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Abstract: In this paper, an unsupervised unmixing approach based on superpixel representation
combined with regional partitioning is presented. A reduced-size image representation is obtained
using superpixel segmentation where each superpixel is represented by its mean spectra. The superpixel
image representation is then partitioned into regions using quadtree segmentation based on the
Shannon entropy. Spectral endmembers are extracted from each region that corresponds to a leaf of the
quadtree and combined using clustering into endmember classes. The proposed approach is tested
and validated using the HYDICE Urban and ROSIS Pavia data sets. Different levels of qualitative and
quantitative assessments are performed based on the available reference data. The proposed approach
is also compared with global (no-regional quadtree segmentation) and with pixel-based (no-superpixel
representation) unsupervised unmixing approaches. Qualitative assessment was based primarily
on agreement with spatial distribution of materials obtained from a reference classification map.
Quantitative assessment was based on comparing classification maps generated from abundance maps
using winner takes it all with a 50% threshold and a reference classification map. High agreement with
the reference classification map was obtained by the proposed approach as evidenced by high kappa
values (over 70%). The proposed approach outperforms global unsupervised unmixing approaches
with and without superpixel representation that do not account for regional information. The agreement
performance of the proposed approach is slightly better when compared to the pixel-based approached
using quadtree segmentation. However, the proposed approach resulted in significant computational
savings due to the use of the superpixel representation.

Keywords: hyperspectral unmixing; superpixel segmentation; endmember extraction; spatial
segmentation; quadtree segmentation; feature-space segmentation

1. Introduction

Hyperspectral imaging (HSI) systems collect spectral and spatial image data simultaneously
in hundreds of narrow contiguous spectral bands. Hyperspectral remote sensing is used in a wide
array of applications such as ecology, agriculture, mineralogy, and surveillance. In HSI, the observed
radiance from a single pixel rarely comes from a pure material but from a mixture of materials in
the field of view of the sensor. However, the high-spectral resolution of HSI enables the detection,
identification and classification of subpixel objects by their contribution to the measured spectra.
In the hyperspectral remote sensing literature, the distinct or pure materials in the scene are called
endmembers, and the fractions in which they appear in each pixel are called abundances [1,2].

Hyperspectral mixing can be based on the linear mixing model (LMM) [1,2] or the nonlinear
mixing model (NMM) [3]. The LMM states that the spectra of each pixel in the hyperspectral image
are the convex combinations of the scene endmember. The LMM is widely used as it provides a
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reasonable approximation in many satellite and airborne hyperspectral remote sensing applications.
The hyperspectral unmixing problem refers to finding the number of endmembers, their spectral
signatures, and their per-pixel abundances in a given hyperspectral image.

Most widely used algorithms for endmember extraction are based on the relation between the
LMM and convex geometry [2,4]. Because abundances are non-negative and sum to one, linearly
mixed hyperspectral pixels lie inside the simplex with vertices given by the endmembers [5]. Most
geometry-based endmember extraction algorithms search for the corners of the simplex as a way to
extract the endmembers. The Pixel Purity Index (PPI) [5,6] algorithm projects every spectral vector
onto a large set of random unit vectors (or skewers). The pixels corresponding to extremes (maximum
and minimum) for the projection onto each skewer are noted. The number of times each pixel appears
as an extreme point is recorded. The pixels with the highest scores are considered the purest ones and
thus selected as endmembers.

N-FINDER [7] is based on the fact that, in spectral space, the volume of the simplex formed by
the purest pixels is larger than the volume of the simplex generated any other combination of pixels.
This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data.
First, a set of pixels are randomly selected as endmembers. The algorithm iteratively replaces every
endmember for each pixel in the hyperspectral image calculating the volume. If the volume increases,
then the new pixel replaces the candidate endmember.

Vertex Component Analysis (VCA) [8] is based on the fact that the affine transformation of a
simplex is another simplex. VCA projects image pixels to a random direction, the pixel with the largest
projection is considered the first endmember. The other endmembers are found by projecting the pixels
onto a direction orthogonal to the subspace spanned by the current set of endmembers; the procedure
is repeated until the whole set of endmembers is found.

The MAX-D endmember extraction algorithm [6,9] begins by finding the two pixels that are
furthest apart in spectral space. All signatures are projected orthogonal to the difference vector
between these two pixels, which results in these two vectors projected onto the same vector. The most
distant vector from this one in the projected space is selected as the next endmember. The data are
projected again orthogonal to the difference between these two vectors, and the process is repeated
until the set of endmembers is extracted. PPI, N-FINDR, VCA and MAX-D assume that there are pure
pixels in the image and that the number of endmembers is known.

Spatial-spectral endmember extraction approaches take advantage of spatial properties that
endmembers may have for unmixing. For instance, pure endmembers in an image should be located
in homogeneous areas; see, for instance, [10,11]. A survey on incorporating spatial information in
spectral unmixing is presented in [12]. Another issue in spatial-spectral interaction is that there is
context in the spatial distribution of materials in the image (more on that later). Some endmembers
occupy small areas in the image or have low contrast with other endmembers. These signatures will
be hard to extract using the geometric endmember extraction approaches described previously. Here,
because of their relevance to our work, we only review spatial-spectral approaches that use spatial
sub-setting to improve the detection of small and low contrast endmembers.

The Spatial-Spectral Endmember Extraction (SSEE) algorithm proposed in [13] is based on the
idea that endmembers with high spectral contrast are easy to detect using any of the geometry-based
techniques described previously. On the other hand, the detection of endmembers with low spectral
contrast with respect to the full image is a harder task. SSEE breaks up the full image into spatial
subsets increasing the relative contrast of endmembers. The singular value decomposition (SVD) is
used to find a set of basis vectors that explain most of the spectral variability for the image subsets.
The full image is projected onto the local basis to determine a set of candidate endmembers from
where the final endmembers are selected. Spectrally similar endmembers from different spatial subsets
are averaged.

The Local-Local-Global (LLG) spatially adaptive hyperspectral unmixing algorithm presented
in [14] uniformly divides the image into fixed-size tiles. Endmember extraction and abundance
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estimation are performed on each individual tile. The Gram matrix [15,16] is used to estimate the
number of endmembers on each tile. The MAX-D endmember extraction algorithm [6,9] described
previously, is used for local endmember extraction on each tile. Abundances are estimated in
each tile using local endmembers and spectrally similar endmembers are clustered to determine
global abundances. Since the abundances are estimated locally, a tiling artifact is observed in the
final abundance maps. Uniform tiling is also used in [17] for unmixing where the tiling artifact
in the abundances is avoided by doing global computation of the abundances using all extracted
spectral endmembers.

Another approach that uses image spatial sub-setting for unmixing is presented in [18,19], where
spatial sub-setting of the image is done using quadtree partitioning (QT). The criterion for partitioning
is based on entropy [20]. The constrained non-negative matrix factorization (cNMF) as proposed
in [21] is used for unmixing of individual tiles. Local endmembers are clustered to form endmember
classes and global abundance maps are computed by solving the global abundance estimation using
all extracted endmembers to avoid the tiling artifact of the LLG algorithm in [14].

