
remote sensing  

Article

The Seamless Solar Radiation (SESORA) Forecast for
Solar Surface Irradiance—Method and Validation

Isabel Urbich 1,* ID , Jörg Bendix 2 ID and Richard Müller 1 ID

1 Department for Research and Development, Deutscher Wetterdienst, Frankfurter Straße 135,
63067 Offenbach, Germany; richard.mueller@dwd.de

2 Faculty of Geography, Philipps-Universität Marburg, Deutschhausstraße 12, 35032 Marburg, Germany;
bendix@staff.uni-marburg.de

* Correspondence: isabel.urbich@dwd.de; Tel.: +49-(0)69-8062-2475

Received: 11 September 2019; Accepted: 29 October 2019; Published: 2 November 2019
����������
�������

Abstract: Due to the integration of fluctuating weather-dependent energy sources into the grid,
the importance of weather and power forecasts grows constantly. This paper describes the
implementation of a short-term forecast of solar surface irradiance named SESORA (seamless solar
radiation). It is based on the the optical flow of effective cloud albedo and available for Germany
and parts of Europe. After the clouds are shifted by applying cloud motion vectors, solar radiation is
calculated with SPECMAGIC NOW (Spectrally Resolved Mesoscale Atmospheric Global Irradiance
Code), which computes the global irradiation spectrally resolved from satellite imagery. Due to the
high spatial and temporal resolution of satellite measurements, solar radiation can be forecasted
from 15 min up to 4 h or more with a spatial resolution of 0.05◦. An extensive validation of this
short-term forecast is presented in this study containing two different validations based on either
area or stations. The results are very promising as the mean RMSE (Root Mean Square Error) of this
study equals 59 W/m2 (absolute bias = 42 W/m2) after 15 min, reaches its maximum of 142 W/m2

(absolute bias = 97 W/m2) after 165 min, and slowly decreases after that due to the setting of the sun.
After a brief description of the method itself and the method of the validation the results will be
presented and discussed.

Keywords: solar surface irradiance; specmagic; optical flow; renewable energies; pyranometer;
nowcasting

1. Introduction

Over recent decades the overall need for an accurate spatiotemporal nowcasting of weather has
increased due to the rising importance of renewable energies and the fluctuating energy supply due to
the short-term variation in the governing atmospheric elements (e.g., clouds and solar radiation) [1–3].
Particularly if renewable energies are integrated into the grid it is very important to correctly forecast
the weather, as well as power needs, to prevent grid instabilities. Instabilities may occur as solar energy
and wind energy have a major impact on the load flows and for this reason, forecasts have to become
more precise, especially in the short-term range of 0–4 h [4–7]. A merge between the numerical weather
prediction (NWP) model and nowcasting will deliver a seamless product of the highest quality at any
time. The main cause for instabilities in Germany, for instance, is the inhomogeneous distribution of
wind turbines and photovoltaic systems, which often leads to capacity overloads. As a consequence,
a forecast for solar irradiation as the basis of solar energy based on observations, also called nowcasting,
will be developed in this work. As has been shown before, nowcasting with satellite data delivers
better results for the first few hours compared to numerical weather prediction (NWP) models, due to
its higher temporal and spatial resolution [8–10]. Moreover, NWP model runs usually need 3–6 h
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of computation time, depending on the model, as a consequence of the data assimilation. Satellite
measurements and derived nowcasting products, on the other hand, are available in near real time
with a spatial resolution of 0.05◦.

A common and frequently used approach to forecast solar surface irradiation is a neural
network [1,11]. However, it has not yet been shown that neural networks have a higher forecast quality
than cloud motion vectors or optical flow methods [12]. Another successful method is the use of a
semi-Lagrangian scheme to calculate the advection of a flow [13–15]. In contrast to a constant vector,
as used in optical flow methods, the vectors for Lagrangian trajectories are iteratively determined
for each time step to allow rotation of a flow [16]. Nevertheless, the differences between constant
vectors and Lagrangian trajectories only stand out when there is rotation. Furthermore, especially at
the beginning, differences are small and grow with increasing forecast time or distance [16]. Since we
foresee a merge with an NWP model in our algorithm after about 4 h, differences will most likely stay
small. Moreover, additional features, like the use of a history of satellite images instead of only two
frames, or the enabling of curved trajectories where the past movement of a pixel will be taken into
consideration, will be included in the algorithm of the SESORA forecast in the near future. Another
great advantage of the optical flow method is that the algorithm of TV-L1 (Method based on total
variation in the regularization term and the L1-norm in the data fidelity term) is open source and a large
community is constantly working on improving this and other methods by OpenCV (Open Source
Computer Vision) [17]. There are many successful solar radiation forecasts that have been published
in recent years that use cloud tracking methods with either geostationary satellites [3,18–20], total sky
imagery [21], or ground sensors [22]. One method of cloud tracking is to derive cloud motion vectors
(CMV) from satellite imagery. The general use of cloud motion vectors for nowcasting is widespread
and many approaches have been proposed so far. Their application is not limited to forecasts in the
scope of energy meteorology. In Guillot et al. [23] cloud motion vectors were derived from satellite
imagery and utilized to forecast cloud displacement over complex terrain. Velden et al. [24] used
atmospheric motion vectors (AMV) to better forecast the track of tropical cyclones. These vectors
are derived from the infrared channel of MSG (Meteosat Second Generation) and since they do not
only display the motion of the top of clouds they are called AMVs. In the field of solar radiation
forecasts the use of cloud motion vectors is very common [25–27]. Comparable studies from Gallucci
et al. [28] or Sirch et al. [29] used cloud motion vectors from MSG/SEVIRI (Spinning Enhanced Visible
and Infrared Imager) to forecast solar surface radiation for up to 2 h. Due to different error measures
and different study areas, a direct comparison of the quality reported in both studies is not possible.
However, despite these small differences in validation method, the results are comparable and reported
uncertainties are in a similar order. Gallucci et al. presented an RMSE (Root Mean Square Error) of
147 W/m2 over Italy after 2 h of forecasting and Sirch et al. have found a correlation of 0.7 between
the forecast and the observation after 2 h over Europe. Both studies reported higher errors due to
convective clouds, which is a common problem in the scope of motion vectors since the method is not
able to consider the formation and dissipation of clouds [12,28].

The here presented solar radiation nowcasting is based on the optical flow of effective cloud
albedo (CAL) [12]. CAL can be retrieved from the reflectivity measured in the visible channel of
MSG and is therefore available every 15 min [30]. The biggest advantage of using CAL for the
optical flow estimation is that CAL has a direct connection to the cloud transmission and thus to
the cloud effect on the solar surface irradiance. Apart from the effective cloud albedo, none of the
other input parameters are forecasted. The reason for this is that SPECMAGIC NOW (Spectrally
Resolved Mesoscale Atmospheric Global Irradiance Code) uses the same clear sky input data as in the
Heliosat method used in SARAH-2 (Surcae Solar Radiation Data Set - Heliosat). Forecasting only CAL
therefore enables a clear separation of the errors induced by the CAL nowcasting since it represents
the dominant error source for short-term fluctuations of solar irradiance in Central Europe. A list of
further input parameters can be found below. For further information about the retrieval of CAL and
the below listed input data the reader may refer to Müller et al. or Trentmann [30–34].
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1. Aerosol is based on the Monitoring Atmospheric Composition and Climate Project (MACC) [35].
2. H2O is taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) [36].
3. Surface albedo is based on 20 different land-use types originating from the NASA CERES/SARB

(Clouds and the Earth’s Radiant Energy System / Surface Atmospheric Radiation Budget) Surface
Properties Project [37,38].

