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Abstract: In this paper we aim to show a proof-of-principle approach to detect and monitor weed
management using glyphosate-based herbicides in agricultural practices. In a case study in Germany,
we demonstrate the application of Sentinel-2 multispectral time-series data. Spectral broadband
vegetation indices were analysed to observe vegetation traits and weed damage arising from
herbicide-based management. The approach has been validated with stakeholder information about
herbicide treatment using commercial products. As a result, broadband NDVI calculated from
Sentinel-2 data showed explicit feedback after the glyphosate-based herbicide treatment. Vegetation
damage could be detected after just two days following of glyphosate-based herbicide treatment.
This trend was observed in three different application scenarios, i.e., during growing stage, before
harvest and after harvest. The findings of the study demonstrate the feasibility of satellite based
broadband NDVI data for the detection of glyphosate-based herbicide treatment and, e.g., the
monitoring of latency to harvesting. The presented results can be used to implement monitoring
concepts to provide the necessary transparency about weed treatment in agricultural practices and to
support environmental monitoring.

Keywords: NDVI; glyphosate; herbicide; Sentinel-2; broadband spectral indices; vegetation traits;
precision farming; time-series; Roundup®; insects; biodiversity; soil health monitoring

1. Introduction

Food security, precision farming and sustainable treatment of soil and water as natural resources
are of major importance for human, animal and environmental health. Glyphosate-based herbicides
(GBHs) are the most widely used application in agricultural weed management to increase crop
production [1]. Recent public and political discussions highlight controversial aspects of glyphosate
application within the food chain, e.g., the transparency for the end consumer. Furthermore, we still
have a limited understanding about the effects of herbicides and pesticides to the complex responses
of soil microbial communities [2] and their long-term effects on soils. To study GBH based effects on
soil and vegetation, a time-series of spatially explicit GBH treatment (intensity) can be provided by
satellite remote sensing [3].

Earth observation programs, such as ESA’s Copernicus and NASA’s Landsat, already provide
and further increase the amount and quality (e.g., spectral and spatial resolution) of observations
from orbit, applicable for agricultural management. Scientific experimental studies using hyper- and
multispectral imaging spectroscopy are available to show proof-of-principle to observe vegetation traits
and processes [4,5]. Sentinel-2 broadband Normalized Difference Vegetation Index (NDVI) [6] shows
promising results for soil moisture monitoring providing significant improvements over Landsat [7].
Increasing temporal availability of satellite-based multispectral data allows the implementation of
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time-series based methods for the differentiation of plant species, physiological and phenological
properties [8,9]. Agricultural management and monitoring may be supported by new information
products as provides by EOS company [10]. In [11] the benefits of hyperspectral remote sensing
data are summarised for agricultural application; retrieval methods and challenges for operational
implementation are also discussed. A comprehensive and up-to-date summary to assess vegetation
properties and function with remote sensing-based imaging spectroscopy are provided in [12].

Furthermore, sensor innovations to detect chlorophyll fluorescence from orbit like ESA FLEX
mission [13] will further enhance the quality and application of satellite-based vegetation monitoring
in the near future [14]. Monitoring and spatial mapping of plant photosynthetic activity might
link plant metabolism to man-made factors, e.g., the application of herbicides, pesticides and
fungicides [15]. Linked open data concepts will facilitate multi-variate spatial maps incorporating
satellite observations, citizen science (providing data through mobile Apps), agriculture vehicle data
streams and meteorological data.

Moreover, remote sensing based agricultural monitoring provides independent solutions of
increasing transparency, its implementation in public App based services is promising for start-ups
and a new product generation as supported by Europe’s Copernicus program [16]. Recently made
available multispectral time series, e.g., Sentinel-2 and Landsat, provide time-series of two to three
scenes per week depending on geographic latitude and atmospheric conditions and pave the way for
new applications in agricultural management including herbicide treatment and monitoring.

Thus, the objective of this study was to evaluate the performance of broadband and satellite
based vegetation indices to identify GBH based weed treatment in agriculture. Therefore, Sentinel-2
multispectral time-series were analysed. Available local site information allowed the analysis of
different GBH treatments under real-time environmental conditions. Different spectral broadband
vegetation indices were temporally analysed to identify change after GBH weed treatment.