In the work presented here, we use the quadtree approach for spatial subsetting. We further explore
spatial domain information in the form of superpixel representation to reduce computational complexity
of the unmixing process. The proposed approach first performs superpixel segmentation using the SLIC
algorithm [22]. Spatial sub-setting is then performed in the superpixel representation of the image using
quadtree partitioning. The reduction in the computational complexity is a result of the unmixing process
being performed on the small size superpixel representation and not in the full image as well as the low
computational complexity of the SLIC algorithm (linear in the superpixel size) [22].

2. The Linear Mixing Model (LMM)

The linear mixing model (LMM) represents a pixel as the convex combination of the spectral
signatures of the endmembers multiplied by its fractional area coverage (or abundance) as follows:

xj =
p

∑
i=1

eiaij + wj = Eaj + wj, j = 1, 2, 3, . . . , N, (1)

where xj ∈ <m
+ is the measured spectral signature at the jth pixel, E ∈ <m×p

+ is the endmembers matrix,
aj ∈ <

p
+ is the spectral abundance vector, wj ∈ <m is a noise vector, m is the number of bands, p is the

number of endmembers, and N is the number of pixels.
In HSI, m � p, elements of E, aj, and xj are constrained to be positive, and aT

j 1 = 1 (the

sum-to-one contraint). In our implementation, we will use aT
j 1 ≤ 1 to account for topography effects

as suggested in [23,24]. For the entire HSI, the linear mixing model given above can be written in
matrix form as:

X = EA + W, (2)

where X = [x1 . . . xN] is the matrix containing all image pixels, E = [e1 . . . ep] is the matrix of
endmembers, A = [a1 . . . aN] is the matrix of abundances, and W = [w1 . . . wN] is the noise matrix.
Clearly, the spatial relations are not considered when unfolding the hyperspectral image into a matrix
as described in Equation (2).

3. Illustrating Spatial-Spectral Interaction

Equation (2) models the full spectral data cloud as the convex hull of image endmembers.
An important problem is that actual hyperspectral data clouds are not convex but better modelled
piecewise-convex [25].

One cause for piecewise convexity of the hyperspectral data cloud is that materials in the scene
are not uniformly distributed so certain mixtures of materials are not possible due to spatial constraints.
Figure 1 illustrates this idea using simulated images that consists of a scene with three different
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materials distributed in two scenarios: (i) spatial random distribution with no spatial structure as
shown in Figure 1a, and (ii) each material occupies a uniform spatial region as shown in Figure 1b.
Figure 1c shows the spectral signatures of the materials used in the simulations. The bands used for
the false-color composite were 700 nm for Red, 540 nm for Green, and 470 nm for Blue.

(a) (b) (c)
Figure 1. Simulated images: (a) false-color composite for spatially random distributed data; (b)
false-color composite of image with spatial structure; (c) endmembers used in the simulated images.

Figure 2 shows the scatter plots of band 80 (1.191 µm) against band 196 (2.351 µm). Figure 2a
shows scatter plot for the first scenario (Figure 1a) where there is no spatial correlation between pixels
in the scene. The image pixels are uniformly distributed inside the convex hull of the endmembers.
Figure 2b shows the scatter plot for the structured scene in Figure 1b. The image pixels are distributed
along two of the faces of the convex hull of the endmembers (i.e., the line between endmembers one
and two and the line between endmembers two and three). Another way think of this data cloud is
that the pixels are distributed in two separate simplices that is Figure 2b is piece-wise convex.

(a) (b)
Figure 2. Scatter plot of band 80 (1.191 µm) against band 196 (2.351 µm) for: (a) randomly distributed
data (Figure 1a) and (b) spatial structure (Figure 1b).

To illustrate these ideas on a real scene, we use a 64× 64× 224 image chip from a 224-band
AVIRIS image captured over Fort A.P. Hill, VA, USA in September of 2001 [26]. The image has 224
spectral bands from 380 to 2500 nm with a spectral resolution of 10 nm and a spatial resolution of
3.5 meters. Only 197 bands are used here for the analysis as water absorption bands (bands 107 to
114, and 153 to 167) were removed. This image chip was selected because of the way the three main
classes are spatially distributed: (i) the gravel field, (ii) a grass field, and (iii) the forest region. A
true-color composite is shown in Figure 3a and a scatter plot for the first two principal components in
Figure 3b. The principal components are computed by, first, unfolding the hyperspectral image cube
into a two-dimensional matrix, where each row contains the pixel spectral signature, then Principal
Component Analysis (PCA) [27] is applied to the resulting matrix. The bands used for the color
composite were 28 (635.19 nm) for Red, 19 (548.09 nm) for Green, and 10 (461.04 nm) for Blue.
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(a) (b)
Figure 3. Fort A.P. Hill image chip: (a) true-color composite, and (b) scatter plot for the the first-two
principal components (PC-1 in the horizontal axis and PC-2 in the vertical axis).

Figure 3b shows the scatter plot of the first two principal components for the scene. These two
principal components explain approximately 97.5% of the total scene variability. Figure 4a shows the
scatter plot manually segmented into three “convex” regions. As shown in Figures 4b–d, each scatter
plot segment roughly corresponds to one of the three spatial regions in the image chip. The blue region
in the scatter plot represents the parking lot (Figure 4b). The green region represents the grass field
(Figure 4c) and the red region represents the forest (Figure 4d). We do not have a direct way to segment
the data cloud into its convex pieces in the spectral domain. Here, we propose the use of regional
segmentation as a way to extract the piecewise convex structure of the data cloud.

(a)

(b) (c) (d)
Figure 4. Relating spatial and spectral domains for Fort A.P. Hill image: (a) segmentation of the data
cloud in feature space; (b) region 1 in the spatial domain (Gravel field); (c) region 2 in the spatial
domain (Grass field); (d) region 3 in the spatial domain (forest).
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To illustrate how spatial segmentation can be used to extract the piecewise convex structure of
the data, the image is segmented using the Simple Linear Iterative Clustering (SLIC) algorithm [28]
with a large region size and the resulting in coarse segments are visualized in the scatter plots shown
in Figure 5. The SLIC algorithm is presented in detail in Section 4. Figure 5 shows the result of
segmenting the image chip using SLIC with a region size of 25× 25. The segmentation resulted in nine
coarse segments. Figure 6 shows each segment and their corresponding location in the scatter plot.
The spatial segmentation helps to capture parts of the piecewise convex structure of the scatter plot,
but it does not produce a perfect match to the scatter plot segmentation in Figure 4. We need to be
cautious in this observation as we are using a 2D scatter plot to visualize a high dimensional data set.

Figure 5. Segmentation of Fort A.P. Hill chip.

