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Abstract: Transport networks need periodic inspections to increase their safety and improve their
management. In the last few years, LiDAR (light detection and ranging) technology has become a tool
for helping to create a precise database of almost any type of infrastructure. Mobile laser scanning
(MLS) systems use a laser beam to collect dense three dimensional (3D) point clouds, which include
geometric and radiometric data of the environment in which they are placed. In the context of this
paper, a methodology for automatically inspecting the clearance gauge and the deflection of the aerial
contact line in railway tunnels is presented. The main objective is to compare results and verify their
compliance with the Spanish norm. The 3D data are provided by a LYNX Mobile Mapper System
(MMS). First, the area is surveyed and then the obtained (3D) point cloud is classified into contact
wire, suspension wire, and remaining points. Finally, the inspection of the railway’s power line is
performed. The validation of the proposed methodology has been carried out in three different tunnel
point clouds, obtaining both qualitative and quantitative results for points’ classification, together
with the results of the measures performed.
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1. Introduction

Nowadays, the interest of having a digital model of real-life scenarios is increasing. This model
can be used to update and track the behaviour of an infrastructure through its whole life cycle. In the
railway field, with the arrival of the high-speed train and the high request for its maintenance and
inspection, research concerning technical and technological improvements has increased. One of the
main concerns of the railway industry is the irregularities affecting the rail track layout, as well as
the perfect state of the catenary to fulfil the requirements of gauge, among others. These elements
have a big repercussion in the security of the whole railway system. Hence, railway companies
invest their resources for the optimal inspection and maintenance of the infrastructures. This is
where laser scanning systems come into consideration. In recent years, the applications for laser
scanning technology have increased. Until now, the main applications involving this type of data were
dimensional control [1], 3D modelling, urban planning, and, more recently, BIM (building information
modelling). The main characteristic of laser scanners is their capacity for obtaining large amounts of
data with high accuracy in a short period of time. Usually, this information was processed manually or
semi-automatically. The monotony of this task called for the necessity of automatically process the
generated three dimensional (3D) point clouds.

This work arises due to the lack of specific methods for classifying and inspecting railway point
clouds, and especially railway power lines. It is focused on the automatic classification of MLS point
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clouds of the aerial contact line system from railway tunnels, and its later inspection. The aerial contact
line is a set of overhead cables on top of the railway line. They provide electrical supply to electric
trains. These cables are placed over the vehicle’s superior gauge limit, being the electrical supply
provided through pantographs [2]. The system is composed by three different categories of cables: (i)
Contact wire, from which the pantograph takes the power for the train; (ii) suspension or catenary
wire, which resists and supports the catenary weight and keeps the contact wire in a constant height;
and (iii) droppers, which are vertical elements that help to maintain the contact wire in that constant
height, and are fixed in between the suspension and the contact wire. These three types of elements
are hanged over the train’s car with poles or cantilever arms [3].

The present paper is divided into the next sections: Section 2 presents a review of the literature
related with this work; Section 3 explains the methodology, which is in charge of the classification
of points conforming both the contact and the suspension wires, and the inspection of these cables;
Section 4 describes the equipment used for the data gathering; Section 5 exposes the results obtained
for the datasets on disposal; and, lastly, the conclusions to this research together with future lines of
work to be considered are exposed in Section 6.