2. Materials and Methods

2.1. Study Site and GBH Treatment

The study region is located in the middle of Germany and consisting of five agricultural sites used
as test sites. Location and layout of the individual sites is provided in Figure 1. The names of the test
sites are in-house specific and used throughout in this study. The collaborating agricultural company
providing ground truth information is kept anonymous in this research. Ground truth information
about the individual herbicide treatments, GBH products applied and their doses (see Table 1), soil types
and texture (no maps) and crop management was given. Three different GBH products commonly sold
under the trade name of Roundup® were applied to reduce weed before or after harvest. Roundup®

PowerFlex contains 480 g glyphosate per litre, Roundup® ULTRA MAX contains 450 g glyphosate per
litre and Roundup® REKORD contains approximately 720g glyphosate per kilogram. Details about
product compositions are not published by the manufacturer. Information about dosing and treatment
scenario per test site is provided in Table 1.

Three common weed treatment scenarios where GBH is applied are examined in this research;
they consist of the following: (i) pre-sowing, (ii) before harvest and (iii) after harvest weed reduction.
A species classification of the weed itself was not available nor required to address the research
questions in this study. The amount of weed biomass and its spatial variability is visualised using the
appropriate Sentinel-2 data (see Section 2.2). Information about soil treatment during the observation
period is provided in Section 2.2 within an overview of the Sentinel-2 time-series.
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Figure 1. Study area and test sites in Germany. Kitze = 2.5 ha, Langer Acker = 17 ha, Kessel = 6 ha,
Käs und Brot = 32 ha, Harraser Leite = 28 ha, Länge = 13 ha.

Table 1. Overview of agricultural test sites and scenario characteristics due to herbicide treatment
and cultivation.

Site Name
Site
Size
(ha)

Crop Treatment Product
Applied

Dosage (kg
per ha)

Treatment
Date

Further Crop
Management

Harraser
Leite 28 weed pre-sowing

Round-up
ULTRA
MAX

1.35 April 16,
2018

maize sowing
after 13 days

Käs and
Brot 32 weed pre-sowing Round-up

PowerFlex 1.44 August 8,
2017

winter rape
sowing after

13 days

Länge 13 weed pre-sowing Round-up
PowerFlex 1.44 August 9,

2017

winter rape
sowing after

8 days

Kitze 2.5

weed
and

harvest
remains

after-harvest Round-up
PowerFlex 1.8 August 9,

2017 unknown

Langer
Acker and

Kessel
17+6 lupinus before

harvest
Round-up
REKORD 1.44 August 18,

2017

harvest 10 days
after glyphosate

treatment

For four GBH test sites (Harraser Leite, Käs and Brot, Länge, Kitze) reference sites are available
without GBH application. The reference sites are located in vicinity of the test site itself and have
similar weed cover. This information provides the possibility to compare weed management practices
and discuss the effect of GBH. The amount of weed biomass at the reference sites is visualised using
the Sentinel-2 data (see Section 3.2).
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2.2. Sentinel-2 Multispectral Data and Pre-Processing

Freely available Sentinel-2 multispectral satellite observations were applied in this study. Data sets
were acquired through Copernicus Open Access Hub [17]. In Table 2, an overview of selected
data products for the test sites and relevant metadata, e.g., processing level is provided. Two data
products were available in Level 1C TOA reflectance (Top-of-Atmosphere) format and processed
into BOA reflectance (Bottom-of-Atmosphere) using SNAP-ESA Sentinel Application Platform [18]
and Sen2Cor processor. Applied Sentinel-2 pixels covering the test sites were completely cloud free.
However, general information about cloud cover is given in Table 2. All spectral observations were
collected around 12:20/12:30 local time, which enabled good radiation characteristics and comparability.
Furthermore, dew effect on vegetation reflectance can be ignored due to evaporation processes in
the morning.

Table 2. Overview of applied Sentinel-2 data sets for the test sites in 2017 and 2018.