The optical flow requires two subsequent satellite images as input for the calculation of cloud
motion vectors. The resulting motion vectors are then applied to the latter of these two images to
extrapolate the observed clouds into the future. Additional information about the optical flow method
and the effective cloud albedo nowcasting can be found in Section 2.2. After the propagation of the
cloud is determined, solar surface radiation is calculated with SPECMAGIC NOW, which computes
the global radiation, spectrally resolved from satellite images in the visible channel [39]. A detailed
description of the algorithm will follow in Section 2.3.

The results of the CAL nowcasting were very promising, as the error measures of the forecast
clearly showed [12]. The results were verified with satellite data from MSG for the area of Europe and
the same error measures as in this publication were used (Section 2.4). A validation of the SESORA
forecast is nevertheless necessary because of the integration of SPECMAGIC NOW. New features like
the variability of the solar zenith angle and an all sky consideration may lead to other errors than in
Urbich et al. [12]. Moreover, the errors of solar surface irradiance are very important for the application
in the scope of PV (Photovoltaic) systems because the errors of solar irradiance and photovoltaic power
have an almost linear relation [40,41]. This can be derived from the performance curve of photovoltaic
systems considering that the errors grow proportional to their associated values. This linear relation is
a huge advantage concerning error growth over the cubical relation between wind and power for wind
turbines [42,43]. This information could significantly improve proper management of the grid loads.

2. Materials and Methods

The following section describes the validation data that were provided by the Satellite Application
Facility on Climate Monitoring (CM SAF), the Baseline Solar Radiation Network (BSRN), and the
German Weather Service. These data are now being used for the validation of the SESORA forecast.
The methods of the optical flow and SPECMAGIC NOW will be presented and explained. The CAL
data used for the here presented solar radiation nowcasting is one of the products of SPECMAGIC
NOW and for further information the reader may refer to Urbich et al. [12]. Moreover, the utilized
error measures of Sections 3.1 and 3.2 will be listed and described at the end of this section.

2.1. Validation Data

2.1.1. SARAH-2

For the area based validation of our SESORA forecast we used SARAH-2 data from the CM SAF.
The solar surface irradiance data from the SARAH-2 data set is the latest CM SAF climate data record
of surface radiation based on the geostationary Meteosat satellite series [44]. In addition to solar
surface radiation, the SARAH-2 dataset offers other global and direct radiation parameters but without
a forecast. SARAH-2 covers the area of −65◦ to +65◦ in latitude and longitude with a spatial resolution
of 0.05◦ [44]. The quality of the SARAH-2 data set in reference to BSRN data is well documented in
Pfeifroth et al. [45]. A positive bias of 2 W/m2 has been found and the absolute bias equals 5 W/m2

for the monthly mean SARAH-2 data.

2.1.2. Ground Stations

We used ground stations for the validation of the SESORA forecast. To ensure a high coverage
of ground stations for our validation we wanted to use the pyranometers from the BSRN as well
as the pyranometer set from the German Weather Service. The data from the BSRN are known for
their high quality standards as the data is quality controlled twice, at the stations and at the World
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Radiation Monitoring Center (WRMC) [46]. The high quality is reflected in the low standard deviation
of 5 W/m2 for the global irradiance. The BSRN stations used and further information are depicted
in Table A1.

Additionally, we used a set of pyranometers from the German Weather Service. The data set
consists of 34 stations and delivers global radiation at a temporal resolution of 1 min. These station are
located in Germany only. Their standard deviation equals 3% of the respective total daily radiation.
Corresponding information about these stations is listed in Table A2.

2.2. Optical Flow Method

In general, the optical flow describes the motion pattern between two sequential image frames of
the same area. The result is a vector field where each vector is showing the movement of pixels from
the first frame to the second [47].

We generally use the optical flow of Horn and Schunck [48] in a modification by Zach et al. [12,49].
The following constraint equation is the basis of all optical flow methods:

∇I·u +
∂

∂t
I = 0. (1)

This equation describes a linear condition of the optical flow where I(x(t), y(t), t)) is the constant
intensity between the two consecutive frames and u describes the two-dimensional velocity (ẋ, ẏ).
A constant intensity is one of two major assumptions for the optical flow estimation. The second one is
that neighboring pixels have to have similar motion [47]. The violation of these assumptions can lead
to inconsistency and high, locally limited errors. An example for such a violation is the rapid formation
of convective clouds between two consecutive frames. Thus, the first criterion, the intensity criterion,
cannot be met because the reflectivity of the cloud top and its surrounding area is changing. The same
effect can be seen when clouds or fog are dissolving as the value of CAL is changing in the opposite
direction. An example case and further explanation about this topic can be found in Urbich et al. [12].

A scheme of the application of the optical flow is shown in Figure 1. The first step of the algorithm
takes two subsequent satellite images of the effective cloud albedo as input data for the optical flow
method. Here, we use the TV-L1 method from the open source library OpenCV [17], as it is superior to
the well known Farnebäck optical flow method [12,50]. The algorithm computes the estimated flow
between the two frames, which is induced by the movement of clouds. The result is a vector field with
a cloud motion vector for each pixel in the area. In the second step, the derived vectors are applied to
the latter of the two observed CAL images to extrapolate the cloud movement into the future. In doing
so, every pixel will be shifted, maintaining its original intensity. Thus their CAL value stays the same
while their position can change. The step of applying the motion vectors to the satellite image can be
repeated as often as required. In that case the vectors are applied to the latest forecast available in
order to create a new one.

2.3. SPECMAGIC NOW

The SPECMAGIC NOW method is used in order to estimate the solar surface irradiance (SIS).
In a first step the effective cloud albedo is being retrieved. It is derived from the geostationary satellite
MSG by the reflectivity in the visible channel [30]. The visibility channel at 600 nm from SEVIRI on
board of MSG is used for the calculation of CAL. The location of MSG is over the Equator at 0◦ latitude
and longitude with a field of view from 80◦ S up to 80◦ N and from 80◦ E to 80◦ W. CAL is defined as
the normalized difference between the all sky and clear sky reflectance in the 600 nm-visible channel
of the satellite. The effective cloud albedo is equal to one minus the cloud transmission for values of
CAL between 0 and 0.8 [12]. Above 0.8, this relation will be modified to consider the saturation and
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absorption effects in optically thick clouds. The effective cloud albedo is derived from the normalized
pixel reflectance, ρ, the clear sky reflectance, ρcs, and the maximal cloud reflectance, ρmax as follows:

CAL =
ρ− ρcs

ρmax − ρcs
. (2)

Here, ρ is the observed reflectance for each pixel and time, and ρcs is the clear sky reflectance, which is
originally calculated according to an approach of Amilo et al. [51]. However, in this study, the original
Heliosat approach is not used for the estimation of ρcs, instead it is derived from a database for spectral
reflectance, as described in Müller et al. [39]. The maximal reflectance, max, is determined by the mean
of the reflectance, ρ above the 95th percentile and below the 99th percentile in the target region.