2. Literature Review

Although some authors have developed methods using data from both aerial laser scanning (ALS)
and terrestrial laser scanning (TLS) systems in the railway environment [4–6], the most common approach
is to work with mobile laser scanning (MLS) point clouds. The use of MLS systems is translated into safer
and faster surveys, obtaining data with very high accuracy and quality [7]. In this relation, Che et al. [8]
presented also a review about the most recent object recognition, segmentation, and classification methods
for LiDAR (light detection and ranging) data. With regard to the railway field, some authors have also
developed different techniques for LiDAR-data grouping. Leslar et al. [9] propose a first classification of
points regarding their return number, and then they perform a manual classification by using specific
programs and semi-automatic methods. Several works from Arastounia propose heuristic methods for
the fully-automatic classification of railway objects [10–12]. These objects such as rails, contact lines or
catenaries, are extracted through an algorithm that recognizes interesting objects when studying how the
LiDAR data are placed and their spatial relation with each other and with other objects. The result is a
classified point cloud that can be used for later analysis, namely 3D modelling, specific measurements, or
inspection of the continuity of rails. Concerning power line classification from 3D point clouds, Arastounia
improved his own methods creating an algorithm for the recognition of railroad power lines and rail
tracks using both Terrestrial Laser Scanning (TLS) and Aerial Laser Scanning (ALS) data [11]. Apart from
these works, when focusing on the power line detection, Pastucha [13] used the trajectory data to limit the
searching zone for extracting the power line. Then, RANSAC (RANdom SAmple Consensus) algorithms
and geometrical relationships were used to improve the points’ classification. In this relation, Zhang
et al. [14] also used information from the MLS trajectory to extract valuable data from it, subsequently
applying region growing algorithms to classify aerial contact wires’ points. Similar to the railway field,
point clouds from high voltage facilities or roadways have also been explored in order to classify their
points. To this respect, Guo et al. [15] proposed a method for the reconstruction of wires working with ALS
data, and applying RANSAC algorithms. Later on, Wang et al. [16] presented a methodology for detecting
power line points and the power line corridor direction using connectivity and simplification algorithms.
With reference to the inspection of railway power lines, authors like Blug et al. started to use laser scanning
data for clearance measurements [17]. Years later and with recent equipment, Mikrut et al. [18] used
cross-sectional data from point clouds to create 2D images that could be visually inspected by an expert in
order to find anomalies.

Currently, the trend is to use classifiers in order to make predictions of points’ classes. In
this sense, Luo et al. [19] used the Conditional Random Field (CRF) classifier in order to make a
context-based classification of the LiDAR points into several classes (railway elements). Using not only
heuristic methods but also support vector machines (SVMs), Sánchez-Rodríguez et al. [20] presented
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a methodology for the classification of elements in an MLS railway tunnel point cloud. The good
performance of deep learning algorithms for image classification has encouraged authors to develop
new models for 3D data [21–24]. In this field, not only MLS but also ALS data are used to test the new
convolutional networks used for point cloud classification. Balado et al. [25] use ALS for the automatic
classification of land cover using the classifier ResNet-50, and in a later work, proved the validity of
PointNet for MLS point clouds’ classification [26]. Although many authors are working to improve
these methods [27,28], they still need to evolve.

The novelty of this paper is the presentation of a fully automated method for measuring the power
line gauge and the catenary deflection in a LiDAR point cloud, without the need of human intervention.
The method is in charge of classifying points forming both the contact and the suspension wire, and
then performing the corresponding measures.

3. Methodology

This paper follows the steps previously set in [20], where a methodology for the automatic
classification of railway tunnel elements from MLS datasets was presented. The present work is
oriented to the development and analysis of a new system for the recognition, classification, and
inspection of electrical railway infrastructures using LiDAR data. The work starts with a labelled point
cloud divided into lining, ground, railway tracks, overhead line, and cantilevers. This information is
extracted following the steps presented in [20], and as reflected in Figure 1. In this section, the method
developed for the automatic inspection of railway tunnels’ power line is presented. First, Section 3.1
describes the steps followed to classify the contact wire and suspension wire points. Then, Section 3.2
exposes the inspection methods developed for measuring both the clearance gauge and the deflection
of the suspension wire.
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Figure 1. Tunnel point cloud classification (preliminary).

It is important to highlight that there are different catenary models installed in Spain, in the
Conventional Network of Adif (Red Convencional de Adif ). The most outstanding ones due to their
common implementation are models CA-160 and CA-220, which are taken as reference for the present
work [2,3]. The parameters used in this work for the segmentation of the catenary system and its
inspection follow the standards summarized in Table 1.

