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Abstract: Due to the high temporal resolution (e.g., 10 s) required, and large data volumes (e.g.,
360 images per hour) that result, there remain significant issues in processing continuous ground-based
synthetic aperture radar (GBSAR) data. This includes the delay in creating displacement maps, the
cost of computational memory, and the loss of temporal evolution in the simultaneous processing of
all data together. In this paper, a new processing chain for real-time GBSAR (RT-GBSAR) is proposed
on the basis of the interferometric SAR small baseline subset concept, whereby GBSAR images are
processed unit by unit. The outstanding issues have been resolved by the proposed RT-GBSAR
chain with three notable features: (i) low requirement of computational memory; (ii) insights into the
temporal evolution of surface movements through temporarily-coherent pixels; and (iii) real-time
capability of processing a theoretically infinite number of images. The feasibility of the proposed
RT-GBSAR chain is demonstrated through its application to both a fast-changing sand dune and a
coastal cliff with submillimeter precision.

Keywords: ground-based synthetic aperture radar; interferometry; time series analysis; real-time;
deformation monitoring; small baseline subset algorithm

1. Introduction

In comparison to spaceborne synthetic aperture radar (SAR), ground-based SAR (GBSAR) has an
inherent flexibility of allowing adjustable temporal resolution in data acquisition. Depending on the
rate of change in any particular case study, or the practical environment for instrument deployment,
GBSAR data acquisition can be performed in either continuous or discontinuous mode [1–4]. According
to Crosetto, et al. [1], the continuous mode of operation is the more commonly deployed technique. The
continuous mode employs a zero-baseline geometry for all acquisitions, thus avoiding influences of
hardware related technical issues and leading to better performance in terms of the density, precision,
and reliability of deformation measurements [5,6]. This study therefore focuses only on continuous
GBSAR deformation monitoring.

In the continuous mode, consecutive acquisitions with a high temporal resolution (up to several
seconds) enable time series analysis of fast-changing scenarios that can provide insight into mechanisms
and triggering factors of hazardous events, or even act as the basis for early warning systems. However,
in practice, the processing of continuous GBSAR data has the following characteristics:
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(1) A large number of image acquisitions are usually performed in a continuous campaign due
to the requirement or desire for high temporal resolution GBSAR data. For instance, the current
FastGBSAR system [7] can repeat an acquisition at the finest resolution every ten seconds, implying that
up to 360 images can be acquired every hour. There are two significant challenges in processing such a
large volume of consecutive GBSAR images: (a) the management of computational random-access
memory (RAM) for such a large number of images, and (b) the inevitable presence of targets that are
temporarily coherent for a certain length of time, but not for the entire observation period.

(2) Real-time processing of GBSAR imagery may be required in urgent situations, e.g., landslide
early-warning systems, where the creation of displacement maps is required in as short a time frame
as possible.

(3) Continuous data collection is performed by fixing the radar instrument in a stationary position.
In this case, the spatial baseline is always zero and the topographic effect is absent in the interferometric
phase [2,3]. Therefore, spatial baseline operations such as the co-registration of master and slave images,
the removal of topographic phase contribution, and the estimation of orbital errors in spaceborne
Interferometric SAR (InSAR) processing can be omitted in a continuous GBSAR interferometric
processing chain.

(4) Atmospheric phase screen (APS) is usually considered spatially correlated and temporally
uncorrelated for spaceborne SAR [8,9]. The estimation of APS in spaceborne SAR data is often
performed through temporal high pass and spatial low pass filtering, which is not applicable in the
GBSAR case due to the extremely short time intervals between SAR acquisitions [10].

Regarding data processing in continuous GBSAR, representative approaches are summarized.
(i) Simultaneous processing of all data together in a typical InSAR time series procedure (e.g., [11,12]),
which, however, leads to three issues: delay in production of displacement maps, extreme cost of
computational memory, and the loss of temporal evolution. (ii) Temporal averaging of images [13],
which can improve the signal-to-noise ratio (SNR) and reduce the volume of continuous GBSAR data
at the expense of temporal resolution. This is not appropriate in fast-changing scenarios where large
deformation occurring in a short period can lead to coherence losses and unreliable measurements.
(iii) A real-time approach developed by Roedelsperger, et al. [14], which involves a two-step phase
unwrapping strategy. In the approach, ordinary persistent scatterers (PSs) are distinguished from a
subset of selected persistent scatterer candidates (PSCs). Unwrapping results are obtained by only
selected PSCs and then expanded to all other ordinary PSs. Thus, the solutions for PSs are smoothed
and dependent on the reliability of PSC results, which is a drawback of this approach. Additionally,
sudden phase changes can occur on any single PSC pixel and probably cause regional unwrapping
errors and propagate to the final cumulative deformation.