(a) Segment#1 (b) Segment#2 (c) Segment#3

(d) Segment#4 (e) Segment#5 (f) Segment#6

(g) Segment#7 (h) Segment#8 (i) Segment#9

Figure 6. Results of coarse SLIC segmentation and their corresponding location in the scatter plot. In
subfigures (a)–(i), the left figure corresponds to the spatial segment and the right figure highlights in
blue the location of those pixels in the scatter plot.

4. HSI Representation Using Superpixels

Most of the image processing techniques are pixel based, so, if the image is large, the computation
burden will be high. Superpixel representation breaks the image into locally homogeneous regions
that are not necessarily distributed in a uniform grid. Each region could be treated as a single entity
during processing; since the number of superpixels will be much smaller than the number of image
pixels, it results in significant computational savings. The value of the superpixel representation in
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image processing and computer vision has been recognized in the literature [29]. The Simple Linear
Iterative Clustering (SLIC) [22] algorithm has shown better performance in superpixel segmentation
than other methods in terms of computation speed and memory efficiency. SLIC is used for deriving
superpixel-based representations of hyperspectral images.

SLIC starts by dividing the image into an equally spaced grid as shown in Figure 7a. The center
of each grid tile is then used to initialize a k-means clustering algorithm with spatial adjacency
restrictions. After clustering, SLIC optionally removes any segment whose area is smaller than a
predefined threshold by merging them into larger superpixels. Figure 7b shows the final result of
a segmentation. We use the SLIC algorithm for hyperspectral imagery described in [28] and the
MATLABTM implementation toolbox [46] provided in [30]. The work in [28] extends the standard
SLIC for color images to hyperspectral images by using the full spectral signature vector and not a
three-color vector as in color images.

(a) (b)
Figure 7. SLIC segmentation for region size initially set to 16 × 16: (a) initialization stage;
(b) final segmentation.

The spectral mean:

µ =
∑n

i=1 xi

n
(3)

of the spectral signatures in a superpixel is used to represent each superpixel [31–33]. In Equation
(3), n is the number of spectral signatures in the superpixel, and xi is the spectral signature inside the
superpixel. Each superpixel mean may represent tens to thousands of pixels in an image. Further
hyperspectral image processing is performed in the superpixel means, which results in significant
computational saving over full pixel-by-pixel processing. Representing the image by its superpixels
can be interpreted as a non-uniform sub-sampling of the image. To illustrate the effects of superpixel
representation in the spectral domain, Figure 8 shows where the mean for each superpixel is located
in the scatter plot for SLIC segmentations with region size set to 25 (Figure 6) and region size set to
5. The means in Figure 8a,b are numbered based on their order of appearance in Figure 6. Centroid
number 1 corresponds to Figure 6a, centroid 2 to Figure 6b and so on.

A better representation is obtained by using a smaller region size. Figure 8d,e overlays the location
of the means on top of the scatter plot when the region size in the SLIC segmentation algorithm is set to 5
(5× 5). It is easy to see that the resulting means scatter plot in Figure 8d keeps most of the features of the
full data scatter plot.

Another visual illustration is shown in Figure 8c,f where the true-color composite of the superpixel
(SP) images for both cases are presented. A superpixel hyperspectral cube is created by arranging the
mean of the SLIC superpixels to form a rectangular grid with the mean spectra of the superpixels.
The color composite is formed using the same bands as in Figure 3. Figure 8c corresponds to the SP
representation for the SLIC with region size parameter set to 25. The resulting SP image clearly does
not preserve the spatial details of the original image (Figure 3), while the SP representation for the SLIC
with region size parameter set to 5 in Figure 8f captures many of the spatial features in the original
image (Figure 3). How to select an optimal superpixel size is an open question.
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(a) (b) (c)

(d) (e) (f)
Figure 8. Visualizing superpixel representations in the data cloud: (a) superpixel means scatter plot for
region size = 25× 25; (b) overlaying of superpixel means on the full-image scatter plot; (c) true-color
composite for the SP image; (d) superpixel means scatter plot for region size = 5× 5; (e) overlaying of
superpixel means in the full-image scatter plot; (f) true-color composite for the SP image.

5. Proposed Unmixing Approach

Figure 9 depicts the proposed Unsupervised Superpixel-Based Hyperspectral Unmixing with
Regional Segmentation. First, SP segmentation is applied to the image. A SP representation of
the image is created by representing each superpixel by its mean spectra. Second, the SP image is
partitioned into regions using quadtree segmentation. Endmember extraction is applied to each region
associated with a tree leaf to extract regional spectral endmembers. Extracted spectral endmembers are
clustered into endmember classes. Abundances are computed over the full image using the extracted
spectral endmembers. The abundance for and endmember class is the sum of the abundances of the
individual spectral endmembers belonging to it.

Figure 9. Proposed unsupervised superpixel-based hyperspectral unmixing with regional segmentation.

5.1. Quadtree Regional Segmentation

The SP image is divided into spatial regions for unmixing using quadtree partitioning. The spatial
subsetting, as mentioned previously, makes the approach more sensitive to low contrast or small
endmembers present in small regions. Figure 10 illustrates the basic idea of quadtree segmentation.
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Figure 10. Illustration of quadtree image representation.

The image is first divided into four equally sized tiles and the Shannon entropy is computed for
each tile. The Shannon entropy for a tile R is given by:

Shannon(R) = −
T

∑
i=1

pi log pi, (4)

where T is the number of clusters in R, and pi is the ratio between the number of pixels in cluster i to
the total number of pixels in R. If the entropy for the resulting tiles is higher than 90% of the global
entropy, the tile is divided again into four equally sized tiles [20]. The process is continued until the
resulting tile has an entropy lower than 90% of the global entropy or the tile size reaches a minimum
size (8 × 8 in our case). The leaves of the tree are the regions used in subsequent analysis.

5.2. Endmember Extraction

After quadtree partitioning, the next step is to extract the endmembers from each leaf tile. The first
step is to determine the number of endmembers since most endmember extraction methods assume
that it is known.

5.2.1. Estimating the Number of Endmembers

The rank of the Gram Matrix [34] is proposed in [15,16] as a way to estimate the number of
endmembers. The Gram Matrix G of a set of vectors Y = [y1, . . . , ym] is given by

G = YTY. (5)

G is an m×m matrix. Note that the {i, j}th element of the Gram Matrix is given by < yi, yj >, the
inner product between vectors yi, yj. A useful property of the Gram Matrix for unmixing is that its
determinant, the Grammian, is the square of the volume of the parallelepiped formed by the vectors
of Y [35]. In addition, the vectors are linearly independent if and only if the Grammian is nonzero or,
equivalently, the rank of G is equal to the rank of Y.

In [15,16], the matrix Y is constructed from sample pixels from the hyperspectral image sorted in
descending order of magnitude. The sample of pixels in Y can selected using geometric endmember
extraction techniques, where m is an overestimate of the number of endmembers.