3.1. Classification of Points

The method developed for this work is based on the one advanced by Sánchez-Rodríguez et al. [20].
Following the previously developed methodology, the method starts with a railway tunnel point
cloud T = (x, y, z, ts, I, rn), where (x, y, z) are the three-dimensional (3D) spatial coordinates, ts is
the time stamp, I is the reflected laser pulse intensity, and rn is the return number assigned to each
point. Since these point clouds have too much information to be processed by regular computers,
the tunnel point cloud T is segmented into 20-m long sections, Ui(i = 1 . . . n) ∈ T, and each of them
is oriented to the y coordinate axis, resulting Ur

i (i = 1 . . . n) ∈ T. Subsequently, continuing with the
algorithms proposed in [20], every element in the tunnel point cloud ends up classified based on its
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geometrical characteristics as ground, lining, power line, cantilever arms, rails, and other (Figure 1). For the
research of this paper, some of these classified points are used as basis before starting to develop the
new classification methods. These are the ones forming rails and power lines, together with cantilever
arms. It is important to highlight that, in the previous classification, the power lines were saved as
individual sets of points, since there might be more than one in each 20-m section.

The novel classification algorithms presented in this work are summarized in Figure 2, and fully
described in Sections 3.1.1 and 3.1.2.

Table 1. Most used catenary models in Spain [3].

Characteristic Wire Type Catenary Model

CA-160 CA-220

Section
Suspension Cu 150 mm2 Cu 185 mm2

Contact 2× Cu 107 mm2 2× Cu-Ag 0.1–150 mm2

Nominal height Contact 5.30 m 5.30 m
System 1.4 m 1.4 m

Minimum height Contact 4.60 m 4.90 m
Maximum Span Suspension 60 m 60 m

Maximum deflection 1 Suspension 0.853 m 0.853 m
1 Inside railway tunnels.
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3.1.1. Contact wire detection

Let L = (x, y, z) ∈ Ur
i (i = 1 . . . n) be the point cloud of an individual power line. The first

step is to distinguish the contact wire from the suspension wire and other elements (droppers and
fake suspension wire, which allow the elasticity’s homogeneity through the line [29]). Using point
cloud L as the basis, the RANSAC method is applied to find the contact cable. To do that, the point
cloud is rasterized so that it is mapped to the YZ plane [30]. Then, the predefined Matlab function
fitPolynomialRANSAC is applied [31]. It uses a version of the original RANSAC called M-estimator
SAmple Consensus (MSAC), which finds the coefficients of a polynomial P(x) of degree N that best fits
the input data. In the described case, the need is to fit a line to the two-dimensional (2D) cloud, so the
coefficient N must be N = 1. The aforementioned function is iterative, meaning that the fitting process
is repeated until it reaches the convergence. This happens when achieving the maximum number
of possible iterations or the predefined precision (number of points fitting the line, in this case). In
order to obtain a better tuning, the function uses the maximum allowed distance along the Z axis from
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an inlier to the estimated polynomial. This parameter was set to 0.15 m as the section of the CA-220
contact wire is 150 mm2 (the diameter would be 13.8 mm), as reflected in Table 1. Inliers coming, as a
result, are the points forming the contact wire C = (x, y, z) ∈ L (Figure 2).

3.1.2. Suspension wire detection

For detecting the suspension wire, a different approach has been followed. Since this cable is
always located in the maximum height of the remaining non-classified points of the power line, a
search on this basis is started. In this part of the segmentation process, it is necessary to know where
the cantilevers M = (x, y, z) ∈ Ur

i (i = 1 . . . n) are placed, as the highest points of the catenary curve
drawn by these cables depend on them. Taking into account that the sections performed in the original
point cloud are 20 m long, and following the established in the ADIF specifications [3] concerning the
‘distance between cantilevers’ in railway tunnels (50 m), only one cantilever can be contained in each
of these sections.