Satellite Level Data Time (UTC) Cloud Cover BOA Reflectance

Sentinel-2A 2A 2017-08-08 10:30 10% 2A
Sentinel-2A 2A 2017-08-15 10:20 0% 2A
Sentinel-2B 1C 2017-08-23 10:30 0% Sen2Cor
Sentinel-2A 2A 2017-08-25 10:20 30% 2A
Sentinel-2A 2A 2017-09-04 10:20 30% 2A
Sentinel-2B 1C 2018-04-17 10:20 50% Sen2Cor
Sentinel-2B 2A 2018-04-20 10:30 5% 2A
Sentinel-2A 2A 2018-04-22 10:20 30% 2A
Sentinel-2B 2A 2018-04-27 10:20 10% 2A
Sentinel-2A 2A 2018-05-05 10:30 0% 2A
Sentinel-2B 2A 2018-05-07 10:20 0% 2A

Using polygons, we extracted a time series from the Sentinel-2 data for all sites listed in Table 1.
The polygons fitted inside the individual test sites to avoid mixed signatures around the edges.
The pixel size of all indices images was 10 m × 10 m as band 3, 4, and 8 from Sentinel-2 were used
(see Table 3).

Table 3. Centre wavelength and bandwidths of the applied Sentinel-2 reflectance data and input for
spectral indices calculation.

Portion of
Electromagnetic

Spectrum

Sentinel-2
Band Number

Sentinel-2A
Centre

Wavelength/Bandwidth [nm]

Sentinel-2B
Centre

Wavelength/Bandwidth [nm]

green 3 559.8/36 559.0/36
red 4 664.6/31 664.9/31
NIR 8 832.8/106 832.9/ 106

2.3. Spectral Indices and Statistics

The selection of spectral indices was guided by two criteria, namely, (i) the spectral index was
already discussed in scientific literature regarding monitoring herbicide based weed management
and (ii) the technical applicability concerning available broadband multispectral reflectance data
(e.g., narrow-band indices for hyperspectral data analyses are not considered). Consequently, four
spectral indices were selected from scientific literature and analysed in the context of this research.
Selected spectral input bands from Sentinel-2 are given in Table 3.

The Normalized Difference Vegetation Index (NVDI) [6] is the most popular spectral vegetation
index with a robust sensitivity to changes in green vegetation due to chlorophyll content. It quantifies
the normalised difference between near infrared (NIR) and red reflectance and can be calculated
using broad and narrow-band reflectance data (see equation 1). NDVI provides decades of proven
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performance in many vegetation studies, e.g., classification, biomass mapping, leaf area index estimation.
Vegetation traits related to herbicide-based weed management was detected by NDVI in several case
studies [19–21].

NDVI =
NIR− red
NIR + red

(1)

The Green Normalized Difference Vegetation Index (GNDVI) is observing the reflectance changes
in the near infrared and green portion of the electromagnetic spectrum and is given in Equation (2).
A high correlation to field-based crop injury measurements was found in [22] warranting its analysis
within this study. Furthermore, in [23] a decrease in near infrared and green reflectance is observed
due to weed treatment using glyphosate products. Therefore, it could be assumed that GNDVI and
NDVI information complement each other.

GNDVI =
NIR− green
NIR + green

(2)

Chlorophyll Vegetation Index (CVI) is utilising three different reflectance signals and is proposed
to indicate photosynthesis activity within green vegetation canopy. In [22] CVI was proposed to
indicate vegetation damage.

CVI =
NIR

green
∗

red
green

(3)

The Soil Adjusted Vegetation Index (SAVI) [24] is observing the reflectance differences between
NIR and red spectrum by considering soil influence within (assumed) mixed signatures. Soil effect
is considered by the correction factor L and varies between 0 and 1. The value of L increases with
increasing soil influence within the mixed signature and was chosen following the findings in [24].
L was set to 0.5 for Käs and Brot, Länge, Harraser Leite and L = 0.25 was applied to Kitze, Langer
Acker and Kessel. As SAVI is applicable to broadband multispectral satellite data, and the test
scenarios (see Table 1) indicate varying soil influence on reflectance observations, its performance will
be evaluated within this study.