The submatrix G(1 : k, 1 : k) (using MATLABTM notation) is the k× k leading principal submatrix
of G [34]. The leading principal minor is the determinant of a leading principal submatrix. In [15,16],
the leading principal minors of the Gram Matrix starting with k = 3 are computed for k = 3, . . . , m or
until the determinant reaches zero. Typically, the magnitude of the principal minors peaks at a small
values of k and then monotonically decreases. The value of k where the peak happens is used as the
estimate of the number of endmembers.
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5.2.2. Endmember Extraction Using SVDSS

Endmember extraction will be performed on each leaf of the quadtree using the Singular Value
Decomposition Subset Selection (SVDSS) method. SVDSS is an algorithm used to select the most
independent subset of columns from a matrix [36]. It has been applied to band subset selection in the
past [37].The use of SVDSS for endmember extraction was proposed in [38]. Given p, the number of
endmembers, the endmember signatures are extracted using SVDSS as follows:

1. Unfold the hyperspectral image cube (3D-array) into a matrix representation X ∈ <m×N , where
each column of X corresponds to the spectral signature of each image pixel, and N is the number
of pixels.

2. Compute the first p right singular vectors of X, Vp.
3. Compute the QR-factorization with pivoting [35,36] of the matrix VT

p P = QR.

4. Let XP = [X1 | X2], where X1 ∈ <m×p and X2 ∈ <m×(N−p). X1 will be the matrix of endmembers

It is shown in [38] that SVDSS tends to choose vectors with a large simplex volume.

5.3. Endmember Class Extraction

Spectral endmembers from individual tiles are clustered into groups with similar spectral signatures.
These clusters represent the distinct materials in the image, and the clustering captures their variability
across the scene. The clusters of spectral endmembers are called spectral endmember classes.

In the proposed approach, the cosine distance is used as the similarity measure for clustering:

d (x, y) = 1−
∣∣xTy

∣∣
||x|| ||y|| . (6)

If d (x, y) ≤ 0.005, the endmembers belong to the same spectral endmember class. The principal
advantage of this clustering approach is that it does not need a specific number of clusters. We used
the clustering command from the statistics toolbox [39] available in MATLABTM to perform the
clustering analysis.

5.4. Abundance Estimation

Once the endmember classes are determined, the next step is to estimate their abundances.
The abundances are computed by solving the following constrained linear least squares problem

âi = argmax
a≥0, aT1≤1

||xi − Ea||22, (7)

where the endmember matrix E includes all spectral endmembers. The reason for using a ≥ 0, aT1 ≤ 1
(NNSLO) constraint instead of the a ≥ 0, aT1 = 1 (NNSTO) constraint is to account for topography
effects as described in [40]. The abundance of an endmember class is the sum of the abundances of the
spectral endmember signatures belonging to that class. We use the implementation of [40] to solve (7).

6. Experimental Results

This section presents experimental results evaluating the performance of the superpixel-based
unmixing with regional segmentation approach using real hyperspectral image data sets. In Section 6.2,
we compare our approach using quantitative and qualitative analysis with other approaches used in
the literature.
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6.1. Data Sets

Two hyperspectral images were selected for the experiments: HYDICE Urban and ROSIS Pavia
University. These images were selected because of the availability of reference data in the format of
published spectral libraries and classification maps used later for indirect assessment of unmixing results.

6.1.1. HYDICE Urban Data Set

HYDICE Urban is a widely used hyperspectral data set used in unmixing studies. It was
collected with the Hyperspectral Digital Image Collection Experiment (HYDICE) sensor in October
1995. The scene is an urban area at Copperas Cove, TX, USA [41]. The scene has 307× 307 pixels at 2 m
resolution, and 210 bands between 400 nm to 2500 nm at a spectral resolution of 10 nm. After channels
1–4, 76, 87, 101–111, 136–153 and 198–210 are removed (due to dense water vapor and atmospheric
effects), we end with 162 channels for processing. The data are already calibrated to reflectance.
Figure 11a presents a true-color composite using band 28 (680 nm) for red, band 14 (540 nm) for green,
and band 7 (470 nm) for blue. A reference from [42] shown in Figure 11b is used here as a reference
classification map. The classification map shows five information classes: Asphalt, Grass, Tree, Roof
and Soil (Dirt). An endmember spectral library is also available from [42] and is shown in Figure 11c.
The reference data also include abundance maps for these classes, and we will use them later for
algorithm assessment.

(a) (b)

(c)
Figure 11. HYDICE Urban Image: (a) true-color composite; (b) reference data classification map [42];
(c) endmembers.

6.1.2. ROSIS Pavia University

This is a scene acquired with the ROSIS sensor during a flight campaign over Pavia, northern
Italy. The image consists of 103 spectral bands from 430 to 860 nm with a spectral resolution of 4 nm
and a spatial resolution of 1.3 m. Only 103 bands are used for the unmixing analysis. Pavia University
is 610× 340 pixels. Figure 12a shows a true color composite of the scene. The reference classification
map for the Pavia University scene is shown in Figure 12b. The classification map shows nine classes:
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Asphalt, Meadows, Gravel, Trees, Metal Sheet, Bare Soil, Bitumen, Brick and Shadow. The unassigned pixels
in the image are colored in black and labeled as “background”. Figure 12c shows the endmembers for
the labeled samples.

(a) (b) (c)
Figure 12. ROSIS Pavia University (a) true-color composite; (b) reference class map; (c) endmembers.

6.2. Assessment Approach

A problem with assessing the performance of unmixing algorithms is the lack of data sets
with abundance reference data. Typical data sets such as Fort A.P. Hill, HYDICE Urban, ROSIS
Pavia, and others have documented classification maps and spectral libraries. The lack of abundance
information becomes a limitation to directly assess unmixing results.

Typically endmember extraction results are evaluated by computing the spectral angle between
the extracted endmember signatures and reference spectra. Unmixing results are indirectly assessed
using the reconstruction error between the image reconstructed from the estimated abundances and
extracted endmembers and the original image [43]. However, the reconstruction error only assesses
the fitting error but not the accuracy of the estimated abundance maps or endmembers.

Here, we will follow the assessment methodology described in [44] based on the agreement
matrix (similar to the error or confusion matrix in classification) between the generated class map and
the reference classification map. We will also perform visual comparison between abundance maps
and individual binary class maps. This helps us assess whether or not we are extracting the right
spatial distribution of the information classes. Note that information classes in the classification maps
may correspond to multiple endmember classes. In the case of the HYDICE Urban image, there are
reference abundance maps from [41], which allow for a more quantitative comparison. However, there
is no information on the accuracy of these reference abundances in [41]. We will still compare derived
and reference abundance maps in what follows.

A classification map can be derived from the abundance maps by assigning the pixel to the
endmember class with the highest abundance (i.e., winner takes all). We use a winner takes all
strategy that also requires that the maximum abundance meets a minimum threshold of 50% and
the pixel remains unassigned if not. Once the class map is derived, quantitative methods such as
agreement matrices and kappa statistics are used to assess the pixel-by-pixel agreement between the
two classification maps [6,44,45]. Notice that we are not assessing the agreement of the classification
map with ground truth but with a reference classification map.