Let S′ ∈ L be the possible suspension wire cloud. For the case that the selected section Ur
i (i = 1 . . . n)

contains a cantilever, the point cloud S′ will be sectioned in two parts: one before and one after this
element. Then, in order to improve the effectiveness of the algorithm, points belonging to these two
parts are studied, segmenting the cloud into 5 cm sections (Figure 3). After that, a search of valid
points is performed starting with the highest points of these small sections. In this case, the broadly
known range search algorithm is chosen for this matter [31]. The algorithm finds all neighbours in S′

that are within a distance from each of the highest ones selected before. In this case, that distance is
taken as the standardized diameter of the suspension wire S ∈ L (Table 1). If, in the selected section
Ur

i (i = 1 . . . n), no cantilevers are present, the algorithm is executed without distinguishing two parts
in the cloud (Figure 2).
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3.2. Gauge and Deflection

In a railway line, gauge (officially called contact wire height) is the distance between the inferior
plane of the contact wire and the running surface (tangent to the rails’ heads). This distance is
perpendicularly measured in the axis of the track (Euclidean distance). Together with this, the
deflection is defined as the maximum vertical distance existing between the suspension wire and the
imaginary line joining two consecutive cantilevers. These distances are graphically represented in
Figure 4.
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The algorithm in charge of measuring the clearance gauge starts with the contact wire (C =

(x, y, z) ∈ L) and the rails’ point clouds (R j ∈ Ur
i ( j = 1, 2; i = 1 . . . n)). First, a plane is fitted to the

top surface of rails. To do that, the voxelization of the rails’ point cloud is done. Then, voxels with
the biggest z coordinate are used as the rails’ top surface, and after that, a search to find the plane
that best fits them is started. To continue with the process, the point cloud forming the contact cable
is also voxelized so that only one point is saved inside each 50 cm imaginary cube (voxel). Finally,
the Euclidean distance between these new points (one per voxel) and the previously fitted plane is
measured, following Equation (1):

dmax =

√√√ 3∑
i=1

(qi − pi)
2, (1)

where q and p are the two points from which the distance is measured. The result are several measures
in each 20-m section (Figure 5a).
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For the measurement of the suspension wire deflection, it is first necessary to find which sections
contain a cantilever M = (x, y, z) ∈ Ur

i (i = 1 . . . n). Then, the suspension wire point clouds S ∈ L
placed between two consecutive cantilevers are grouped, as shown in Figure 6. The next step is to
draw a line joining the two most extreme points of the span. These two points are located in the highest
z coordinate in each of the two points clouds containing a cantilever (Figure 6). Finally, the deflection
is measured. This is done by calculating the maximum distance between the previously fitted line and
each point in the point cloud sections forming a span (Figure 5b). As a result, only one measure is
obtained for each span in the tunnel point cloud T.



Remote Sens. 2019, 11, 2567 7 of 13

Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 13 

 

The algorithm in charge of measuring the clearance gauge starts with the contact wire (𝐶 ൌሺ𝑥, 𝑦, 𝑧ሻ ∈ 𝐿) and the rails’ point clouds (𝑅௝ ∈ 𝑈௜௥ሺ𝑗 ൌ 1,2;  𝑖 ൌ 1 … 𝑛ሻ). First, a plane is fitted to the top 
surface of rails. To do that, the voxelization of the rails’ point cloud is done. Then, voxels with the 
biggest z coordinate are used as the rails’ top surface, and after that, a search to find the plane that 
best fits them is started. To continue with the process, the point cloud forming the contact cable is 
also voxelized so that only one point is saved inside each 50 cm imaginary cube (voxel). Finally, the 
Euclidean distance between these new points (one per voxel) and the previously fitted plane is 
measured, following Equation (1): 𝑑௠௔௫ ൌ ට∑ ሺ𝑞௜ െ 𝑝௜ሻଶଷ௜ୀଵ , (1) 

where q and p are the two points from which the distance is measured. The result are several measures 
in each 20-m section (Figure 5a). 