Figure 1. Scheme of the optical flow method TV-L1 (Method based on total variation in the
regularization term and the L1-norm in the data fidelity term). Two subsequent images of the effective
cloud albedo represent the input of the algorithm. The calculated motion vectors are then applied to
the latter of the two images to extrapolate cloud albedo (CAL) into the future. For the sake of clarity
the motion vectors are displayed with the help of the HSV (hue saturation value) color spectrum.

The effective cloud albedo is derived from satellite observations and is therefore a satellite-derived
variable. This observable defines the cloud transmittance. For clouds with CAL in the range from 0 to
0.8, the following relation between CAL and the solar surface irradiance (SIS) is used:

SIS = (1−CAL) · SISclear. (3)

Here, SISclear is the clear sky irradiance at surface, which is calculated by a hybrid look-up table (LUT)
approach. It is based on radiative transfer modeling and is described in detail in Müller et al. [39].
Equation (3) is used to estimate the satellite based solar surface irradiance for the observed CAL images
as well as for the CAL nowcasting. For the CAL nowcasting the optical flow method described in
Section 2.2 is applied to the observed CAL images. The optical flow method could also be applied to
raw images followed by the estimation of CAL. However, this would lead to additional uncertainties
induced by the surface reflectance. These effects are diminished by the application of the optical flow
to the CAL images directly.

2.4. Error Measures

The solar surface irradiance nowcasting was verified in two different manners. The first part was
done with SARAH-2 data, which enables a validation of every pixel of the whole given area. For this
purpose we calculated the absolute difference between the forecast and the SARAH-2 data field for
each pixel. On the basis of that we calculated three different error measures, which are used in the
scope of energy meteorology as standard. The equations are as follows:
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bias =
1
n

n

∑
i=1

(xforecast − xobservation) (4)

absolute bias =
1
n

n

∑
i=1
|xforecast − xobservation| (5)

RMSE =

√
1
n

n

∑
i=1

(xforecast − xobservation)
2. (6)

Thus, we used the bias, absolute bias, and root mean square error for our validation. These errors
were calculated for every examined case of this study. A list of all examined cases and their absolute
bias can be found in Table A3. The table with the RMSE values can be found in the Appendix A
(Table A4). Further, we plotted the absolute difference, which is depicted in Section 3.1. Moreover, on
the basis of the previously mentioned error measures we calculated relative errors as follows:

relative bias =
1
n

n

∑
i=1

(
xforecast − xobservation

xobservation

)
(7)

relative absolute bias =
1
n

n

∑
i=1

∣∣∣∣ xforecast − xobservation
xobservation

∣∣∣∣ (8)

relative RMSE =

√√√√ 1
n

n

∑
i=1

(
xforecst − xobservation

xobservation

)2
. (9)

Here, x represents the mean of x.
The second part of the validation was performed with ground station data from BSRN and

the German Weather Service (DWD). In that case we calculated the absolute difference between the
observed radiation of the ground stations and the forecasted radiation of the nearest pixel to each
corresponding station. Overall this results in 38 used pixels. The absolute bias and RMSE were
calculated in the same way as above, however, on the basis of 38 single pixels. The results were plotted
against the forecast time, together with the results of the nowcasting and the measurements of the
stations (Section 3.2).

Based on the effective cloud albedo we determined a cloud mask where CAL = 0.025 marks
the threshold between cloud and clear sky pixels. This value is similar to the usually used one in
the literature, which equals 0.027 [52]. We found that for CAL = 0.025, the results were the most
promising in reference to a significant distinction between cloud and clear sky pixels. Furthermore, the
probability of detection was higher and the false alarm rate was lower with CAL = 0.025. This cloud
mask was then used for verification with the SARAH-2 data to find the cause for high errors.

On the basis of this cloud mask we calculated the elements of the contingency table for the
forecast and the observation, which are hit, missed, false alarm, and correct negative (Table 1). These
elements were furthermore displayed in a map, which can be seen in Section 3.1. The elements were
also used to calculate the probability of detection (POD) (Equation (10)) and the false alarm rate (FAR)
(Equation (11)) as follows:

POD =
a

a + c
(10)

FAR =
b

a + b
. (11)
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Table 1. Contingency table with the elemtents hit, missed, false alarm (fa) and correct negative (cn).

Observation

Cloud No Cloud

Forecast
Cloud a = hit b = fa

No Cloud c = miss d = cn

3. Results

Seventeen different cases were examined in this study based on different weather situations
for the months of August until October, in 2017. The same cases have been already examined in
Urbich et al. [12] concerning the effective cloud albedo. A list of all cases and their error measures can
be found in Tables A3 and A4. More cases in different seasons or years may not deliver additional
information, as clouds play a dominant role in solar radiation forecasts. Therefore we assume that the
diversity of weather situations in this study should cover all relevant cloud types for a solar radiation
forecast. In the following section two particular cases out of 17 in total will be discussed for the sake of
clarity. The following cases show different weather situations and should be seen as representatives
for the remaining cases.

3.1. SARAH-2

In Figure 2 the solar surface radiation is depicted for two different cases. The first case (Figure 2a,b)
is 29 August 2017. The general weather situation was a high pressure system over central Europe.
The second case (Figure 2c,d) is 30 September 2017 and in that case there was a low pressure system
over western Europe and a front was passing Germany during the day. These cases were selected due
to their different occurrence of clouds and solar radiation. A 255 min (4 h 15 min) forecast is shown in
Figure 2b,d with the corresponding estimated SARAH-2 data set in Figure 2a,c.

The forecasted radiation for the first case shows promising results compared to the SARAH-2 data.
All in all, general structures are well met, as well as the height of the values themselves. The cloud
structure over the North Sea is also shown by the nowcasting, however with less detail and a light
displacement. This nowcasting consists of the optical flow of effective cloud albedo and the calculation
of the radiation with SPECMAGIC NOW. Therefore, errors can be caused by two separate sources.
That the cloud structure shows less details is probably caused by the effective cloud albedo nowcasting.
Further, the broken clouds over Spain are displaced in the nowcasting. In particular, smaller clouds are
more affected by the algorithm, as the fraction of cloud edges in relation to the inner part of the cloud
is larger. Cloud borders can cause errors due to wrong advection and cloud dissipation or formation.
Since the nowcasting works without any kind of boundary conditions or data beyond the depicted
area there will always be some part of the plot with no data. This part is displayed in black. It grows
with increasing forecast time because the edge is moving inwards. However, this is not a problem for
the application of the SESORA forecast since the distribution (DSO) and transmission system operators
(TSO) who will use the forecast only need the area of Germany and the surrounding regions.
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(a) SIS by SARAH-2 for 29
August 2017.