Comparing Generated and Reference Maps

The agreement matrix is computed by using a pixel by pixel comparison between the derived and
reference maps. Four statistics are computed from the agreement matrix motivated by the error matrix
in pattern recognition: (1) the Producer’s Agreement refers to the probability that a certain land-cover of
an area on the reference map is assigned the same class in the generated map, (2) the User’s Agreement
which is the probability that a pixel labeled as a certain land-cover class in the generated map has
the same assignment in the reference map, (3) the Overall Agreement that indicates the percentage of
pixels with the same label in both the reference and the generated classification maps, and (4) Cohen’s
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kappa coefficient [45]. The kappa statistic is a more robust measure than simple percentage agreement
calculation, as it takes into account the possibility of the agreement occurring by chance. It measured
the agreement between the two maps.

6.3. Experimental Results for the Urban Data Set

First, superpixels (SP) were extracted using the SLIC algorithm with a region size of 16× 16;
this particular size was selected based on the work by [28]. The result was a nearly 20× 20 grid of
superpixels (a total of 394 superpixels since very small superpixels were merged with larger ones).
The SLIC segmented image is shown in Figure 13a.

(a) (b) (c)
Figure 13. SLIC representation of the HYDICE Urban scene: (a) SLIC over-segmentation; (b) SP
representation, each pixel replace by the mean; (c) partitioning of the SP representation using quadtree
(EMs = Endmembers per leave).

For each superpixel, the spectral mean of the spectral signatures is calculated. Although the SLIC
image has a non-uniform spatial arrangement of superpixels, each SLIC superpixel initial starting
point was on a uniform grid (see Figure 7). For the purpose of visualization, we assign the mean of
the final superpixel to the location of the superpixel initial location. We accept that this visualization
has some limitations but helps us in understanding and implementing the approach. The result is
an image cube of size 20× 20× 162 shown in Figure 13b. Locations of small superpixels that were
merged with larger ones will be given no value (blank pixels using NaN in MATLAB). Those “empty”
pixels will not be included in any further processing.

The SP representation cube is partitioned using the quadtree method. The result of the partitioning
is shown in Figure 13c. The Gram matrix method is used to estimate the number of endmembers in
each tile. The results are also shown in Figure 13c.

Endmember extraction is performed on each tile on the leaves of the quadtree using SVDSS; a total
of 45 endmembers were extracted and are shown in Figure 14. The extracted spectral endmembers
were clustered using the cosine distance with a threshold of 0.005. The clustering analysis resulted in
17 endmember classes. Finally, abundance estimation using NNSLO [40] was performed using the 45
endmembers over the whole image. The abundance for each class is the sum of abundances for the
spectral endmembers belonging to the endmember class. The pixel abundances are normalized to sum
to one in a post-processing step.

Abundance maps and spectral signatures from endmember classes are manually grouped to
correspond to information classes based on the classification map. Figures 15 and 16 show the spectral
endmember signatures that are assigned to an information class and the resulting combined abundance
maps. The abundance map for an information class is the sum of the abundances for the endmembers
classes belonging to that information class.
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L 1.1 L 1.2 L 1.3

L 1.4 L 2 L 3

L 4
Figure 14. Endmembers for each leaf tile in the Urban quadtree.

Road Grass Trees

Roof Dirt
Figure 15. Spectral signatures associated with the Urban information classes.
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Road Grass Trees

Roof Dirt
Figure 16. Urban information classes’ abundance maps.

6.3.1. Qualitative Assessment

The evaluation of unmixing results is performed by comparing extracted information endmember
classes and estimated abundances with published spectral libraries and classification maps for the
HYDICE Urban image. Figure 17 presents a comparison between the information abundance maps
extracted from the Urban scene using the proposed approach (Top row) and the reference abundance
maps (Second row) obtained from [42]. The absolute value of the difference between these abundance
maps is shown in the third row and its histogram in the fourth row. The first column is the Asphalt/Road
class. The second is the Grass class. The third is the Trees class. The fourth is the Roof class. The fifth
column is the Soil class.

Based on these results, we can see that there is good agreement between the reference and estimated
abundances for the Trees and Grass classes, followed by Asphalt/Road, Soil and Roof. Furthermore, we
can argue that we do a better job in extracting the Roof and the Asphalt/Road classes compared to the
reference data based on visual comparison between our abundance maps and the image.

Extracted and reference spectral signatures are shown in Figure 18. The endmember shapes are
comparable for all except the roof class where some of the extracted spectral endmembers do not match
well the reference data. The same could be said to some extend to the the Dirt class. We feel that the
spectral variability of the classes is better captured by the endmember classes than by a single spectral
signature as in the the reference data. We feel that capturing this variability is what allows us to get
better results in the roof class.
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Road Grass Trees Roof Dirt

Figure 17. Comparison between abundance maps for information classes extracted using the proposed
method and reference data. The top row shows the results of the proposed method. The second row
shows the reference data. The third row shows absolute errors images. The bottom row shows the
histograms for the error images.

Road Grass Trees Roof Dirt

Figure 18. Comparison of the information classes spectral endmembers extracted with the proposed
algorithm and reference endmember spectral signatures. Top row: the results of the proposed approach;
Second row: reference data.

6.3.2. Quantitative Assessment

For quantitative analysis, a classification map is generated from the abundance maps using a
winner takes it all approach with a 50% threshold. The resulting classification map and the reference
map are compared using the agreement matrix. Four statistics are computed: Producer’s agreement
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(PA), User’s agreement (UA), Overall agreement (OA) and the Cohen’s kappa [45]. The harmonic
mean (HM) is used to assess the per-class agreement as it balances the UA and PA rates. It is given by

HM =

[
1
2

(
1

PA
+

1
UA

)]−1
. (8)

Furthermore, the spatial post-processing step using a 3× 3 median filter is used to clean scattered
individual miss-classified pixels from the resulting class. The assumption is that information classes
will occupy relatively uniform spatial areas (larger than just a few pixels). Median filtering produces a
smoother version of the class map. The smoothed classification map is compared to the reference map
using the agreement matrix.

Figure 19 shows the classification maps for the Urban scene. Figure 19a shows the classification
map generated from the estimated abundances. Figure 19b shows the classification map from
Figure 19a after being smoothed with the median filter. Figure 19c shows the reference data
classification map. Table 1 presents the agreement matrix between the generated classification map
and the reference. Table 2 shows the agreement matrix between the filtered generated classification
map and the reference. The un-assigned class in the tables refer to pixels that did not meet the more
than 50% criteria in the majority vote assignment.