(a) 

 

(b) 
 

Figure 5. Flow diagram of the distances measurement procedure. (a) Gauge; (b) deflection. 

For the measurement of the suspension wire deflection, it is first necessary to find which sections 
contain a cantilever 𝑀 ൌ ሺ𝑥, 𝑦, 𝑧ሻ ∈ 𝑈௜௥ሺ𝑖 ൌ 1 … 𝑛ሻ . Then, the suspension wire point clouds 𝑆 ∈ 𝐿 
placed between two consecutive cantilevers are grouped, as shown in Figure 6. The next step is to 
draw a line joining the two most extreme points of the span. These two points are located in the 
highest z coordinate in each of the two points clouds containing a cantilever (Figure 6). Finally, the 
deflection is measured. This is done by calculating the maximum distance between the previously 
fitted line and each point in the point cloud sections forming a span (Figure 5b). As a result, only one 
measure is obtained for each span in the tunnel point cloud 𝑇. 

 
Figure 6. Fitted line and cantilevers: Example. 

4. Equipment Setup 

Laser scanning systems use a laser beam to generate a 3D model of the objects in the environment 
of study. The objects are represented with 3D coordinates in the space, obtained computing the 
distance between the LiDAR sensor and the target object. As laser scanners are an active technology, 
surveys can be performed at night or in places like tunnels, where the light has very low intensity. In 
this work, data have been obtained using a LYNX Mobile Mapper, by Optech Inc. (2007) [32]. The 
summary of its characteristics and a specific accuracy analysis is shown in [33]. The LiDAR sensor 

Figure 6. Fitted line and cantilevers: Example.

4. Equipment Setup

Laser scanning systems use a laser beam to generate a 3D model of the objects in the environment
of study. The objects are represented with 3D coordinates in the space, obtained computing the distance
between the LiDAR sensor and the target object. As laser scanners are an active technology, surveys
can be performed at night or in places like tunnels, where the light has very low intensity. In this work,
data have been obtained using a LYNX Mobile Mapper, by Optech Inc. (2007) [32]. The summary of its
characteristics and a specific accuracy analysis is shown in [33]. The LiDAR sensor together with the
position and navigation systems, and the four racks (acquisition, control, LiDAR, and power supply),
were placed in a draisine to ease the data acquisition process inside railway tunnels.

4.1. Geo-Referencing and Sensor Fusion

The positioning and navigation systems in charge of the 3D data positioning are also a key
issue when performing a laser scanning survey. This is supported by GNSS (Global Navigation
Satellite System) and INS (inertial navigation system) systems that require a specific planning for
every measurement campaign. GNSS provides position and orientation with respect to a reference,
while INS and DMI (distance measurement unit) provide time-derivative information of the position
and orientation of the mobile platform. Using this information, the position of the point cloud at
global level is determined: (i) the point cloud is referenced with respect to the LiDAR sensor itself; (ii)
the platform is located with reference to the WGS84 global coordinate system; and (iii), the relative
orientation and position of the LiDAR sensor in the platform with regard to the navigation and position
system is determined.

4.2. Performance

Since every survey requires different planning before the performance, it is necessary to consider
the particular needs of each case study. In general, the data acquisition time depends on the vehicle’s
average speed, which varies between 20 and 30 km/h. Apart from this, the total work time also includes:
(a) equipment installation, which takes between half a day and a whole day depending on the draisine
structure; (b) moving to the capture zone, with a speed similar to the data acquisition one; (c) data
gathering (20–30 km/h); and (d) uninstalling the equipment, which usually takes around half a day. In
addition, the performance of the Lynx Mobile Mapper is given by its resolution. Information about the
equipment’s acquisition parameters can be found in Table 2.