SAVI =
NIR− red

NIR + red + L
∗ (1 + L) (4)

NDVI was used to select bare soil pixels in the first image of each time series and applying a
threshold of 0.2, also considered as bare soil in [25,26]. Therefore, all pixel with NDVI values below 0.2
were masked out in all scenes and are not included in the statistical analyses. This was performed to
maximise the focus of the statistical analyses to the vegetation pixels and to avoid bias though bare
soil/ soil dominant pixels within the time series.

Statistical analyses were performed using RStudio [27] including the GDAL package [28]. For each
test site (see Table 1) and each vegetation index, the following statistical parameters were calculated:
mean, median, quantile at 25% and 75%. The temporal behaviour of the statistical parameters is
visualised in the results section using diagrams for each test site and probability density functions
according to each index image. For the reference sites (see Table 1), NDVI and appropriate statistics
were calculated for later comparison and discussion of the weed treatment (reference sites = without
glyphosate, test sites = with glyphosate).

3. Results

3.1. Spectral Indices Responses for All Test Sites

For each test site, the spectral vegetation indices were calculated for the available Sentinel-2
time-series. Average values of each spectral indices for the time-series are provided in Table 4 and
visualised in Figure 2. For the time-series, the day of Sentinel-2 multispectral observation varies
between three days before GBH treatment (see Table 4, Langer Acker) and 21 days after GBH treatment
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(see Table 4, Harraser Leite). The most comprehensive time-series regarding before and after GBH
treatment and before any agricultural soil treatment is provided by test site Harraser Leite. Here, for
one, four and six days after GBH treatment Sentinel-2 data is available providing additional information
compared to the analysed time series in [22], which provides the first images some seven days after
GBH treatment. Only one Sentinel-2 observation after GBH treatment and before any agricultural soil
treatment is provided for Käs and Brot, Länge and Kitze.

Table 4. Mean values of calculated spectral indices (CVI, GNDVI, NDVI, SAVI) using Sentinel-2 BOA
reflectance. The numbers in the table header indicate the temporal shift of the observation day related
to GBH treatment (DRTT, numbers in bold). 0 = day of GBH treatment, e.g., −3 = three days before
GBH treatment, 4 = four days after GBH treatment.

Test Site: Harraser Leite, Pre-Sowing

DRTT 0 1 4 6 8 11 19 21

CVI

GBH

2.70 2.70 2.40

grubbing

2.29 2.31 2.30

GNDVI 0.43 0.42 0.34 0.31 0.27 0.26

NDVI 0.40 0.37 0.27 0.23 0.13 0.13

SAVI 0.60 0.56 0.41 0.34 0.20 0.20

Test Site: Käs and Brot, Pre-Sowing

DRTT 0 0 7 8 13 15

CVI 2.68

GBH

2.64

plough sowing
of rape

2.85

GNDVI 0.37 0.36 0.34

NDVI 0.26 0.21 0.17

SAVI 0.41 0.39 0.27

Test Site: Länge, Pre-Sowing

DRTT −1 0 6 6 8 14 16

CVI 2.50

GBH

2.51

plough sowing
of rape

2.52 2.16

GNDVI 0.35 0.33 0.32 0.27

NDVI 0.24 0.19 0.18 0.17

SAVI 0.40 0.32 0.29 0.26

Test Site: Kitze, after Harvest

DRTT −1 0 6 7 14 16

CVI 3.42

GBH

2.80

plough

2.53 2.37

GNDVI 0.56 0.43 0.33 0.30

NDVI 0.58 0.38 0.22 0.19

SAVI 0.72 0.47 0.27 0.24

Test Site: Langer Acker, Pre-Harvest

DRTT −3 0 2 5 10 17

CVI 3.22

GBH

3.17 3.12

harvest

3.38

GNDVI 0.62 0.56 0.50 0.42

NDVI 0.70 0.61 0.49 0.28

SAVI 0.87 0.76 0.61 0.35
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Figure 2. Temporal dynamic of spectral vegetation indices for the test sites. The x-axes represent
the number of days after GBH treatment. Day 0 is the day of GBH treatment. The y-axes represent
the mean value of the spectral vegetation index of the appropriate study site, i.e., Green Normalized
Difference Vegetation Index (GNDVI), Chlorophyll Vegetation Index (CVI), Normalized Difference
Vegetation Index (NVDI), Soil Adjusted Vegetation Index (SAVI).