(b) SIS by SESORA forecast for 29
August 2017.

(c) SIS by SARAH-2 for 30
September 2017.

(d) SIS by SESORA forecast for 30
September 2017.

Figure 2. Plot of solar surface irradiation for 29 August 2017 (upper) and 30 September 2017 (lower).
(a,c) show the estimated SIS (Surface Incoming Shortwave Radiation) by SARAH-2 (Surface Solar
Radiation Data Set - Heliosat) and (b,d) show the forecasted SIS by SESORA (Seamless Solar Radiation)
after 255 min of forecast time.

Similar results can be observed in the second case. Except for smaller details, the position of
clouds and the height of the radiation values are comparable. The structure of the front in the SARAH-2
data consists of more small clouds, which may have blurred out due to the long forecast time and
the southern end of the front advecting too slowly in the nowcasting. Moreover, there is a cloud hole
over southern Germany with higher radiation values than in the nowcasting, which is a result of an
optically too thick cloud calculated by SPECMAGIC NOW. In general, one can say that cloud borders
pose the biggest problem to the radiation forecast, as has been discussed before. Thus, the more small
clouds, the higher the incidence of problematic edge regions, and the higher the errors will be.

To prove and visualize the previously seen differences, the absolute bias was calculated according
to Equation (5), between the solar surface radiation nowcasting and the SARAH-2 data set. The results
are displayed in Figure 3. The regions with higher errors correspond to the above mentioned regions.
The cause of these errors are missing cloud structures, for instance over Austria, as well as incorrectly
forecasted cloud edges, as can be seen over the North Sea and Spain (Figure 3a). These errors grow
as usual with increasing forecast time. The absolute bias for 255 min equals 92 W/m2 and the RMSE
equals 143 W/m2. As this is a nowcasting of solar surface irradiance, the values, and also the errors,
decrease when the sun sets. This effect cannot be seen at this stage of the forecast, however it can be
observed in Figure 4.



Remote Sens. 2019, 11, 2576 9 of 23

(a) Validation for 29 August 2017. (b) Validation for 30 September 2017.

Figure 3. Validation of the solar surface irradiation nowcasting with SARAH-2 data for 29 August 2017
(a) and 30 September 2017 (b). Depicted is the absolute difference between the SIS nowcasting and the
SARAH-2 data set for a 255 min forecast.

(a) Mean of absolute errors of SIS. (b) Mean of relative errors of SIS.

(c) Mean of absolute errors of CAL.

Figure 4. Plots of the mean error measures of all cases against forecast time for absolute (a) and relative
errors (b) of SIS as well as the absolute errors of CAL (c). The validation of the solar surface irradiance
was performed with SARAH-2 data by the CM SAF (Climate Monitoring Satellite Application Facility)
and the validation of the effective cloud albedo was done with the effective cloud albedo itself.
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In the case of 30 September 2017 the validation appears different (Figure 3b). One of the issues
in the nowcasting was the broken prefrontal clouds. Due to a generally less detailed effective cloud
albedo, nowcasting the structure of these clouds looks different. This led to a slightly incorrect
nowcasting of solar radiation between the clouds. Another problem is the back of the front. Smaller
cloud structures are missing as well. What can be observed in Figure 3b are many smaller regions of
errors over Germany, which are not as big as the error behind the front over France. An absolute bias
of 79 W/m2 and a RMSE of 112 W/m2 have been found for this case.

In Figure 4 the mean of all error measures for all cases is plotted against forecast time. In Figure 4a
there are the absolute measures and in Figure 4b there are the relative error measures. A list of all
cases examined can be found in Tables A3 and A4. All forecasts were initiated at 09:15 UTC and the
maximum forecast time was 480 min. Depicted are the bias (gray), the absolute bias (red), and the root
mean square error (blue), respectively. What can be observed in Figure 4a is that the absolute bias and
RMSE grow with increasing forecast time until approximately 180 min. After that, both error measures
decrease again due to sunset. The behavior of the bias looks different because it does not represent
an absolute error but rather a tendency. Therefore, one can say that for all times the nowcasting
underrates solar irradiation, thus the estimated solar radiation by SARAH-2 delivers higher SIS values
(Equation (4)). This is a result of SPECMAGIC NOW, which currently calculates the optical thickness
of clouds higher than it should, due to ρcs being too low (Equation (2)). In fact, this kind of error can be
fixed quite quickly, and an update of SPECMAGIC NOW is already planned, where ρcs will be adapted
to reduce the bias. The relative errors show, as expected, a different behavior. As the errors are normed
by the mean of the observed SIS values, the sunset does not play a role in this case (Equations (7)–(9)).
The relative absolute bias and the relative RMSE rise with increasing forecast time. The slope of these
two curves decreases with increasing forecast time, which results in a slower growth of the relative
errors. The maximum of the RMSE is 0.41 and the maximum value of the relative absolute bias is 0.28.
For the sake of a forecast validation without the influence of the solar altitude the mean of all error
measures of the effective cloud albedo is depicted in Figure 4c. The absolute bias and RMSE show the
same behavior as the absolute bias and RMSE of the relative errors of SIS. The bias is negative for the
first 300 min and turns positive afterwards.

Another method of verifying the quality of the SESORA forecast is a linear regression for all
examined cases. Therefore the forecasted values of solar radiation were plotted against the observed
radiation with the help of the SARAH-2 data set for each pixel in every frame and for each case
dependent upon the forecast time. The results are shown in Figure 5. Moreover, a standardized
regression was done where the solar zenith angle of the forecasted and observed solar radiation was
corrected. Thus, sunset is less important for the quality of the forecast. As expected the distribution
in Figure 5a–c gets broader with increasing forecast time and the values of SIS get smaller in the
observation as well as in the nowcasting because of the sunset. Most of the data points are lying on
the diagonal whereby the distribution is split into a maximum for smaller and a maximum for higher
values of solar irradiance. This behavior remains unchanged throughout the forecast. The slope is
smaller than 1 for all forecast times, which underlines the negative bias found in Figure 4. As can
be seen in Figure 5 for the forecast times 135 min and 255 min, the observed values are higher than
the forecasted SIS values especially for small values. As a comparison, the bias for all forecast times
until 400 min was ≈ −25 W/m2. Looking at the spread we can see that there are more small values of
solar radiation, and therefore the linear regression does not begin at the origin as it is shifted upwards.
That is also the reason for general slope values below 1 for all forecast times. The quality of the linear
regression is represented by the R2-value, which is displayed in the lower right corner of each linear
regression plot. After 15 min the R2 remains quite high with a value of 0.94. After 135 min we found a
R2 of 0.72. A forecast time of 2 h is a typical length for nowcasting, thus it is a common forecast time
for comparisons with other publications. Sirch et al. found a R2-value of 0.71 for a DNI (Direct Normal
Irradiance) nowcasting after 120 min in March and a value of 0.64 in July [29]. It can be observed that
the forecast quality improves when the angle of the sun is being corrected. This underlines the fact
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that the bias of ≈ −25 W/m2 found in the validation with the SARAH-2 data arises from a systematic
error in SPECMAGIC NOW. The p-value for all forecast times was smaller than 1· 10−300, which shows
the high significance of the distribution. It also proves that the distribution of the data is non-normal
thus we can reject the null hypothesis.