With consideration of these characteristics and unaddressed issues, a new processing chain has
been developed for real-time continuous GBSAR deformation monitoring, termed real-time GBSAR
(RT-GBSAR). This paper describes the main endeavors addressing RAM management, real-time
capability, and the reliability of processing consecutive GBSAR data with high temporal resolution and
large data volumes.

2. Materials and Methods

The proposed RT-GBSAR chain exploits the small baseline subset (SBAS) concept and processes
consecutive GBSAR single-look complex (SLC) images on a unit by unit basis. SLC images within a
temporal window form a basic unit in the chain. The flow is controlled by two parameters: the window
size and the temporal baseline constraint. The window size represents the number of SLC images in a
unit, and the temporal baseline constraint specifies the number of preceding images that are allowed
to form interferograms with the current image. The overlap of two neighboring units is fixed as a
twofold temporal baseline constraint. A schematic of the proposed strategy is illustrated in Figure 1.
A complete time series analysis is performed within each unit and adjacent units are connected via the
overlapping SLC images.
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Figure 1. Schematic of the real-time ground-based synthetic aperture radar (RT-GBSAR) processing 
chain. SLC is single-look complex. 

By adopting this strategy, the RT-GBSAR chain has several merits. Firstly, the RAM requirement 
is limited to only one unit of SLC images, and the chain can theoretically process an infinite number 
of oncoming images. Secondly, it affords the opportunity to investigate the evolution of surface 
movements since it preserves temporarily-coherent pixels, which are present in one or more units, 
but not in the entire observation period. Thirdly, this chain supports real-time processing of the 
oncoming data, and any latency in the creation of displacement maps can be minimized since there 
is no requirement to wait for the entire dataset before processing commences.  

The SBAS concept in the proposed RT-GBSAR chain is illustrated in Figure 2. The procedure in 
each unit starts with a new SLC image. Once a new SLC image is received, interferograms can be 
generated using the new SLC and its previous 𝑇  SLC images (where 𝑇  denotes the temporal 
baseline constraint). In practice, the selection of the temporal baseline is made on the basis of both 
computational efficiency and the required accuracy [15]. A longer temporal baseline constraint 
results in a more redundant network of interferograms at the expense of computational efficiency. 
Additionally, the temporal baseline should be relatively short for rapidly changing scenarios as 
temporal decorrelations can be significant. In the process, the SBAS procedure will not begin until 
the number of available SLC images is sufficient (i.e., equivalent to a full time window).  

 

Figure 2. Flowchart of the small baseline subset (SBAS) time series analysis in the RT-GBSAR chain. 
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To achieve reliable time series results, advanced InSAR algorithms are integrated into the 
proposed SBAS procedure. Specifically, a temporal baseline constraint is set to construct a redundant 
network of interferograms. The accurate coherence of each interferogram is calculated by the non-
local “MIAS” method [16]. A set of coherent pixels are detected for further analysis via the full-rank 
criterion proposed in Wang, Li and Mills [15]. The interferometric phase of the detected coherent 
pixels is firstly de-noised using the non-local “MIAS” filter [16] and then unwrapped using the 
“StaMPS” 3D unwrapping approach [17]. Thereafter, a least-squares solution for each pixel can be 
achieved in the time series estimation using only the coherent phase of this pixel [15]. Note that the 
solution at this stage is the superposition of APS and displacements. To obtain precise displacements, 
atmospheric artefacts should be compensated appropriately [18]. In this SBAS procedure, the APS 

Figure 1. Schematic of the real-time ground-based synthetic aperture radar (RT-GBSAR) processing
chain. SLC is single-look complex.