Table 2. Acquisition parameters for Lynx Mobile Mapper [32].

Manufacturer LiDAR
Model

Maximum
Range

Range
Precision

PRF (Pulse Repetition
Frequency)

Scan
Frequency

Field of
View

Teledyne Optech Lynx M1 200 m 8 mm 75–500 kHz 80–200 Hz 360◦
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Changes in the accuracy of point clouds are noticeable regarding the equipment with which they
were acquired. There are three types of errors leading to low accuracy (in general) in laser scanners [34]:

• Laser range error: measuring the distance to an object. It is different for every scanner and can be
corrected by recalibrating them (by the manufacturer or specialist in the field).

• Range noise: deviation of single readings from the real value within a sample of measures. It is
conditioned by the distance to the object to be scanned and the reflectivity of the object’s material.

• Mechanical error: the difference between the measured and actual horizontal and vertical angles
(angular error). It is caused by the mechanical devices forming the laser scanner (mirrors
and servos).

The position and navigation systems may also result in invalid coordinates for the GNSS base
station(s), misalignment of the INS with the LiDAR scanner, or a software failure at coordinate
conversions. These cause systematic errors that may be identified by sensor calibration, comparing
LiDAR with known reference data or additional control operations [35].

It is important to highlight that accuracy depends not only on the equipment, but also on the
geometry of the 3D scenario under study. This affects to the performance of the trajectory and point
cloud computation algorithms, and so a specific value of accuracy cannot be given as an answer. The
atmospheric condition can also have undesired effects in the LiDAR performance that could lead to
noisy measurements [36].

For more information regarding the MLS used in this work, please see [7,33].

5. Results

The classification of the aerial contact line points is developed using the algorithms described in
Section 3.1. The data is classified into four categories: contact wire, suspension wire and remaining
points. Then, the gauge of the contact wire and the deflection of the suspension wire are inspected
following the current Spanish standards, as explained in Section 3.2.

In this section, the classification and inspection results are detailed. The methodology is
implemented using the Matlab software, version 2017b. The validation performance is done using an
Intel Core i7-4810MQ CPU at 2.8 GHz and 8 GB of RAM.

5.1. Case Study

The classification part of this work has been proved as valid in three different tunnel point clouds
extracted from Spanish corridors, which are divided into 20-m sections so that the classification process
can be performed by a regular computer (Table 3). Although one of the tunnels (tunnel C) has two
power lines on top of the rails, the developed methodology would only consider the detection of
the one in the closest area to the laser scanning system. Moreover, this tunnel dataset has only one
cantilever present, hence the deflection measurement of the suspension wire cannot be tested on it.

Table 3. Case study data.

Dataset No. of Sections (20 m Long) No. of Points Longitudinal Length (m)

Tunnel A 42 332,646,619 877
Tunnel B 54 168,437,020 1151
Tunnel C 4 45,788,061 51.3

5.2. Classification Results

This section exposes the classification results obtained for each of the three tunnel point clouds.
In order to prove the validity of the method, one 20-m section of each dataset is selected. The
characteristics of these points clouds are presented in Table 4.
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Table 4. Sections selected for classification.

Tunnel Dataset Number No. of Points (Total) No. of Points (Power Line 1)

A 10 7,241,901 36,516
B 11 2,955,005 12,146
C 4 19,687,427 61,075

1 Without cantilevers.

The contact wire points are first classified and separated from the rest of the point cloud, so it is
prepared for the next segmentation step. Then, points belonging to the suspension wire are identified,
these data being enough to perform the inspection required. After this classification of the aerial contact
line elements, each point in the original cloud ended up labelled as contact wire, suspension wire or
remaining points. The cantilever classification results are extracted from the previously developed
methodology [20], and an overview of the whole power line classification is presented in Figure 7.
This figure shows the original point cloud used for the classification process of this work (Figure 7a),
making a distinction between the power line cables in general and the cantilevers present in the cloud
(if any). Then, in Figure 7b points are depicted with different colours as belonging to specific groups:
contact wire, suspension wire, and remaining (droppers and other cables), showing again the cantilever
present and previously classified in the cloud.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 13 

 

 
(a) (b) 

Figure 7. Power line system, example: Tunnel A, Section 10. (a) Original cloud; (b) classification 
results. 