It is essential to distinguish between different error sources in a nowcasting, for the improvement
of the algorithm, however, the more steps of computation are involved, the more complications may
be found. For the SESORA forecast we found a systematic error in the calculation of the solar surface
irradiance, which can be clearly seen in the constant bias in Figure 4. This bias can be corrected
by adjustments in SPECMAGIC NOW and it is not related to TV-L1. For the remaining part of our
algorithm, which is the nowcasting of the effective cloud albedo, we divided the errors into cloudy
pixels and clear sky pixels (Section 2.4). The idea is to detect errors resulting from convection or
advection separately. The results are shown in Figure 6.

(a) Linear regression for
15 min.

(b) Linear regression for
135 min.

(c) Linear regression for
255 min.

(d) Standardized linear
regression for 15 min.

(e) Standardized linear
regression for 135 min.

(f) Standardized linear
regression for 255 min.

Figure 5. Linear regression of the forecasted and observed absolute solar surface irradiation and
standardized solar surface irradiation. Depicted are the results for 15 min (a,d), 135 min (b,e), and
255 min (c,f) of forecast time respectively. R2 is printed in the lower right corner of every figure.

In Figure 6c,f, the errors that are marked miss and false alarm (fa) mostly arise from wrong
advection of the optical flow algorithm. When the TV-L1 method calculates a cloud motion too slowly
or too quickly, this leads to errors at the edge of the clear sky area. In the cloudy area this error can
occur as well, however we cannot find them with our analysis. If our algorithm calculates the cloud
motion too slowly we will get a miss and if the motion is calculated too quickly we will get a false
alarm. However, in general we detect more misses than false alarms. Moreover, the errors rise with
increasing forecast time as can be seen in Figure 6f. The magnitude of errors cannot be extracted from
this graphic, although when we take Figure 6b into account we can see that the errors due to wrong
advection are rather small. The errors in Figure 6b,e are small in general. Thus, the errors with the
highest magnitude are caused by clouds. These kind of errors can be detected in Figure 6a,d and
they all are caused by a change of intensity of the effective cloud albedo over time. As was already
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mentioned in Urbich et al. [12], the change of the pixel intensity over time is a major issue for the
optical flow. These errors have the highest magnitude and appear more frequently than errors due to
wrong advection. As usual, all errors grow with increasing forecast time (Figure 6d–f).

(a) Absolute difference of
cloud area for 15 min.

(b) Absolute difference of
clear sky area for 15 min.

(c) Elements of
contingency table
for 15 min.

(d) Absolute difference of
cloud area for 135 min.

(e) Absolute difference of
clear sky area for 135 min.

(f) Elements of
contingency table
for 135 min.

Figure 6. Results of the validation for 30 September 2017 with SARAH-2 and an additional cloud mask.
Depicted are the absolute difference between the nowcasting and the SARAH-2 data (a,b,d,e), as well
as a map of the elements of the contingency table (c,f). These results are shown for 15 (upper) and
135 min (lower), respectively.

3.2. Ground Stations

In Figure 7a the nowcasting for 255 min of the solar surface irradiance is displayed for 29 August
2017. Overall, the measurements of the ground stations show agreement with the nowcasting in this
case. For this type of validation we must keep in mind that the geometry of these two measurements
is completely different. MSG is located at 0◦ longitude and latitude, and thus its viewing angle to
the surface in the area of Europe is slant. In contrast, pyranometers are standing at the surface and
only measure the radiation above them. Furthermore, we are comparing point observations with
area integrals of approximately 16 km2 (in the area of Germany). This is especially difficult if there
are sub-pixel scattered clouds. These effects add uncertainties that are not caused by shortcomings
of the nowcasting method. So, in some cases the value of the ground station does not seem to fit
to the forecasted radiation but this could be either an artifact of the geometry of the satellite or the
comparison of point observations with areas.

Figure 7b shows the same content as in Figure 7a for 30 September 2017. Again, the inward
moving edge on the left side of the figure can be observed. The agreement of the stations and the
nowcasting is not as good as in the Figure 7a of 29 August 2017. The station of Palaiseau (marked
by a red circle) shows higher values than the nowcasting. Even in the surrounding area such high
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values between 600 and 650 W/m2 cannot be found. The same can be observed for the station of
Arkona (marked by a red circle), which also measured values between 400 and 450 W/m2 however
the nowcasting shows values below 350 W/m2.

(a) Validation for 29 August 2017. (b) Validation for 30 September 2017.

Figure 7. Validation of the solar surface irradiance nowcasting with ground stations by BSRN
(Baseline Surface Radiation Network) and DWD (Deutscher Wetterdienst) for 29 August 2017 (a)
and 30 September 2017 (b). Depicted is the nowcasting of SIS as contour plot and the measured value
of the ground stations is given in the black circles. The colorbar matches both figures. The forecast time
equals 255 min. The red circles in (b) mark the stations Arkona and Palaiseau.

The error measures of the validation with ground stations are depicted in Figure 8. Displayed is
the mean of all 17 cases against forecast time for the area of Europe. The corresponding solar surface
irradiance value of the nowcasting (red), as well as the one of the ground stations (blue) is plotted
against forecast time for overall 480 min. We only selected the satellite pixels of the nowcasting that
corresponded to a pixel of a ground station. Although it is a common approach to take the mean
of a 3× 3 pixel area around the pixel of the ground station, we decided to take only one pixel to
achieve a realistic error measure for the purpose of PV systems. This nowcasting aims to warn PV
system operators of grid instability and a realistic measure of the uncertainty of our forecast is essential.
With the absolute difference of the nowcasting and the observation the root mean square error (black)
and absolute bias (gray) were calculated (Figure 8a). We also calculated the respective relative errors
by normalizing the absolute errors with the mean of the observed solar radiation at the surface that
was measured by the pyranometers (Figure 8b).