By adopting this strategy, the RT-GBSAR chain has several merits. Firstly, the RAM requirement
is limited to only one unit of SLC images, and the chain can theoretically process an infinite number
of oncoming images. Secondly, it affords the opportunity to investigate the evolution of surface
movements since it preserves temporarily-coherent pixels, which are present in one or more units,
but not in the entire observation period. Thirdly, this chain supports real-time processing of the
oncoming data, and any latency in the creation of displacement maps can be minimized since there is
no requirement to wait for the entire dataset before processing commences.

The SBAS concept in the proposed RT-GBSAR chain is illustrated in Figure 2. The procedure in
each unit starts with a new SLC image. Once a new SLC image is received, interferograms can be
generated using the new SLC and its previous T SLC images (where T denotes the temporal baseline
constraint). In practice, the selection of the temporal baseline is made on the basis of both computational
efficiency and the required accuracy [15]. A longer temporal baseline constraint results in a more
redundant network of interferograms at the expense of computational efficiency. Additionally, the
temporal baseline should be relatively short for rapidly changing scenarios as temporal decorrelations
can be significant. In the process, the SBAS procedure will not begin until the number of available SLC
images is sufficient (i.e., equivalent to a full time window).
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APS is atmospheric phase screen.

To achieve reliable time series results, advanced InSAR algorithms are integrated into the proposed
SBAS procedure. Specifically, a temporal baseline constraint is set to construct a redundant network of
interferograms. The accurate coherence of each interferogram is calculated by the non-local “MIAS”
method [16]. A set of coherent pixels are detected for further analysis via the full-rank criterion proposed
in Wang, et al. [15]. The interferometric phase of the detected coherent pixels is firstly de-noised using
the non-local “MIAS” filter [16] and then unwrapped using the “StaMPS” 3D unwrapping approach [17].
Thereafter, a least-squares solution for each pixel can be achieved in the time series estimation using
only the coherent phase of this pixel [15]. Note that the solution at this stage is the superposition of APS
and displacements. To obtain precise displacements, atmospheric artefacts should be compensated
appropriately [18]. In this SBAS procedure, the APS for scenarios with flat topography is corrected
by modelling it as a linear function of the radar-to-target range under the medium homogeneity
hypothesis [19]. Otherwise, APS in cases with significant topographic variations can be considered
using a range- and height-dependent model and compensated with the support of ground height
information [20]. In practice, a subset of highly-coherent pixels is selected from stable areas to recover
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the APS models by means of linear regression. The stable areas can be identified through a priori
knowledge and visual inspection of the superposition of APS and displacements [15,21].

The time series estimation produces a least-squares solution [15], which is the optimal solution
within the individual unit. However, the solution for an individual unit is not necessarily globally
optimal when deformation information spanning multiple consecutive units is required. To address
this issue, adjacent units can be linked by their common coherent pixels in the proposed RT-GBSAR
chain. The adjacent units are then merged into a longer unit and the optimal solution for the resultant
merged unit can be achieved. For example, assume two units are defined with a window size of 30
and a temporal baseline constraint of 3 (i.e., overlap size of 6). The first unit runs from the 1st to the
30th image and the second unit from the 25th to the 54th image. These two units can be merged into
a new contiguous unit running from the 1st to the 54th image. As time series analysis is performed
within each unit independently, the selected coherent pixels in these two units (denoted as CPsunit1
and CPsunit2, respectively) may be different. To pursue an optimal solution for the newly merged
contiguous unit, the time series analysis may be performed again on the basis of the intersection of the
two coherent pixel sets, i.e., CPsunit1

⋂
CPsunit2.

3. Results

A FastGBSAR system [7] was used for data collection in this study. The radar system operates at
Ku band and allows an adjustable temporal and spatial resolution in data acquisition. In the case of
the finest spatial resolution (i.e., 0.5 m in range and 4.8 rad in azimuth), the upper limit of temporal
resolution is 10 seconds. Experiments on two short-term but large-volume continuous FastGBSAR
datasets were conducted to demonstrate the feasibility of the proposed RT-GBSAR chain for continuous
deformation monitoring. The case studies include a sand dune and a coastal cliff.