As a main result, we show that all spectral indices decrease consequently over time after weed
treatment using GBH. Just two days after the treatment, a decrease in indices values could be observed
(Table 4, test site Langer Acker). NDVI, SAVI and GNDVI show similar trends compared to CVI,
which provides random values for sites with very low vegetation (e.g., Käs and Brot, Länge). Spatial
heterogeneity in NDVI responses within the time-series is visualised for Harraser Leite (Figure 3 and
Langer Acker (Figure 4). A quantified decrease of NDVI values up to seven days after GBH treatment
is presented in Figure 5 and calculated using the values presented in Table 4.
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Figure 3. Visualisation of spatio-temporal dynamic of NDVI values for test site Harraser Leite and
appropriate probability density function.
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Figure 4. Visualization of spatio-temporal dynamic of NDVI values for test site Langer Acker and
appropriate probability density function.
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Figure 5. Decreasing NDVI values in percent (%) for all test sites up to seven days after GBH treatment.

3.2. NDVI Time-Series: Test Sites vs. Reference Sites

To address and visualise the effect of GBH treatment, NDVI is compared to the NDVI of sites
without GBH treatment. NDVI is applied for comparison as a sensitivity to herbicide application clearly
exists (compare Section 3.1). The reference sites provide similar biomass characteristics (generally
weed cover) but without herbicide treatment. In Figure 6, the temporal behaviour of NDVI for the
sites is opposed using mean and median NDVI per site and date and providing information about
quantile at 25% and 75%. For interpretation of herbicide effect, the individual soil treatments need to
be considered.

The Käs and Brot site shows a slight decrease in NDVI (see Figure 6), which might be caused by
herbicide treatment. The appropriate reference site shows increasing NDVI values. Compared to the
reference site, a higher NDVI due to weed is observable at Kitze test site (compare day 0). A decrease
in NDVI after GBH treatment could be detected by day six for Kitze. Even after ploughing, the Kitze
site displays slightly higher NDVI values compared to the reference site. Interestingly, even after
ploughing, a decrease of NDVI is observable (compare day 7, 14 to 16) after GBH treatment.
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Figure 6. Temporal dynamic of NDVI values for the sites treated with herbicide and appropriate
reference sites without herbicide treatment. Day 0 indicates the day of herbicide treatment in the case
of the test sites (x-axes).
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4. Discussion

In the study, we present a systematic behaviour of satellite based spectral broadband vegetation
indices due to vegetation changes that are induced by GBH treatment.

In general, it was found that satellite based multispectral time series data (e.g., those available from
Sentinel-2) are suitable to monitor GBH treatment in agriculture management. We show decreasing
values of NDVI, GNDVI, SAVI for different operational scenarios, for example, pre and after harvest
GBH treatment. CVI response is random and without clear response compared to the other indices.
New insights are (i) that satellite based broadband spectral indices are able to represent the impact
of GBH on vegetation and (ii) fast vegetation response to treatment and its detection by time-series
analysis. In comparison to available scientific experiments using high resolution (geometric/ pixel size)
airborne or ground based radiometer data [20,29], it is shown that satellite based 10 m × 10 m pixel
data also provide gradual information.

For Harraser Leite, a strong decrease in NDVI values was detected (see Table 4 and Figures 3
and 5). As the reference site (no GBH treatment) shows similar decrease, it might be assumed that
decreasing vegetation response is caused by another environmental influence, e.g., the extreme regional
drought in 2018 (see Figure 6). However, the last two observation dates show a greater decrease of
NDVI at Harraser Leite, which leads to the assumption that the effect of GBH treatment is detectable
even after grubbing. Another observed phenomenon is the spatially varying temporal delay of the
vegetation response of Harraser Leiter. The decrease in NDVI of the western part appears already
in the first three days after GBH treatment. As the western part has higher clay content, it may be
assumed that decreasing NDVI is caused by overlaying effects from GBH and drought. At day 11
and 19 after GBH application, the western part shows slightly higher NDVI values. This might be
explained by slower plant metabolism caused by higher clay content. Therefore, the GBH based plant
damage is temporally delayed.