The solar radiation of the nowcasting shows smaller values than the ground stations until
approximately 250 min. Nevertheless, both the nowcasting and the observation show a similar
behavior and a decrease of solar irradiance with increasing forecast time. The decrease of SIS can be
observed due to the sunset and due to the fact that we work with products from the visible channel.
The curves do not significantly differ from each other, which also results in small errors for the whole
nowcasting. Furthermore the RMSE does not exceed 200 W/m2. A slight maximum can be observed
between 100 min and 200 min forecast time. The behavior of the error curves differs slightly from the
RMSE and absolute bias in Figure 4 where the maximum is more distinct. Furthermore, the curve in
Figure 4 shows less fluctuations but the height of the errors is on a comparable level. Nevertheless, the
visual validation that can be seen in Figure 7 shows that the solar irradiation nowcasting matches most
of the pyranometers. The relative errors in Figure 8b show the same behavior as the relative errors
calculated for the validation with the SARAH-2 data in Figure 4. Until approximately 400 min, both the
relative absolute bias and the relative RMSE increase with increasing forecast time. The relative RMSE
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reaches higher values after 400 min of forecast time because the majority of the stations measured
0 W/m2, and certain stations did not measure any data at all. As a consequence, the stations that
did measure solar radiation at the surface have a higher impact on the result. This led to a higher
difference between the nowcasting and the observation, which, after Equation (9), results in a higher
relative RMSE, or even in values above 1. in addition to the rising errors after 400 min of forecast time,
the height of the relative errors is in the same order as the relative errors from the SARAH-2 validation,
which are displayed in Figure 4.

(a) Mean of absolute errors. (b) Mean of relative errors.

Figure 8. Plots of the mean error measures of all cases against forecast time for absolute (a) and relative
errors (b). The validation of the solar surface irradiance was performed with ground stations by BSRN
and DWD.

4. Discussion

In this work we presented many different validation methods to prove the quality of the SESORA
forecast and to find out more about the errors that occur in our nowcasting.

The use of the visible channel of MSG leads to the issue that we cannot calculate motion vectors
during the night. Since the SESORA forecast calculates the solar surface irradiance we are not interested
in the night itself, however, it would be useful to be able to give a forecast for the early morning hours
when the sun rises. This problem may be solved by a combination of the visible with the infrared
channel. An advantage of the solar zenith angle dependency of SIS is that the SESORA forecast
improves quantitatively when the sun sets because as the values of SIS decrease the errors of the
nowcasting decrease as well. Due to this fact, NWP does not necessarily deliver better results after
4 h, when one looks at the results in the evening hours. Thus, the point of interception gets shifted
back to longer forecast times. For 13 of the 17 cases discussed in this study, a comparison of the
SESORA forecast with different NWP models and persistence has been performed within a master’s
thesis [53]. In this thesis it is shown that the point of intersection between our solar surface irradiance
nowcasting and the IFS model forecast by the ECMWF (European Centre for Medium-Range Weather
Forecasts) is 2:45 h with a deviation of 17 min for the RMSE [36]. However, the intersection point with
the NWP depends largely on the used model. For the ICON model by the German weather service
the intersection point is 04:32 h with a standard deviation of 58 min [53]. The nowcasting performs
significantly better than persistence for all forecast scales, the margin rising with increasing forecast
time. Figure 9 contains the results of the RMSE of the different forecasts averaged over 13 of the
investigated test cases in this study. The relative errors of SIS increase with increasing forecast time,
which is an expected behavior of all forecasts. This is of course important to evaluate the quality of the
forecast however for the end users an absolute error is more useful. The users of the SESORA forecast
are transmission and distribution system operators as well as direct marketers, and they may use it for
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trading and grid security, and in this case absolute errors are useful as they are more direct. All in all,
both errors have advantages and disadvantages for each specific application.
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Figure 9. Plot of the mean of RMSE of SIS for 13 cases against the time of day. The comparison is
shown for IFS (Integrated Forecasting System) by the ECMWF (European Centre for Medium-Range
Weather Forecasts), ICON (ICOsahedral Nonhydrostatic) and ICON-EU (ICON only for Europe) by
the German Weather Service (DWD), SESORA and persistence. The validation was performed with
SARAH-2 data by the CM SAF. For SESORA and persistence the forecast was initiated at 09:15 UTC.
They have a maximum lead time of 8 h. IFS is available every 12 h, ICON/ICON-EU every 3 h. It was
taken from the model run, which would be available in reality, thus initiation time plus the time for the
model run to finish (IFS takes 6 h; ICON/ICON-EU takes 3 h). Image adapted from [53].

In the literature there are many possibilities of validating a solar irradiance nowcasting. Many
approaches for such a nowcasting with the use of cloud motion vectors have been proposed [25–29].
A comparison with other studies is not always simple, as the region or the validation method can
differ. Schroedter-Homscheidt and Gesell for example proposed a nowcasting for DNI over Spain
and validated it by calculating the bias. After approximately 5 h the bias equaled 130 W/m2 [27].
Nonnenmacher and Coimbra as well as Gallucci et al. used the RMSE as their validation method for
the region of San Diego and Italy. After 2 h Nonnenmacher and Coimbra got a RMSE of approximately
145 W/m2 and Gallucci et al. mention a RMSE of 147 W/m2 [26,28]. For the SESORA forecast we
found a RMSE of 136 W/m2 after 135 min over the area of Europe. In this comparison the area and
the season play a major role so the three nowcastings are probably of similar quality. Another way
of validating a nowcasting can be the probability of detection for a cloud mask. In our case we only
distinguished between cloud and clear sky however Sirch et al. proposed a differentiation of upper
and lower clouds [29]. They found a POD of 85–90% in dependency of the cloud type after 2 h over the
area of Spain. The POD of the SESORA forecast after 135 min equals 84%, though our cloud mask is
simply based on a effective cloud albedo threshold. Further, Sirch et al. performed a linear regression
for DNI for the months March and July. R2 equals 0.71 and 0.64 after 2 h while for our study R2 is 0.72
after 135 min for SIS. Again, these comparisons are difficult and can only serve as a point of reference.
All of the above discussed results can be found in Table 2.
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Table 2. List of comparable results (Direct Normal Irradiance (DNI), Global Horizontal Irradiance
(GHI), Surface Incoming Shortwave Radiation (SIS)) with different error measures (Root Mean Square
Error (RMSE), Probability of Detection (POD)) from other publications and this study.

Author Variable Area Measure Lead Time (min) Value

Schroedter-Homscheidt and Gesell [27] DNI Spain Bias 300 130 W/m2

Nonnenmacher and Coimbra [26] GHI San Diego RMSE 120 145 W/m2

Gallucci et al. [28] SIS Italy RMSE 120 147 W/m2

this study SIS Europe RMSE 135 136 W/m2

Sirch et al. [29] DNI Spain POD 120 85–90%
this study SIS Europe POD 135 84%

Sirch et al. [29] DNI Spain R2 120 0.71
this study SIS Europe R2 135 0.72

5. Conclusions and Outlook

In this work we presented a validation of a short-term forecast, also called nowcasting, based on
the optical flow of effective cloud albedo for solar surface irradiance. The basis of our nowcasting
works with the optical flow method TV-L1 by OpenCV. The effective cloud albedo that can be retrieved
by the reflectivity of the visible channel of MSG serves as input for our algorithm. As a result we have
a field of cloud motion vectors that describe the apparent motion between two consecutive satellite
images. These vectors are applied to the latter of the satellite images to create the first forecast step.
The stage of applying the motion vectors can be repeated as often as desired to generate another
forecast step. In that case the vectors are being applied to the latest available forecast step. Finally, by
means of SPECMAGIC NOW the solar surface irradiance is calculated for every CAL forecast step to
create the final SIS nowcasting.