The algorithms used in the experiments were introduced in Section 2. The key parameters for
SBAS analysis comprised a typical set of MIAS parameters (similarity threshold: 0.85; non-local
window size: 15 × 15 pixels; and a minimum of 10 siblings for a reliable coherence estimation and
phase filtering), and a coherence threshold of 0.45 for the selection of temporarily-coherent pixels.
Considering the moderate observing size and height variation of the two case studies, height-related
APS was ignored. APS was thus corrected by regressing a linear range-dependent model (namely
APS = a0 + a1r, where a0, a1 are coefficients and r is the slant range between the radar and the target)
with 10% of the selected temporally-coherent pixels.

3.1. Sand Dune Case Study

The first dataset was collected on 5 January 2015 and consisted of a sand dune area at Feicuidao
on the Changli Gold Coast, Hebei Province, China. It was reported that this area experienced a
fast-changing process during the period of 2006–2008 with a significant movement of up to 10.68 meters
at the leeward slope bottom and up to 7.12 meters at the crest of the dune [22]. Movements were related
to the regional wind regime, the morphological characteristics of the dune, and human activities.
An overview of this site can be seen in Figure 3. The image size of the dataset was 371 × 306 pixels and
the spatial resolution 0.5 m in the range direction and 5 mrad in the azimuth direction. The dataset
consisted of 478 continuous SLC images with a temporal resolution of 10 seconds over an observation
period of 1 hour 38 minutes. Somehow, a few images were occasionally not recorded by the system,
probably due to the hardware insufficiency in data acquisition at such a high temporal and spatial
resolution. The dataset was processed using the proposed RT-GBSAR chain with a temporal baseline
constraint of five, implying that any one image can be allowed to generate interferograms with its five
previous and five subsequent images. Overlap size was fixed as a twofold temporal baseline constraint,
namely 10 images, in this experiment. The entire dataset of 478 images was processed in 10 units with
a unit size of 60 images. Information about these units is summarized in Table 1.
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Figure 3. Overview of the sand dune at Feicuidao on the Changli Gold Coast, Hebei Province, China.
(a) Oblique photograph of the site. Three in-situ corner reflectors (CRs) are marked with yellow circles.
Two areas of interest are roughly outlined: Area #1 is covered with sparse vegetation and Area #2 is
devoid of vegetation. (b) A corresponding amplitude image of this site.

Table 1. Information about processing units of the sand dune dataset.

Unit Start End Coherent Pixels

1 1 60 5085
2 51 110 3643
3 101 160 5222
4 151 210 5664
5 201 260 6128
6 251 310 6102
7 301 360 3298
8 351 410 4569
9 401 460 6887

10 451 478 6831
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Figure 4. RT-GBSAR results of the sand dune dataset. (a–j): The displacement maps of all units from
the first to the last, respectively. The cumulative displacement map with respect to units 3–6 is given in
subfigure (k) and that of units 8–10 in (l). Note that Area #1 is indicated in a black loop and Area #2 in
a red one.
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Displacement maps for all 10 units of the dune dataset are shown in Figure 4. It should be noted
that coherent pixels in Area #2 disappeared in unit 7. This was because the corner reflector CR #2 was
moved to the location of CR #3 during the period of data collection in unit 7. The process is illustrated
by the sequential amplitude images shown in Figure 5. The moving corner reflector produced side-lobe
patterns and contaminated Area #2. Therefore, very few coherent pixels were present in Area #2 of
unit 7. Thus, two cumulative displacement maps (before and after unit 7) are also plotted in Figure 4.
The displacement map of units 3–6 is shown in Figure 4k and that for units 8–10 in Figure 4l. It is
apparent that Area #1 was generally stable over the entire observation period, with deformation
primarily exhibited in Area #2. Here, a maximum cumulative displacement of up to 8 mm within a
period of 35 minutes spanning units 3–6 can be seen in Figure 4k and 5 mm over another period of
22 minutes spanning units 8–10 in Figure 4l. Negative displacement values imply that targets moved
closer to the radar system along the line-of-sight direction. Thus, the observed deformation most likely
arose due to the process of sand sliding down the slope, which is consistent with the direction of the
prevalent wind observed during fieldwork.Remote Sens. 2017, 9, x FOR PEER REVIEW  7 of 18 
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Area #1 was covered with sparse and shallow vegetation while Area #2 comprised only loose
sand devoid of any vegetation. During the short period of data collection, the Beaufort wind force
scale was recorded at the level of light air, approximately 1–2 miles per hour. In addition, both areas
were occasionally intruded by humans over the observation period. Therefore, the sand motion can
be attributed to three factors, namely natural slope instability of the dune, wind force, and human
intrusion/activity. No matter what triggered the sand motion, the FastGBSAR results provide evidence
that the presence of vegetation in coastal dunes plays an important role in helping stabilize the surface
against sand motion.