A limitation of the study is missing in situ data of the vegetation species (e.g., detailed phenological
and physiological data), for example, to validate and discuss spatio-temporal pattern due to GBH
response. Causes for crop/weed growth could be due to nutrient deficiencies, insects, soil texture and
type, wind damage, pesticide spray drift. However, in [29], the correlation of NDVI, SAVI, GNDVI
with biological response and yield is systematically analysed and proved successfully. The aim of this
study was to show the application of satellite based multispectral data in real environments to support
future applications and motivate further research in satellite based research on agricultural treatment.

5. Conclusions and Perspectives

The present study provides proof-of-principle that broadband spectral vegetation indices provided
by ESA Sentinel-2 missions are applicable to monitor GBH based weed management in agricultural
landscapes. Different spectral vegetation indices can easily be calculated from available satellite
data and independently used for monitoring issues and application. The core of the approach is
the availability of satellite based multi-spectral time-series that allows the detection of changes and
gradients within an agricultural vegetation canopy.

For the interpretation of gradual changes, available data and expertise about agricultural cropping
can easily be implemented in rules and thresholds for autonomous algorithms. For example, a strong
decrease in green biomass within 6 days and detected in different spectral vegetation indices may
indicate the application of GBH (if no further extreme events like flooding or pests are documented).
This information could help to enforce regulations on harvesting, buffer zones for organic agriculture
and the selection of home ranges for bees for honey production. Organic farmers and beekeepers can
benefit from an indirect monitoring tool to identify crop and weed damage due to GBH application.
In addition to this, monitoring for glyphosate tolerance weeds may also be possible. The presented
results provide motivation for application and proof-of-principle for further research to define
vegetation indices based thresholds and incorporate further biotic and abiotic factors.
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As agricultural vehicles become better equipped with environmental sensors and cloud-based data
links, a valuable database including information about time, product type and dosage for weed and
crop treatment practice is becoming available. As soil and groundwater quality are directly affected by
agricultural management, information might be published comparable to data about air contamination,
e.g., by private cars and/or industry, as the public interest in sustainable natural resource management
is increasing (in our case soil, water and food). On the basis of a database within a linked open
data concept [30], satellite observations already provide the tool for indirect and areawide mapping
of GBH treatment and effect. The applications are manifold and might benefit stakeholders from
agriculture, biodiversity and environmental protection, land use and land management authorities
and food chain management.

The time-series monitoring approach can be advanced using imaging hyperspectral satellite
observations (e.g., EnMap) and increasing early damage detection using chlorophyll-fluorescence
observations from the upcoming FLEX mission. Monitoring GBH based weed and crop stress using
Chlorophyll Fluorescence observations [14] to assess photosynthetic activity promises a shift of the
detectable response day closer to the day of treatment and will support the reduction of ambiguities
(e.g., differences in metabolism due to different soils or species).

Furthermore, in [31], it is concluded that research on the effects of herbicides and pesticides on
soil microorganism and soil health does not receive appropriate attention. To address long-term and
areawide assessment of soil health, the presented approach might be easily implemented.

Author Contributions: Conceptualization, methodology, writing—original draft preparation, M.P.; software,
validation, formal analysis, F.R.; visualization, M.P. and F.R., writing-review and editing, C.M., E.C., M.P.

Funding: This research received no external funding.

Acknowledgments: Great thanks goes to the agricultural company kept anonymous in this study and providing
us valuable insight into common agricultural weed treatment in Germany.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schütte, G.; Eckerstorfer, M.; Rastelli, V.; Reichenbecher, W.; Restrepo-Vassalli, S.; Ruohonen-Lehto, M.;
Saucy, A.G.W.; Mertens, M. Herbicide resistance and biodiversity: Agronomic and environmental aspects of
genetically modified herbicide-resistant plants. Environ. Sci. Eur. 2017, 29, 5. [CrossRef] [PubMed]

2. Lupatini, M.; Korthals, G.W.; de Hollander, M.; Janssens, T.K.S.; Kuramae, E.E. Soil microbiome is more
heterogeneous in organic than in conventional farming system. Front. Microbiol. 2017, 7, 1–13. [CrossRef]
[PubMed]