The generated classification map has an overall agreement of 79.51% with the reference map.
Individual classes have a producer’s agreement higher than 75%. In the user agreement, accuracies for
Trees, Grass, and Road are above 85%, while, for Dirt and Roof, they are below 65%. These differences
are captured in the harmonic mean that for Trees, Grass, and Road are above 80% while for Dirt and
Road are below 70%. In the resulting class map, many Grass pixels are classified as Trees, while Trees
and Road are classified as Roof. Grass and Dirt coexist and are mixed in multiple areas of the image
so this confusion is not surprising. This is similar for Trees and Road and Roof. The reference data
do not provide accuracy data for the reference map. In addition, as mentioned earlier, we think our
approach does a better job in extracting the abundances in the residential areas on the left half of the
image where most roofs, trees and soil related pixels are located. In the end, the final assessment was
the Cohen’s kappa score, which was 73.06%, and this indicates a substantial agreement between the
two maps based on [45].

(a) (b) (c)
Figure 19. Urban Image: (a) classification map derived from the abundances using winner takes it
all and 50%threshold; (b) classification map after median filtering; (c) reference data classification
map [42].

The analysis using the agreement matrix is also performed on the median filtered classification
map shown in Figure 19b. Table 2 shows the agreement matrix between the filtered generated
classification map and the reference map. The overall agreement increases by over 9%. The harmonic
mean increases for Trees, Grass, and Road, and it is still above 87% for all these classes. The harmonic
mean increases for Dirt and Road by at least 9%. This is primarily due to an increase in UA, which for
Dirt was 26%, while, for Roof, it was 9%. The kappa coefficient for the agreement is 84.43%, which
indicates an almost perfect agreement between the two maps [45].
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Table 1. Agreement matrix between reference and generated classification maps for Urban.

Reference Data

Road Grass Trees Roof Dirt Totals User’s
Agreement (%)

Class
Map

Road 13,775 296 368 96 238 14,773 93.24
Grass 44 29,443 1162 34 223 30,906 95.27
Trees 59 2633 20,068 188 31 22,979 87.33
Roof 1569 400 2108 6106 871 11,054 55.24
Dirt 717 1542 736 281 5543 8819 62.85

Un-Assigned 1301 2197 1647 222 347 5714

Totals 17,465 36,511 26,089 6927 7253 94,245

Producer’s
agreement (%) 78.87 80.64 76.92 88.15 76.42

Overall
agreement = 79.51%

Harmonic Mean (%) 85.46 87.35 81.80 67.92 68.98 Kappa Statistic = 73.06 %

Table 2. Agreement matrix between reference and filtered classification maps for Urban.

Reference Data

Road Grass Trees Roof Dirt Totals User’s
Agreement (%)

Class
Map

Road 15,369 1187 758 88 345 17747 86.6
Grass 248 32,484 458 20 156 33,366 97.36
Trees 442 1968 23,678 362 145 26,595 89.03
Roof 1055 257 1082 6387 1086 9867 64.73
Dirt 169 365 85 69 5510 6198 88.90

Un-Assigned 182 250 28 1 11 472

Totals 17,465 36,511 26,089 6927 7253 94,245

Producer’s
agreement (%) 88.00 88.97 90.76 92.20 75.97

Overall
agreement = 88.52%

Harmonic Mean (%) 87.29 92.97 89.89 76.06 81.93 Kappa Statistic = 84.43 %

6.4. Experimental Results for the Pavia University Data Set

The proposed unmixing approach is also used to analyze the Pavia University data set. An SP
representation is derived using SLIC with region size of 16× 16. The resulting SP representation was a
39× 22 grid of superpixels as shown in Figure 20a.

(a) (b) (c)
Figure 20. SLIC superpixel representation of ROSIS Pavia image: (a) SLIC segmentation; (b) true-color
display of the SP means image; (c) Pavia SP means image partitioning using quadtree (EMs =
Endmembers per leave).

The spectral means of the SP are used to derive a reduced-size image cube representation of size
39× 22× 103 shown in Figure 20b. The results of the SP cube partitioning using the quadtree approach
are shown in Figure 20c. The estimated number of endmembers using the Gram method is also shown.

Endmember extraction is performed on each tile using SVDSS (see Figure 21 for results). A total
of 58 endmembers were extracted. The extracted spectral endmembers were clustered using the cosine
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distance with a threshold of 0.005. Clustering analysis resulted in 20 spectral classes. Finally, abundance
estimation using NNSLO [40] was performed using the 58 endmembers over the whole image.
The abundance for each class is the sum of abundances for the spectral endmembers belonging to the
class. A post-processing step is to normalize the abundance maps to sum to one as discussed previously.

L 1 L 2.1 L 2.2 L 2.3

L 2.4 L 3.1 L 3.2 L 3.3

L 3.4 L 4
Figure 21. Spectral endmembers for each leaf tile for the Pavia image.

Endmember classes are manually combined to match information classes in the classification map
as we did in the Urban example. By looking at Figure 22a, we can see that Gravel and Brick classes have
similar spectra, and similarly Asphalt and Bitumen. Thus, for our analysis, we decided to combine both
Gravel and Brick to form a single information class, and Asphalt with Bitumen into another information class.
Figures 23 and 24 show the information classes endmembers and their corresponding abundance maps.

(a)
(b)

Figure 22. Spectral similarities in Pavia image: (a) spectral signatures highlighting similarities;
(b) spatial location of spectrally similar information classes.

By further studying the true-color composite of the scene and comparing with the class map
(Figure 12), some regions classified as Meadows look like Bare Soil (see Figure 22b). In addition, the
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spectral signatures for these two classes are quite similar as well; see Figure 12. Both information
classes were merged together to form a single information class for our analysis as well.

Asphalt and Bitumen Meadows + Bare Soil Gravel and Brick

Trees Metal Sheet Shadows
Figure 23. Spectral endmembers for each Pavia information class.

Asphalt and Bitumen Meadows + Bare Soil Gravel and Brick

Trees Metal Sheet Shadows
Figure 24. Abundances for Pavia information classes.
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6.4.1. Qualitative Assessment

For the Pavia scene, the reference data did not include abundance maps but only a classification
map. Therefore, we are not able to perform the type of comparison shown in Figure 18 for the Urban
data set. Here, extracted abundance maps for the Pavia data set are visually compared to binary class
maps from the reference classification map. Figure 25 shows the extracted abundance map and the
reference binary class map for the Asphalt-Bitumen class. Note that the binary class map covers areas
contained in the abundance map. A portion of the road in the abundance map does not appear in the
reference class map. By looking at Figure 12b, this part was considered as a background (not assigned)
in the reference map. Our approach successfully captures the entire road in the scene, which can be
confirmed from visual inspection of the true-color composite for the scene shown in Figure 12a).

Proposed approach. Reference Class map.
Figure 25. Comparison of Asphalt and Bitumen abundance map and binary reference map for Pavia.

Figure 26 shows similar results for the Meadows-Bare Soil class. The abundance map includes the
reference binary map as before as well as multiple regions that were not assigned in the reference map
and labeled background. Similar results can be shown for the other four classes as shown in Figure 27.