3.2. Coastal Cliff Case Study

The second dataset was collected on 16 November 2016 by continuously observing the cliff on the
north side of Tynemouth Priory and Castle, Tynemouth, UK. The FastGBSAR observation lasted two
hours from 12:31:24 to 14:29:24 with a temporal resolution of 10 seconds and a spatial resolution of
0.75 m in range and 5 mrad in azimuth. A few acquisitions were not recorded by the system due to
hardware related issues. The resultant dataset consisted of 696 continuous SLC images. An overview
of the data collection is illustrated in Figure 6. It should be noted that GBSAR monitoring of this
study site was previously reported in two papers [15,16]. However, the two studies processed the
data over the entire observation period together and failed to extract the temporal evolution of the
surface processes. This paper, on the other hand, presents the new and noteworthy findings from the
RT-GBSAR processing of the large-volume data.
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Figure 6. Overview of the coastal cliff. (a) Deployment of the FastGBSAR system for data collection.
(b) Approximate co-registration of a GBSAR amplitude image with the planimetric view of the observing
site in Google Earth.

The dataset was processed using RT-GBSAR adopting the same parameters as the dune dataset,
i.e., a unit size of 60 images and a temporal baseline constraint of five images. The entire dataset of
696 images was processed in 14 units. The information about each unit is given in Table 2.

Table 2. Information about processing units of the cliff dataset.

Unit Start End Coherent Pixels

1 1 60 11,859
2 51 110 10,975
3 101 160 10,671
4 151 210 10,046
5 201 260 10,303
6 251 310 9273
7 301 360 9508
8 351 410 8887
9 401 460 8391

10 451 510 7503
11 501 560 6661
12 551 610 5691
13 601 660 4531
14 651 696 4331
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To display the temporal evolution, the displacement maps for all 14 units of the cliff dataset are
shown in Figure 7. In addition, the final cumulative displacement map for pixels that are coherent over
the entire observation period is also given in Figure 7o.

Remote Sens. 2017, 9, x FOR PEER REVIEW  9 of 18 

 

 
Figure 7. RT-GBSAR results of the coastal cliff dataset. (a–n): The displacement maps of all units from 
the first to the last are shown in subfigures, respectively. The cumulative displacement map with 
respect to pixels that are coherent over the entire observation period is given in (o).  

As shown in Figure 7, three areas of interest (AOIs) with deformation signals were visible in 
some units but not in the final cumulative displacement map. Specifically, the deformation signals 
indicated by the red ellipse were obvious from the 1st to the 7th unit and faded from the 8th unit 
onwards. The deformation signals indicated by the black rectangle were weak at the beginning and 
became active in the 5th unit, and the deformation signals indicated by the red square temporarily 
existed from the 9th to the 10th unit. The practical locations of these AOIs were near the sea. Among 

Figure 7. RT-GBSAR results of the coastal cliff dataset. (a–n): The displacement maps of all units
from the first to the last are shown in subfigures, respectively. The cumulative displacement map with
respect to pixels that are coherent over the entire observation period is given in (o).

As shown in Figure 7, three areas of interest (AOIs) with deformation signals were visible in some
units but not in the final cumulative displacement map. Specifically, the deformation signals indicated
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by the red ellipse were obvious from the 1st to the 7th unit and faded from the 8th unit onwards. The
deformation signals indicated by the black rectangle were weak at the beginning and became active
in the 5th unit, and the deformation signals indicated by the red square temporarily existed from
the 9th to the 10th unit. The practical locations of these AOIs were near the sea. Among them, the
AOI indicated by the red ellipse was the lowest and nearest to the sea, and the red square was the
highest and furthest from the sea. During the observation period, the water level rose with the sea
tides and gradually submerged these areas. The tidal elevation for the observation area on the day of
data collection is given in Figure 8.
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With the increasing water level, the number of coherent pixels in each unit generally decreased.
The number of coherent pixels shared by all units totaled only 3428. However, only a very few pixels
with significant deformation could be found in the total cumulative displacement map in Figure 7o,
and the temporal evolution of the marked AOIs near the sea were nearly lost. This demonstrates the
importance of exploiting temporarily-coherent pixels and processing continuous GBSAR data on a
unit by unit basis. Otherwise, the temporal evolution of ground deformation cannot be detected.