3. Huang, Y.; Zhong-xin, C.; Tao, Y.; Xiang-zhi, H.; Xing-fa, G. Agricultural remote sensing big data: Management
and applications. J. Integr. Agric. 2018, 17, 1915–1931. [CrossRef]

4. Suarez, L.A.; Apan, A.; Werth, J. Hyperspectral sensing to detect the impact of herbicide drift on cotton
growth and yield. ISPRS J. Photogramm. Remote Sens. 2016, 120, 65–76. [CrossRef]

5. Henry, W.B.; Shaw, D.R.; Reddy, K.R.; Bruce, L.M.; Tamhankar, H.D. Remote sensing to detect herbicide drift
on crops. Weed Technol. 2004, 18, 358–368. [CrossRef]

6. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens.
Environ. 1979, 8, 127–150. [CrossRef]

7. West, H.; Quinn, N.; Horswell, M.; White, P. Assessing vegetation response to soil moisture fluctuation under
extreme drought using sentinel-2. Water 2018, 10, 838. [CrossRef]

8. Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K.; Grabska, E.; Hostert, P.; Pflugmacher, D.;
Ostapowicz, K. Forest stand species mapping using the sentinel-2 time series. Remote Sens. 2019, 11, 1197.
[CrossRef]

9. Lausch, A.; Bannehr, L.; Beckmann, M.; Boehm, C.; Feilhauer, H.; Hacker, J.M.; Heurich, M.; Jung, A.;
Klenke, R.; Neumann, C.; et al. Linking Earth Observation and taxonomic, structural and functional
biodiversity: Local to ecosystem perspectives. Ecol. Indic. 2016, 70, 317–339. [CrossRef]

10. EOS Earth Observing System. Available online: https://eos.com/ (accessed on 10 September 2019).

http://dx.doi.org/10.1186/s12302-016-0100-y
http://www.ncbi.nlm.nih.gov/pubmed/28163993
http://dx.doi.org/10.3389/fmicb.2016.02064
http://www.ncbi.nlm.nih.gov/pubmed/28101080
http://dx.doi.org/10.1016/S2095-3119(17)61859-8
http://dx.doi.org/10.1016/j.isprsjprs.2016.08.004
http://dx.doi.org/10.1614/WT-03-098
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.3390/w10070838
http://dx.doi.org/10.3390/rs11101197
http://dx.doi.org/10.1016/j.ecolind.2016.06.022
https://eos.com/


Remote Sens. 2019, 11, 2541 14 of 14

11. Hank, T.B.; Berger, K.; Bach, H.; Clevers, J.G.P.W.; Gitelson, A.; Zarco-Tejada, P.; Mauser, W. Spaceborne
imaging spectroscopy for sustainable agriculture: Contributions and challenges. Surv. Geophys. 2019,
40, 515–551. [CrossRef]

12. Gamon, J.A.; Somers, B.; Malenovský, Z.; Middleton, E.M.; Rascher, U.; Schaepman, M.E. Assessing
vegetation function with imaging spectroscopy. Surv. Geophys. 2019, 40, 489–513. [CrossRef]

13. Kraft, S.; Bello, U.D.; Bouvet, M.; Drusch, M. FLEX: ESA’S Earth Explorer 8 Candidate Mission. In Proceedings
of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July
2012; pp. 7125–7128.

14. Raji, S.N.; Aparna, G.N.; Mohanan, C.N.; Subhash, N. Proximal remote sensing of herbicide and drought
stress in field grown colocasia and sweet potato plants by sunlight-induced chlorophyll fluorescence Imaging.
J. INDIAN Soc. Remote Sens. 2017, 45, 463–475. [CrossRef]

15. Huang, Y.; Yao, H.; Zhao, F.; Reddy, K. Detection of crop herbicide injury through plant hyperspectral remote
sensing of chlorophyll fluorescence. In Proceedings of the 2017 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5069–5072.