We performed the validation with SARAH-2 data as well as with ground stations from the BSRN
and the DWD. In both cases we calculated three different error measures, namely the bias, absolute
bias, and root mean square error (Section 2.4) These error measures were calculated as absolute and
relative errors respectively. All nowcastings shown in this study had a maximum forecast time of
480 min, which conflicts with the sunset. As a consequence the values of the solar surface irradiance,
their absolute errors decreased with increasing forecast time. The maximum of the absolute bias and
the RMSE can be found approximately after 180 min of forecast time if one considers Figure 4. If we
look at the calculated values, which are available every 30 min due to the validation with the SARAH-2
data set we find the highest errors for 165 min. The absolute bias for 165 min equals 97 W/m2 and the
RMSE equals 142 W/m2 for the same time. Relative errors are shown to grow with increasing forecast
time and the maximum of the relative RMSE equals 0.41 after 480 min. A large issue with relative
errors is high background radiances. As a consequence, resulting errors could be higher than large
relative errors of low background radiances. Thus, even a small relative error could have an impact on
the grid stability in that case where the forecast error affects a large number of photovoltaic systems.
However, the SESORA forecast works best for high pressure system situations when there are only a
few clouds and the solar irradiance is high (Figure 3). Therefore, the risk of providing a bad forecast
for the TSOs and DSOs is rather small. Moreover, the biggest errors are caused by convection but
convective cells are rather local phenomena and it is very unlikely that enough photovoltaic systems
are simultaneously affected by this type of error in Germany, that they would induce grid instability.
Furthermore, after the SPECMAGIC NOW update the constant bias of solar irradiance should be
significantly lower due to corrections in the clear sky calculation. For the upcoming merge with the
NWP, a quality check is planned to determine the intersection point with the nowcasting. Thus, if
the errors of the nowcasting will actually rise too quickly the merge with the NWP will be performed
earlier to prevent large forecast errors and as a consequence of grid instability. Absolute errors of the
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effective cloud albedo rise as well as the relative errors of solar irradiance with increasing forecast
time. The results for the validation with ground stations showed similar results with slightly higher
errors (relative RMSE ≈ 0.6 after 480 min). The linear regression proved the bias of ≈ −25 W/m2

found in the validation with the SARAH-2 data. There is a planned update of SPECMAGIC NOW
that should reduce this bias by adapting the optical thickness of clouds. By reducing the systematic
error of the SESORA forecast the overall results will improve. Errors that occur due to the optical flow
method TV-L1 cannot be corrected as easily. The effect of growing errors with increasing forecast time
is represented by the spread of the data points in the regression. Furthermore, the effect of the sunset
can be corrected by the cosine of the solar zenith angle. This correction also improved the quality of the
forecast as can be seen in the increased R2 value. Overall, the results appear promising and the errors
of the examined cases are small. The largest errors occur at cloud edges or in the case of formation
or dissipation of clouds. Since the algorithm of our nowcasting is built on extrapolation it neglects
convective or dissipative processes.

Future work can implement features that allow curved trajectories for cloud pixels. Moreover
these features could allow the formation and dissipation of clouds by taking into account changing
intensities in the optical flow estimation. For both additions it is necessary that the optical flow method
uses more than two satellite images. Therefore, we will adjust the algorithm such that multiple frames
will serve as import data in the optical flow method to allow a longer history of cloud movements.
Another aim of ours is the use of the NWP for later hours of our nowcasting where a merge between
these two is planned in the range of an intersection point. The transition of the higher forecast quality
from the nowcasting to NWP depends on the weather situation, initiation time and maybe other
parameters. However, in our opinion the point of intersection between the sinking quality of the
nowcasting and the increasing quality of the NWP would probably lie between 3 to 4 h. After that,
the loss of details due to the optical flow method becomes too high and the NWP might deliver better
results. With a merge between the nowcasting and the NWP we would develop a seamless product
that always uses the best available forecast at each time step for a 12 h solar surface irradiance forecast.
Some leading experts like Lorenz and Wolff have already shown that seamless products deliver even
better results than the NWP after the point of intersection as the combination leads to an improvement
of the forecast quality [8,9]. Thus, the final product would not only be seamless but it would also show
a higher quality than single forecast products.

The software of SPECMAGIC NOW, as well as the optical flow method TV-L1, are both open
source. This validation study works as an indication for future works of other scientists to use one
or both parts for their own research. This way, PV forecasts can simply be constructed out of smaller
software blocks and adjusted to the needs of the operator.
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Appendix A

Table A1. List of BSRN pyranometer stations in the region of Europe. The stations that did not measure
the radiation or deliver the data for the period of our study were not listed.

Event Label Location Latitude (◦) Longitude (◦) Elevation (m)

Cabauw CAB Netherlands 51.9711 4.9267 0.0
Carpentras CAR France 44.0830 5.0590 100.0
Cener CNR Spain 42.8160 −1.6010 471.0
Palaiseau PAL France 48.7130 2.2080 156.0

Table A2. List of DWD pyranometer stations.

Location DWD-ID Latitude (◦) Longitude (◦) Elevation (m)

Arkona 183 54.6791 13.4342 42.0
Braunlage 656 51.7233 10.6021 607.3
Braunschweig 662 52.2914 10.4464 81.4
Bremen 691 53.0445 8.7985 4.3
Chemnitz 853 50.7912 12.8719 418.0
Dresden 1048 51.1279 13.7543 227.0
Fichtelberg 1358 50.4283 12.9535 1213.0
Geisenheim 1580 49.9859 7.9548 110.2
Görlitz 1684 51.1621 14.9505 238.0
Hamburg 1975 53.6331 9.9880 14.1
Hohenpeissenberg 2290 47.8009 11.0108 977.0
Konstanz 2712 47.6774 9.1900 442.5
Leipzig 2928 51.3150 12.4462 138.0
Lindenberg 3015 52.2084 14.1179 98.0
Bad-Lippspringe 3028 51.7854 8.8387 157.0
Lüdenscheid 3098 51.2451 7.6424 386.7
Meiningen 3231 50.5611 10.3771 450.0
Norderney 3631 53.7123 7.1519 11.5
Nuremberg 3668 49.5030 11.0549 314.0
Potsdam 3987 52.3812 13.0622 81.0
Rostock 4271 54.1801 12.0805 4.0
Saarbrücken 4336 49.2128 7.1077 320.0
Sankt-Peter-Ording 4393 54.3279 8.6029 4.9
Schleswig 4466 54.5275 9.5486 42.7
Seehausen 4642 52.8911 11.7296 21.0
Stuttgart 4928 48.8281 9.2000 314.3
Trier 5100 49.7478 6.6582 265.0
Weihenstephan 5404 48.4024 11.6945 477.1
Weissenburg 5440 49.0113 10.9319 439.3
Würzburg 5705 49.7702 9.9577 268.0
Zugspitze 5792 47.4208 10.9847 2964.0
Fürstenzell 5856 48.5451 13.3530 476.4
Mannheim 5906 49.5090 8.5540 98.0
Schneefernerhaus 7325 47.4167 10.9794 2650.0
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Table A3. Error measures of SARAH-2 validation for all cases up to 465 min of forecast time. These
values were calculated for the area of Europe. The upper row of each date represents the relative
absolute bias in % and the lower one shows the absolute bias in W/m2 respectively.