Proposed approach. Reference Class map.
Figure 26. Comparison of Meadows and Bare Soil abundance and binary reference map for Pavia.
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Gravel and Brick Trees Metal Sheet Shadows

Figure 27. Comparison between extracted abundance maps and binary class maps from reference data.
The top row shows the abundance maps and the bottom row the binary class maps from the reference data.

6.4.2. Quantitative Assessment

Figure 28 shows the classification maps for the Pavia scene. Figure 28a shows the classification
map generated from the abundance maps using majority voting and the 50% threshold. Figure 28b
shows the classification map after smoothing with a median filter. Figure 28c shows the reference data
classification map after merging spectrally similar information classes as discussed previously. In the
computation of the agreement matrix, pixels labeled as background in the reference data were not
included. Table 3 presents the agreement matrix for Figure 28a, while Table 4 shows the agreement
matrix for Figure 28b.

(a) (b) (c) (d)
Figure 28. Classification maps for Pavia: (a) classification map generated using winner takes it all
with 50% threshold; (b) median filtered classification map; (c) classification map in (b) after masking
non-assigned or background pixels in the reference data; (d) modified reference classification map.

The generated map has an overall agreement of 73.59% with the reference map (see Table 3).
The kappa coefficient is 62.10%, which indicates a substantial agreement [45] between the two maps.
The harmonic mean was over 60% for all classes but the Shadow class, which means that there is a good
agreement between the generated and reference maps for those classes. The Asphalt and Bitumen and
Shadow classes have a relatively low producer’s agreement (less than 50%). Many of the Asphalt and
Bitumen pixels were un-assigned based on the abundance threshold of 50% that generates the class
map that dropped the producer’s agreement significantly. The Trees class was heavily confused with
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the Meadows-Bare Soil class. Close to a third of the Trees class pixels were classified as Meadows and
Soil class. Close to a quarter of the pixels classified as Trees were from Meadows-Bare Soil. The spectral
signature of these classes are very similar and most of the Trees pixels are scattered in the image and
mixed with other classes.

Table 3. Agreement matrix between reference and generated classification maps for Pavia.

Reference Data

Asphalt and
Bitumen

Meadows
and Soil

Gravel
and Brick Trees Metal Sheet Shadow Totals User’s

Agreement (%)

Class
Map

Asphalt and Bitumen 3933 190 497 2 6 112 4740 82.97
Meadows and Soil 28 19,012 16 925 2 0 19,983 95.14
Gravel and Brick 282 536 4224 4 1 0 5047 83.69

Trees 0 683 0 1874 0 0 2557 73.29
Metal Sheet 1 0 0 0 1225 0 1226 99.84

Shadow 24 4 3 2 2 433 468 92.52
Un-Assigned 3658 2161 1046 194 77 560 7696

Totals 7926 22,586 5786 3001 1313 1105 41,717

Producer’s
agreement (%) 49.62 84.18 73.00 62.45 93.30 39.19

Overall
agreement = 73.59%

Harmonic Mean (%) 62.10 89.32 77.98 67.43 96.49 55.05 Kappa Statistic = 62.10%

The filtered classification map has an overall agreement of 79.80% (Table 4), which is higher by
6% than the unfiltered map. The harmonic mean did not change significantly for most classes with the
exception of Shadow, where it went down from 55.05% to 47.90% reducing significantly the agreement
for that class. This is not surprising, as this is a small class and median filtering will eliminate pixels in
this class. The harmonic mean Trees increased slightly by 3%. Although the user’s agreement Trees
increased by almost 15%, the producer’s agreement decreased by more than 4%. A larger number of
Trees were classified as Meadows and Soil than for the previous map. The kappa coefficient has a value
of 69.30%, which is better than the previous one.

Table 4. Agreement matrix between reference and filtered classification maps for Pavia.

Reference Data

Asphalt and
Bitumen

Meadows
and Soil

Gravel
and Brick Trees Metal Sheet Shadow Totals User’s

Agreement (%)

Class
Map

Asphalt and Bitumen 4168 327 768 42 20 208 5533 75.33
Meadows and Soil 0 21,355 134 1106 6 10 22,611 94.45
Gravel and Brick 0 493 4538 10 10 1 5052 89.83

Trees 0 208 0 1751 0 5 1964 89.15
Metal Sheet 0 0 0 0 1259 4 1263 99.68

Shadow 0 0 0 0 0 383 383 100
Un-Assigned 3431 732 225 95 27 605 5115

Totals 7599 23,115 5665 3004 1322 1216 41,921

Producer’s
agreement (%) 54.85 92.39 80.11 58.29 95.23 31.50

Overall
agreement = 79.80%

Harmonic Mean (%) 63.48 93.40 84.69 70.49 97.41 47.90 Kappa Statistic = 69.30%

7. Comparing with Other Methods

This section presents a comparison of the proposed approach results with other approaches.
We first compare with global analysis where there is no use of spatial subsetting. The full hyperspectral
image is used for endmember extraction with no spatial subsetting or SP segmentation (Full Global).
The second comparison is with global unmixing over the SP image. Here, endmember extraction
is performed over the entire SP representation with no spatial subsetting (SP Global). The third
comparison is with spatial subsetting of the full hyperspectral image using quadtree partitioning.
The full hyperspectral image is partitioned in spatial regions using quadtree segmentation and
endmember extraction is performed on each leaf of the quadtree (Full + QT). This is similar to
the approach for unmixing with the cNMF described in [19]. For all approaches, the number of spectral
endmembers is estimated using the Gram method. Abundances are computed using NNSLO and
manually grouped according to the information classes from the reference map. Comparisons will be
presented only for the Urban scene based on the agreement matrix.
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The Gram method estimated 16 spectral endmembers for the full hyperspectral image and 10 for
its full SP representation with no quadtree partitioning. Endmembers were extracted using SVDSS
and abundances estimated with NNSLO. Spectral endmember abundances were manually grouped
into information classes by visual comparison with the reference map. The resulting abundance maps
for the information classes are shown in the first two rows from top to bottom in Figure 29 and the
corresponding spectral signatures in Figure 30.

Quadtree segmentation was applied to the full hyperspectral image, and the number of spectral
endmembers was determined for each tile using the Gram approach. Figure 31a shows the results of
the quadtree segmentation and Figure 31b shows the number of spectral endmembers per tile (total of
114). Endmembers were extracted using SVDSS. Abundance estimation using the NNSLO is applied
to the full image using the extracted spectral endmembers. Clustering using the angle distance with
a threshold of 0.005 led to 30 endmember classes. Endmember classes were manually grouped into
information classes by visual comparison with the reference data. The resulting abundance maps for
the information classes are shown in the third row from top to bottom in Figure 29. The corresponding
information class spectral signatures are shown in Figure 30.
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Figure 29. Comparison of abundance maps by different approaches with the proposed method and
reference data.
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Figure 30. Comparison of extracted endmembers by different approaches with the proposed method
and reference data.

(a) (b)
Figure 31. (a) quadtree image segmentation of the Urban scene; (b) number of endmembers per tile
(total = 114).

