA-Net. The ablation studies indicated the efficacy of the
components in the feature extractor of MRA-Net. In future work, we intend to further investigate the
proposed model and design more reasonable multitask architectures for joint radar-based activity
recognition and person identification. Additionally, more radar applications for smart sensing in IoT
will be explored.
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The following abbreviations are used in this manuscript:

IoT Internet of Things
MRA-Net Multiscale Residual Attention Network
FLWL Fine-grained Loss Weight Learning
MD micro-Doppler
CNN Convolutional Neural Networks
MTL Multitask Learning
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Fully Connected FC
UWB Ultra-wideband
PRF Pulse Repetition Frequency
CPI Coherent Processing Interval
TN True Negatives
FP False Positives
FN False Negatives
TP True Positives
Adam Adaptive Moment Estimation
RCS Radar Cross-Section
DCNN Deep Convolution Neural Network
LSTM Stacked Long Short Term Memory
CAE Convolutional Autoencoder
GWN Gaussian White Noise
SNR Signal Noise Ratio
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