Date
Forecast Time (Min)

45 105 165 225 285 345 405 465

7 August 2017
9.10 11.52 13.62 15.28 17.08 17.77 19.67 23.43
58.64 79.25 93.11 97.01 93.38 79.13 61.58 40.78

11 August 2017
11.52 14.32 16.26 17.70 19.36 20.76 23.32 27.17
66.73 89.09 101.11 102.40 95.17 82.92 64.72 59.63

15 August 2017
8.98 11.93 13.59 15.73 17.60 18.04 19.86 23.04
58.41 82.36 92.62 98.72 94.24 77.21 58.65 54.92

28 August 2017
11.70 16.25 19.48 21.93 24.44 26.46 28.83 32.95
66.24 96.75 113.62 117.03 108.83 91.3 92.82 51.57

29 August 2017
10.59 13.58 16.20 17.64 19.67 21.69 24.21 30.17
60.23 81.35 95.03 94.51 87.79 73.67 51.14 47.41

1 September 2017
10.47 14.91 17.00 18.51 20.21 20.84 22.39 23.86
59.55 90.18 101.61 101.11 92.97 75.20 52.62 31.11

7 September 2017
14.60 20.20 23.52 24.48 26.33 27.21 28.16 25.55
65.20 94.47 107.60 102.78 91.44 73.71 46.93 22.76

17 September 2017
12.59 18.04 21.43 22.63 23.31 23.77 25.32 26.72
59.18 88.51 102.30 98.81 83.44 63.65 38.11 22.92

19 September 2017
14.26 19.87 23.15 24.63 26.12 26.36 26.77 23.74
64.52 94.35 106.79 103.11 88.90 66.95 38.74 20.08

22 September 2017
11.67 15.23 - 19.47 21.14 23.48 24.47 26.24
52.09 71.82 - 80.67 70.85 57.53 33.92 20.08

26 September 2017
15.13 19.79 22.65 24.32 26.26 27.90 27.83 25.71
64.69 89.15 98.55 96.67 83.70 63.01 35.77 17.62

30 September 2017
12.79 17.30 20.62 22.14 25.03 26.79 31.07 31.91
53.20 74.10 82.72 78.56 67.87 47.80 29.88 15.29

1 October 2017
16.76 21.20 23.70 25.71 28.12 32.62 38.52 37.42
65.97 87.08 91.81 87.65 73.45 57.72 37.50 18.60

2 October 2017
18.10 23.08 26.33 28.05 30.56 32.27 35.01 35.59
73.02 97.73 105.55 99.08 81.54 59.67 38.27 19.53

3 October 2017
16.49 20.51 22.96 24.58 26.91 28.97 30.11 31.52
67.94 89.16 95.75 92.08 78.98 57.96 35.44 17.39

4 October 2017
16.46 19.63 21.55 22.70 23.71 25.37 25.80 25.83
66.59 84.74 87.86 82.82 67.34 48.45 29.22 13.76

7 October 2017
17.26 20.26 21.60 22.52 23.32 24.32 23.22 22.59
63.81 79.09 80.57 77.10 62.80 44.35 26.26 11.87
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Table A4. Error measures of SARAH-2 validation for all cases up to 465 min of forecast time. These
values were calculated for the area of Europe. The upper row for each date represents the relative
RMSE in % and the lower one shows the RMSE in W/m2 respectively.

Date
Forecast Time (Min)

45 105 165 225 285 345 405 465

7 August 2017
8.59 15.07 20.71 23.51 26.39 27.54 30.82 37.92

83.88 117.61 140.33 147.39 142.00 120.23 94.27 64.14

11 August 2017
17.66 22.45 25.29 27.17 29.80 31.91 35.54 41.20
101.97 138.38 154.88 153.84 142.45 123.20 94.82 59.63

15 August 2017
16.62 20.29 22.98 24.67 27.92 28.90 31.51 36.30
89.69 128.84 143.23 151.98 145.85 120.17 89.71 54.92

28 August 2017
17.19 24.15 28.91 32.73 24.44 39.61 44.28 52.94
96.96 142.22 165.55 170.24 157.76 131.24 92.82 51.57

29 August 2017
16.17 20.99 25.42 28.22 31.73 35.53 42.24 53.14
91.63 124.27 146.14 146.92 136.38 115.26 82.46 47.41

1 September 2017
16.09 23.25 26.42 28.82 31.33 31.70 33.50 35.64
91.46 140.16 156.92 156.03 142.43 112.87 77.40 41.14

7 September 2017
21.42 29.39 33.93 35.58 38.06 38.21 39.12 36.04
95.26 135.83 152.04 144.92 127.03 98.48 61.37 25.36

17 September 2017
20.03 28.11 32.94 34.00 34.68 34.54 37.74 38.04
94.01 137.29 156.01 146.83 122.36 90.85 55.61 23.88

19 September 2017
21.35 29.26 33.55 35.35 37.79 37.46 38.94 32.85
96.31 137.75 152.47 144.86 123.69 91.85 53.48 19.26

22 September 2017
17.59 23.31 - 29.91 32.47 35.32 38.31 37.71
78.26 108.74 - 120.81 105.42 83.23 49.92 19.45

26 September 2017
21.47 28.35 32.46 34.35 36.85 38.65 39.78 35.48
91.53 126.61 139.11 133.64 114.23 84.33 46.76 15.44

30 September 2017
18.72 25.98 30.79 32.50 36.57 40.17 47.02 43.47
77.60 110.16 121.39 112.39 95.85 68.69 38.54 11.15

1 October 2017
22.15 29.35 33.22 35.94 39.22 45.75 57.08 58.69
86.68 118.58 125.20 117.78 97.28 75.99 46.10 14.51

2 October 2017
24.11 31.23 35.61 37.91 41.33 44.22 48.51 45.29
96.87 130.68 139.94 130.20 106.39 78.32 43.98 12.90

3 October 2017
22.61 28.89 32.40 34.27 37.21 40.00 42.31 43.30
92.80 123.99 132.34 124.65 105.10 76.32 40.53 12.11

4 October 2017
22.87 28.26 30.59 31.55 32.55 34.27 35.76 35.71
92.29 119.76 122.95 112.75 89.92 63.21 33.25 9.84

7 October 2017
25.41 30.05 31.78 32.05 32.13 32.39 31.94 28.01
92.53 115.66 115.80 106.17 82.92 56.12 28.07 6.67
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