By visually comparing the spectral signatures extracted using the global method to the ones
available from the reference data (Figure 30), the extracted endmembers do not look similar to the
reference data in terms of shape. This is easily noticed for the Road class, while, when comparing the
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endmembers obtained from the Global SP approach to the reference data, there is a better similarity in
terms of shape (except for the road and roof classes).

A class map is generated for each approach based on the abundance maps from Figure 29 using a
winner takes it all with a 50% threshold criteria. The resulting class maps are shown in Figure 32. Pixels
with the black label in the map are those where the winner did not have more than 50% abundance.
Each generated class map in Figure 32 is compared to the reference data using the agreement matrix.
The corresponding agreement matrices are shown in Tables 5–7.

Proposed Global Global SP Quadtree

Reference Data
Figure 32. Comparison of extracted classification maps by different approaches with the
proposed approach.

Table 8 shows a comparison of the harmonic means, overall agreements and kappa statistic for all
four approaches. The proposed approach (SP + QT) has the closest agreement with the reference data
as shown by the highest harmonic means, highest kappa and highest overall agreement (All shown in
bold). This means it has an overall better per-class agreement than the other methods. In addition, when
comparing Tables 2 and 7, we can see that the proposed approach has higher producer agreement rates
than Full+QT for all classes except Road. In user agreement, Full + QT has lower agreement rates for
Road and Grass. The results do point to significant differences between SP + QT and Full + QT. Full +
QT is significantly more computationally demanding than SP + QT. The endmember extraction stage
comprised of quadtree segmentation and application SVDSS to the tree leaves when performed on the
full image requires processing 94, 249 (307× 307) pixels, while, for the SP representation, we only need
to process 394 superpixels. The additional overhead for SP segmentation and the computation of the
means are lower than the quadtree segmentation. Abundance computation uses NNSLO applied to all
pixels in both approaches.
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Table 5. Agreement matrix between Full Global and reference map.

Reference Data

Road Grass Trees Roof Dirt Totals User’s
Agreement (%)

Class
Map

Road 5501 187 134 79 63 5964 92.24
Grass 1020 35,009 3711 265 2346 42,351 82.66
Trees 348 153 20,654 961 208 22,324 92.52
Roof 790 71 160 4727 108 5856 80.72
Dirt 1481 369 309 126 3328 5613 59.29

Un-Assigned 8325 722 1121 769 1200 12,137

Totals 17,465 36,511 26,089 6927 7253 94,245

Producer’s
agreement (%) 31.50 95.89 79.17 68.24 45.88

Overall
agreement = 73.45%

Harmonic Mean (%) 46.96 88.79 85.32 73.96 51.73 Kappa Statistic = 64.09%

Table 6. Agreement matrix between SP Global and reference map.

Reference Data

Road Grass Trees Roof Dirt Totals User’s
Agreement (%)

Class
Map

Road 16,476 4280 2256 756 5993 29,761 55.36
Grass 70 28,905 592 132 84 29,783 97.05
Trees 117 2399 22,656 841 185 26,198 86.48
Roof 738 76 315 4748 66 5943 79.89
Dirt 0 53 25 289 594 961 61.81

Un-Assigned 64 798 245 161 331 1599

Totals 17,465 36,511 26,089 6927 7253 94,245

Producer’s
agreement (%) 94.34 79.17 86.84 68.54 8.19

Overall
agreement = 77.86%

Harmonic Mean (%) 79.78 87.20 86.66 73.78 14.46 Kappa Statistic = 69.95%

Table 7. Agreement matrix between Full+QT and reference map.

Reference Data

Road Grass Trees Roof Dirt Totals User’s
Agreement (%)

Class
Map

Road 16,080 1973 1215 282 444 19,994 80.42
Grass 51 31,226 1055 78 320 32,730 95.40
Trees 136 1190 22,117 460 221 24,124 91.68
Roof 793 125 888 6008 1157 8971 66.97
Dirt 54 963 35 9 4752 5813 81.75

Un-Assigned 351 1034 779 90 359 2613

Totals 17,465 36,511 26,089 6927 7253 94,245

Producer’s
agreement (%) 92.07 85.52 84.78 86.73 65.52

Overall
agreement = 85.08%

Harmonic Mean (%) 85.85 90.20 88.09 75.58 72.74 Kappa Statistic = 79.93%

Table 8. Comparing harmonic means, Cohen’s kappa and overall agreement (OA) for the four methods.

Class Harmonic Means

Road Grass Trees Roof Dirt Kappa (%) OA (%)

Proposed: SP + QT 87.29 92.97 89.89 76.06 81.93 84.43 88.52
Full + QT 85.85 90.20 88.09 75.58 72.74 79.93 85.08
SP Global 79.78 87.20 86.66 73.78 14.46 69.95 77.86

Full Global 46.96 88.79 85.32 73.96 51.73 64.09 73.45
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8. Conclusions

This work proposed a new spatial-spectral approach for unmixing analysis using superpixel
representation combined with quadtree segmentation. A reduced size hyperspectral image
representation is obtained using superpixel segmentation where each superpixel is represented by its
mean spectra. Regional analysis is then performed using the quadtree segmentation based on Shannon
entropy. Endmembers are extracted from each region and combined using clustering into endmember
classes based on the spectral angle distance.

Experimental analysis of the unsupervised unmixing approach was conducted using real
hyperpectral imagery from HYDICE and ROSIS sensors. It is important to recognize that there are
limitations to perform quantitative assessment of unmixing results. Most of the time, only classification
maps and spectral libraries are available as reference data. The assessment methodology in this paper
was based on comparing derived classification maps from abundance maps with reference maps using
the agreement matrix. To make this comparison possible, abundance maps for endmember classes are
grouped manually to correspond to information classes in the reference classification map.

The quantitative assessment is performed using four statistics: Producer’s agreement, User’s
agreement, Harmonic mean, Overall agreement and kappa statistic. The proposed unmixing approach
obtained good results (high harmonic means) for most of the Urban and Pavia classes. The kappa
statistic was over 80% for both data sets indicating an almost perfect agreement between the derived
map and the reference data.

The proposed approach was also compared with global endmember extraction (no spatial
subsetting) with the full image and the SP representation, and with spatial subsetting applied to
the full image. Results show that the proposed approach does better than global approaches that do
not use spatial subsetting while results are comparable to those of the quadtree approach applied to
the full image. However, the proposed approach has much lower computational requirements since
the analysis is done on the SP representation instead of the full image and the additional overhead
of SLIC segmentation and mean computation is lower than that for quadtree partitioning over the
entire image.

The proposed approach has been shown to have great potential for improved hyperspectral
unmixing. Furthermore, the idea of using an SP pixel representation to improve computational speed
was also shown in [28]. However, the problem of automatically finding the optimal SP size is still an
open problem that requires further attention. A small value might lead to high over-segmentation of
the image where the size reduction brought by the SP representation is lost, while having a high region
size will result in non-homogeneous superpixels and a poor representation of the image.
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