In order to investigate the time series process, a set of pixels (P1, P2, P3, P4, and P5) were selected
from the results of units 1–14 in Figure 7o. Pixels P1–P4 corresponded to ground targets that were near
the sea, while P5 was located on a building. The time series of displacements and APS for these pixels
are shown in Figure 9. According to the displacement time series, pixels P1–P4 were stable for the first
0.6 h. After that these pixels gradually moved as the sea tide approached to these targets. In contrast,
pixel P5 remained stable for the entire observation period. Besides, the APS time series showed that
the smallest APS was experienced by P4 as it was the nearest target to the radar system, while the
greatest was experienced by P1 as it was the furthest among the selected targets. This is consistent
with the APS correction model (APS = a0 + a1r, where a0, a1 are coefficients and r is the slant range
between the radar and the target) used in this experiment.
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The deformation maps, time-series displacements, and relevant analysis therefore suggest that the
ground deformation is related to the sea tides. Without proper validation data, it is difficult to interpret
the deformation signals. The findings, which may be useful for the interpretation, are summarized
as follows: (i) the physical feature of the moving targets was rock; (ii) targets moved always from
the sea and towards the coast during the observation period with incoming tide; (iii) the occurrence
of movement was consistent with the sequence of the sea tide approaching these targets; and (iv)
deformations behaved as local signals.

4. Discussion

In this section, the performance of the developed RT-GBSAR chain is discussed, the analysis
focusing on the identification of unwrapping errors in experiments and the assessment of precision
in InSAR time series. The real-time capability of the proposed chain is also discussed with different
parameter configurations.

4.1. Identification of Unwrapping Errors

Computation of a successful InSAR time series analysis heavily relies on the performance of phase
unwrapping. In this study, the detection and identification of unwrapping errors was accomplished.
Assuming a set of three interferograms (Ilm, Imn, Iln) formed by three complex SAR images (El, Em, En),
the raw phase for a pixel on the three complex images is denoted as (ψl,ψm,ψn) and the interferometric
phase on the three interferograms is (ϕlm,ϕmn,ϕln). If phase unwrapping is correct for all three
interferograms, the relationship ϕlm + ϕmn −ϕln = 0 should be held by any coherent pixel on these
interferograms [24,25]. The three interferograms form a closed temporal loop. Unwrapping errors
always result in multiples of 2π phase misclosures and can be identified by summing round a closed
temporal loop or checking a misclosure map [24]. Note that spatial filtering is often applied before
phase unwrapping, which breaks the phase triangularity in a closed loop [26,27]. Therefore, the phase
misclosure threshold for the identification of unwrapping errors is empirically and conservatively set
as π, namely an unwrapping error was defined by

∣∣∣ϕlm + ϕmn −ϕln
∣∣∣ > π in this study.

For a unit of 60 images with a temporal baseline constraint of five images, there are 560 closed
temporal loops. This study sums the unwrapping errors along all the temporal loops, which can be
used to identify any unwrapping errors that are present. Note that the displacement maps shown in
Figures 4 and 7 are only for coherent pixels without unwrapping errors. The number of coherent pixels,
both with and without unwrapping errors, for units in the two case studies are shown in Tables 3 and 4,
respectively. As can be seen from the results in Tables 3 and 4, phase unwrapping is correct for the
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vast majority of selected coherent pixels in the dune monitoring application. The average percentage
of correct unwrapping is 99.47% for the dune dataset and 99.95% for the cliff dataset. The results
achieved by the RT-GBSAR chain for the two datasets can thus be considered reliable. Between the
two results, a few more unwrapping errors can be identified in the sand dune dataset, an issue related
to data quality. The scene of the coastal cliff dataset primarily consisted of rocks, concrete structures,
and buildings, which can provide backscattering radar signals with better SNR than the sand dune
with its smooth sand or sparse vegetation. Moreover, human intrusion onto the sand dune also added
noise to this dataset.