As a way of proving the validity of the methods proposed, datasets from Table 4 are used. This 
prove is performed by quantitative comparing a previously labelled ground truth with the obtained 
results. The ground truth is labelled manually thanks to the use of the 3D point cloud processing 
software CloudCompare (v2.10.2). The precision, recall, and F-score performance metrics have been 
calculated for each of the three selected sections, and the results are exposed in Table 5. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ 𝑇𝑃𝑇𝑃 ൅ 𝐹𝑃 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ 𝑇𝑃𝑇𝑃 ൅ 𝐹𝑁 (3) 

𝐹ௌ௖௢௥௘ ൌ 2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑅𝑒𝑐𝑎𝑙𝑙 (4) 

where TP is the number of true positives; FP is the number of false positives; and FN is the number 
of false negatives. 

Table 5. Segmentation results and performance metrics. 

Tunnel Element TP FP FN Precision Recall F-score 

A 
Contact wire 2011 818 761 0.9609 0.9636 0.9622 

Suspension wire 7269 411 379 0.9465 0.9504 0.9485 

B 
Contact wire 6578 244 305 0.9642 0.9557 0.9599 

Suspension wire 3053 220 193 0.9328 0.9405 0.9366 

C 
Contact wire 26371 1344 1028 0.9515 0.9625 0.9570 

Suspension wire 15900 870 1322 0.9481 0.9232 0.9355 

These results show high performance metrics for the classification tasks developed under the 
scope of this work. 

5.3. Inspection Results 

The classification results of the three tunnel point clouds are used for the validation of the 
automatic inspection method. In order to ease the process of the results’ discussion, the distances 
obtained for the gauge measurement are exposed graphically and for the 20-m point cloud of Tunnel 
A exposed in Table 6. However, the point clouds used to present the deflection results are the ones 
in Table 6. 
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As a way of proving the validity of the methods proposed, datasets from Table 4 are used. This
prove is performed by quantitative comparing a previously labelled ground truth with the obtained
results. The ground truth is labelled manually thanks to the use of the 3D point cloud processing
software CloudCompare (v2.10.2). The precision, recall, and F-score performance metrics have been
calculated for each of the three selected sections, and the results are exposed in Table 5.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

FScore = 2·
Precision·Recall

Precision + Recall
(4)

where TP is the number of true positives; FP is the number of false positives; and FN is the number of
false negatives.
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Table 5. Segmentation results and performance metrics.

Tunnel Element TP FP FN Precision Recall F-score

A
Contact wire 2011 818 761 0.9609 0.9636 0.9622

Suspension wire 7269 411 379 0.9465 0.9504 0.9485

B
Contact wire 6578 244 305 0.9642 0.9557 0.9599

Suspension wire 3053 220 193 0.9328 0.9405 0.9366

C
Contact wire 26371 1344 1028 0.9515 0.9625 0.9570

Suspension wire 15900 870 1322 0.9481 0.9232 0.9355

These results show high performance metrics for the classification tasks developed under the
scope of this work.

5.3. Inspection Results

The classification results of the three tunnel point clouds are used for the validation of the
automatic inspection method. In order to ease the process of the results’ discussion, the distances
obtained for the gauge measurement are exposed graphically and for the 20-m point cloud of Tunnel A
exposed in Table 6. However, the point clouds used to present the deflection results are the ones in
Table 6.

Table 6. Deflection measurements (specifically selected sections).