16. Copernicus Incubation. Available online: https://copernicus-incubation.eu (accessed on 10 September 2019).
17. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 5 April 2019).
18. SNAP-ESA Sentinel Application Platform. Available online: https://step.esa.int/main/toolboxes/snap/

(accessed on 20 March 2019).
19. Zhao, F.; Huang, Y.; Guo, Y.; Reddy, K.N.; Lee, M.A.; Fletcher, R.S.; Thomson, S.J. Early detection of crop

injury from glyphosate on soybean and cotton using plant leaf hyperspectral data. Remote Sens. 2014,
6, 1538–1563. [CrossRef]

20. Thelen, K.D.; Kravchenko, A.N.; Lee, C.D. Use of optical remote sensing for detecting herbicide injury in
soybean. WEED Technol. 2004, 18, 292–297. [CrossRef]

21. Dicke, D.; Jacobi, J.; Büchse, A. Quantifying herbicide injuries in maize by use of remote sensing
Quantifizierung von Herbizidschäden in Mais mit Hilfe von Fernerkundung. In Proceedings of the
25th German conference on weed biology and weed control, Braunschweig, Germany, 13–15 March 2012;
pp. 199–205.

22. Ortiz, B.V.; Thomson, S.J.; Huang, Y.; Reddy, K.N.; Ding, W. Determination of differences in crop injury
from aerial application of glyphosate using vegetation indices. Comput. Electron. Agric. 2011, 77, 204–213.
[CrossRef]

23. Yao, H.; Huang, Y.; Hruska, Z.; Thomson, S.J.; Reddy, K.N. Using vegetation index and modified derivative
for early detection of soybean plant injury from glyphosate. Comput. Electron. Agric. 2012, 89, 145–157.
[CrossRef]

24. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
25. Sobrino, J.A.; Raissouni, N.; Li, Z.L. A comparative study of land surface emissivity retrieval from NOAA

data. Remote Sens. Environ. 2001, 75, 256–266. [CrossRef]
26. Tang, B.-H.; Shao, K.; Li, Z.-L.; Wu, H.; Tang, R. An improved NDVI-based threshold method for estimating

land surface emissivity using MODIS satellite data. Int. J. Remote Sens. 2015, 36, 4864–4878. [CrossRef]
27. RStudio. Available online: https://rstudio.com (accessed on 10 April 2019).
28. GDAL. Available online: https://gdal.org (accessed on 10 April 2019).
29. Huang, Y.; Reddy, K.N.; Thomson, S.J.; Yao, H. Assessment of soybean injury from glyphosate using airborne

multispectral remote sensing. PEST Manag. Sci. 2015, 71, 545–552. [CrossRef]
30. Lausch, A.; Schmidt, A.; Tischendorf, L. Data mining and linked open data–New perspectives for data

analysis in environmental research. Ecol. Model. 2015, 295, 5–17. [CrossRef]
31. Cuhra, M. Evolution of glyphosate resistance is the rhizosphere microbiome a key factor? J. Biol. Phys. Chem.

2019, 18, 78–93. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10712-018-9492-0
http://dx.doi.org/10.1007/s10712-019-09511-5
http://dx.doi.org/10.1007/s12524-016-0612-3
https://copernicus-incubation.eu
https://scihub.copernicus.eu/
https://step.esa.int/main/toolboxes/snap/
http://dx.doi.org/10.3390/rs6021538
http://dx.doi.org/10.1614/WT-03-049R2
http://dx.doi.org/10.1016/j.compag.2011.05.004
http://dx.doi.org/10.1016/j.compag.2012.09.001
http://dx.doi.org/10.1016/0034-4257(88)90106-X
http://dx.doi.org/10.1016/S0034-4257(00)00171-1
http://dx.doi.org/10.1080/01431161.2015.1040132
https://rstudio.com
https://gdal.org
http://dx.doi.org/10.1002/ps.3839
http://dx.doi.org/10.1016/j.ecolmodel.2014.09.018
http://dx.doi.org/10.4024/18CU17A.jbpc.18.02
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site and GBH Treatment 
	Sentinel-2 Multispectral Data and Pre-Processing 
	Spectral Indices and Statistics 

	Results 
	Spectral Indices Responses for All Test Sites 
	NDVI Time-Series: Test Sites vs. Reference Sites 

	Discussion 
	Conclusions and Perspectives 
	References