Table 3. Statistics with respect to unwrapping errors for the sand dune dataset.

Unit Coherent Pixels Pixels without Unwrapping
Errors (Percentage)

Pixels with Unwrapping
Errors (Percentage)

1 5085 5070 (99.71%) 15 (0.29%)
2 3643 3613 (99.18%) 30 (0.82%)
3 5222 5219 (99.94%) 3 (0.06%)
4 5664 5660 (99.93%) 4 (0.07%)
5 6128 6119 (99.85%) 9 (0.15%)
6 6102 6043 (99.03%) 59 (0.97%)
7 3298 3255 (98.70%) 43 (1.30%)
8 4569 4528 (99.10%) 41 (0.90%)
9 6887 6868 (99.72%) 19 (0.28%)

10 6831 6781 (99.27%) 50 (0.73%)
3–6 4030 4021 (99.78%) 9 (0.22%)

8–10 3712 3690 (99.41%) 22 (0.59%)

Table 4. Statistics with respect to unwrapping errors for the cliff dataset.

Unit Coherent Pixels Pixels without Unwrapping
Errors (Percentage)

Pixels with Unwrapping
Errors (Percentage)

1 11,859 11,857 (99.98%) 2 (0.02%)
2 10,975 10,973 (99.98%) 2 (0.02%)
3 10,671 10,668 (99.97%) 3 (0.03%)
4 10,046 10,032 (99.86%) 14 (0.14%)
5 10,303 10,297 (99.94%) 6 (0.06%)
6 9273 9272 (99.99%) 1 (0.01%)
7 9508 9506 (99.98%) 2 (0.02%)
8 8887 8868 (99.79%) 19 (0.21%)
9 8391 8388 (99.96%) 3 (0.04%)

10 7503 7502 (99.99%) 1 (0.01%)
11 6661 6659 (99.97%) 2 (0.03%)
12 5691 5691 (100.00%) 0 (0.00%)
13 4531 4531 (100.00%) 0 (0.00%)
14 4331 4331 (100.00%) 0 (0.00%)

1–14 3428 3421 (99.80%) 7 (0.20%)

4.2. Precision of Time Series Analysis

The inversion precision of SBAS time series analysis for a pixel is defined in Wang, et al. [15].
The precision maps for both applications are shown in Figures 10 and 11, respectively. The overall
precision indicator for all the coherent pixels is the root mean square (RMS) of the inversion precision
values, which is deduced on the basis of misclosure of the redundant interferometric phase in the time
series estimation. A small precision value represents good consistency in the redundant observations.
According to the precision maps shown in Figures 10 and 11, the overall precision reaches a few
submillimeters, which supports the feasibility of the proposed chain for high-precision GBSAR
deformation monitoring.
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The precision maps for unit 1 to unit 10 are shown in subfigures (a–j), respectively. The precision map
with respect to units 3–6 is given in subfigure (k) and that of units 8–10 in (l).
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Figure 11. Precision maps for coherent pixels without unwrapping errors in the coastal cliff application.
The precision maps for each unit from the 1st to the 14th are shown in subfigures (a–n), respectively.
The precision map with respect to the total units 1–14 is given in subfigure (o).

4.3. Real-Time Capability of RT-GBSAR

The proposed RT-GBSAR chain supports the real-time processing of a continuous stream of
GBSAR images. Real-time capability depends on the time series strategy and its implementation.
The latency (time cost) is thus twofold: (i) the acquisition time for a full window of images (denoted as
TW); and (ii) the processing time for time series analysis (denoted as TP). Accordingly, the real-time
capability is actually controlled by two parameters in the proposed chain, namely the window size of a
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unit (denoted as W) and the temporal baseline constraint (denoted as T). Note that the overlap size is
fixed as the twofold temporal baseline constraint (i.e., 2T). The acquisition time for a full window of
images in a unit is thus TW = (W − 2T)∆t, where ∆t denotes the temporal resolution. The effects of the
two parameters on the real-time capability, the density of coherent pixels, and the overall precision for
the coherent pixels in the time series estimation were analyzed using 100 images of the sand dune
dataset. The temporal resolution was 10 s, i.e., ∆t = 10 s. The results for multiple sets of the two
parameters are summarized in Table 5.

Table 5. Real-time capability and time-series results for different sets of parameters.