Tunnel Dataset Number No. of Points (Suspension Wire) Deflection (m)

A 8-10 57,750 0.59
B 8-11 26,482 0.67

Figure 8 shows the gauge measurements, with a maximum difference of 0.0252 m. They must be
within the range of 4.6 and 6 m, although the general norm is to use 5.3 m as nominal value and 4.9 as
the minimum (the most restrictive one according to Table 1), as stated in ADIF’s current affairs files [2].
This is complementary with the obligation of 4.9 m as the minimum contact wire’s height in tunnels [3].
The deflection needs to be inferior than 0.853 m (Table 1), taking it as the most restrictive value for a
span of 50 m, in this case. Every tunnel section studied in this work comply with this obligation and
two results are presented as an example in Table 6.
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From the results obtained for the one hundred sections (20-m point clouds) studied concerning
gauge and deflection measurements, it can be said that the three tunnels comply with the measurement
limitations of the standard summarized in Table 1.

5.4. Global Discussion

This paper proposes two different contributions concerning the work with railway tunnels’ point
clouds: to evaluate the specific application of point clouds for classifying aerial contact lines; and
to prove the validity of LiDAR data for performing automatic inspections of the railway network.
Concerning point clouds classification (tunnel power line), a simple approach was adopted, showing
high accuracies in the results. However, it is noticeable that point clouds with the lowest performance
metrics belong to the suspension wires. This is caused by the difficulty for distinguishing this type
of cables from the ‘fake suspension wires’ hanging by their side. Since they are too close with each
other and because of their geometry, the way of labelling points in these areas is very dependent on the
person manually carrying out this task. In addition, the classification results obtained were compared
with the ones in the state of the art also in charge of differencing catenary and suspension wires from
the rest [11,12]. In this relation, an improvement of the performance metrics is observed for both the
contact and the catenary cables. Concerning the automatic inspection of the power line, none of the
works in the state of the art work with point clouds in the 3D space to perform these measures.

Apart from the conclusions extracted taking into account the quantitative results in Table 5, and
comparing the results with the state of the art, it can be concluded that is feasible to automatically
classify aerial contact lines’ point clouds into their specific elements for a later automatic inspection.

5.5. Error Analysis

Different causes may affect the effectiveness of the proposed method, and some are subsequently
presented: (i) The resolution of the available point clouds could be improved, in such a way that the
number of points forming the aerial contact wire increases; (ii) some occlusions may be corrected
in accordance with the previous point; and (iii) the bounding boxes established using standardized
measurements could be adjusted depending on the location of the tunnels. Although the classification
results presented in this section seem good, some noisy points are wrongly classified as valid, which
could be avoided by improving the method as proposed.

6. Conclusions

This paper presents an automatic methodology for the inspection of two important parameters in
the railway’s aerial contact line, using 3D point cloud data extracted with a mobile mapping system
(MMS). The methodology is divided into three main parts, being: classification of points, distances
measurement and standards’ compliance. This is considered a first approach to start defining a
methodology for highlighting conflictive areas in the railway network. Conceptually, the aim of this
work is to offer a preliminary method for the automation of the railway network inspection that
nowadays is conducted manually and subjected to the operator’s criteria. In addition, the results
presented show a good performance in terms of point cloud classification and distance measurement.
It is important to highlight that there is no benchmark that allows comparing these results, so the
proposed methodology has been tested under three private sets of data. This work can be considered
as a proof that mobile mapping systems are valid for surveying and inspecting railway environments.

Future work may have different aspects into consideration. Working with LiDAR data, every
methodology developed has room for improvement. With the trend of deep learning, the classification
of points may also be done by applying specialized neural networks (PointNet, PointNet++, fpnn,
splatnet, kpconv, etc.). Concerning the inspection of the aerial contact line, some other parameters are
also required for a complete inspection of the line, as can be the eccentricity of the contact wire, the
system’s height, the slope of the tracks, etc.
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