W T (∆t) Overlap:
2T (∆t)

Ifgs 1/
Unit

Units CPs 2 L 3 Errors 4 RMS 5

(mm)
Total
ifgs

TW
(∆t) TP (s)

5 1 2 4 33 1826 0 NA NA 131 3 101
10 1 2 9 9 2122 0 NA NA 111 8 56
15 1 2 14 8 2264 0 NA NA 106 13 48
20 1 2 19 6 2319 0 NA NA 104 18 41
5 2 4 7 94 2194 98 0 0.33 662 1 329
10 2 4 17 16 2997 98 0 0.38 272 6 77
15 2 4 27 9 3229 98 0 0.4 237 11 72
20 2 4 37 6 3410 98 0 0.44 222 16 62
5 3 NA NA NA NA NA NA NA NA NA NA
10 3 6 24 23 3166 292 0 0.27 558 4 144
15 3 6 39 11 3673 292 1 0.3 414 9 110
20 3 6 54 7 3691 292 0 0.31 366 14 93
5 4 NA NA NA NA NA NA NA NA NA 386
10 4 8 30 44 3175 580 0 0.19 1336 2 163
15 4 8 50 13 3670 580 7 0.23 654 7 151
20 4 8 70 8 3972 580 6 0.26 544 12 101

1 Ifgs: interferograms; 2 CPs: coherent pixels over all units; 3 L: the number of closed temporal loops; 4 Errors:
coherent pixels with unwrapping errors; 5 RMS: precision indicator for time series estimation.

The following conclusions can be reached, according to the results presented in Table 5: (1) The
total time cost comprises the data acquisition time (TW) and the data processing time (TP). It is intuitive
that a higher temporal resolution leads to a shorter latency since data is provided more quickly to
begin processing. The latency is also dependent on the difference between the unit size and the overlap
size (W − 2T). The processing time increases with the number of interferograms (“Total ifgs”), which
mainly depends on the temporal baseline constraint. Therefore, the real-time capability can be jointly
enhanced by improving the temporal resolution and reducing the temporal baseline constraint. (2) The
density of coherent pixels (i.e., “CPs” over all units) increases with the temporal baseline constraint
when using the full-rank approach [15]. A longer temporal baseline constraint will lead to increased
redundancy in the interferogram network and to more reliable results (indicated by a lower RMS
value), but at the expense of the computational efficiency (indicated by a longer processing time
TP). An insufficiently small unit size (e.g., W = 5) may reduce the density of coherent pixels over all
units. Thus, a small unit size is only recommended if the monitoring campaign involves an extremely
fast-changing site with a high real-time demand, e.g., for early warning purposes. Otherwise, the unit
size can be increased.

It is worth noting that processing time TP depends on the adopted programming language,
the algorithm implementation, and the computer configuration. Here, the proposed approach was
implemented using C++ programming language and graphics processing unit (GPU) acceleration.
Processing time cost was recorded by running the program on a laptop with an Intel i7 2.40 GHz CPU
and an NVIDIA GeoForce 940M graphic card.
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4.4. Computational RAM of RT-GBSAR

To demonstrate the efficiency of RT-GBSAR on the management of computational RAM, the entire
dataset of 696 images used in the costal cliff case study was processed with different unit settings.
The computational RAM, the number of units, and images per unit are summarized in Figure 12.
The conventional processing of all the images together in one single unit required 9.5 GB (Gigabyte)
RAM. The RAM was reduced to only 1.0 GB by the proposed RT-GBSAR with the setting of 14 units
and 60 images per unit.
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5. Conclusions

The significant challenges in processing continuous GBSAR data have been resolved through
the implementation of the proposed RT-GBSAR chain. The chain has three notable features: (i) low
requirement of computational RAM; (ii) insights into the evolution of surface movements through
temporarily-coherent pixels; and (iii) real-time capability to process a theoretically infinite number of
images. The applications of monitoring a fast-changing sand dune and a coastal cliff demonstrated that
the proposed chain can achieve a precision of a few submillimeters in time series estimation. The dune
application demonstrates the importance of vegetation in stabilizing coastal dune surfaces against
sand erosion. In the coastal cliff application, the RT-GBSAR results reveal displacements only in the
area near the sea and suggest that the triggering of ground deformation is related to the sea tides.
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