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Abstract: With the modernization of Global Navigation Satellite System (GNSS), triple- or
multi-frequency signals have become available from more and more GNSS satellites. The additional
signals are expected to enhance the performance of precise point positioning (PPP) with ambiguity
resolution (AR). To deal with the additional signals, we propose a unified modeling strategy for
multi-frequency PPP AR based on raw uncombined observations. Based on the unified model, the
fractional cycle biases (FCBs) generated from multi-frequency observations can be flexibly used,
such as for dual- or triple- frequency PPP AR. Its efficiency is verified with Galileo and BeiDou
triple-frequency observations collected from globally distributed MGEX stations. The estimated
FCB are assessed with respect to residual distributions and standard deviations. The obtained
results indicate good consistency between the input float ambiguities and the generated FCBs.
To assess the performance of the triple-frequency PPP AR, 11 days of MGEX data are processed in
three-hour sessions. The positional biases in the ambiguity-fixed solutions are significantly reduced
compared with the float solutions. The improvements are 49.2%, 38.3%, and 29.6%, respectively,
in east/north/up components for positioning with BDS, while the corresponding improvements
are 60.0%, 29.0%, and 21.1% for positioning with Galileo. These results confirm the efficiency of
the proposed approach, and that the triple-frequency PPP AR can bring an obvious benefit to the
ambiguity-float PPP solution.

Keywords: Galileo; BeiDou; precise point positioning; integer ambiguity resolution; triple-frequency;
fractional cycle bias

1. Introduction

Precise point positioning (PPP) has found increased applications due to its cost-effectiveness,
global coverage, and high accuracy [1,2]. Usually PPP is able to achieve a positional accuracy of 10 cm
after a convergence time of 30 min [3]. The integer ambiguity resolution (AR) technique is expected to
further enhance the accuracy and shorten the convergence time [4,5]. In addition, [6] shows that the
Galileo orbit determination could be improved when employing AR in multiple Global Navigation
Satellite System (GNSS) data processing. However, the uncalibrated phase delays (UPDs) originating
from satellites and receivers destroy the integer nature of PPP ambiguities. By determining the UPDs,
to be estimated as fractional cycle biases (FCBs) at the server end and applying them at the user end,
the PPP integer ambiguity resolution could become feasible [7–9]. Similarly, the decoupled clock
model [10] and the integer phase clock model [11] were developed. These PPP AR techniques have
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been proven equivalent in theory [12,13], and the positional biases have been demonstrated to be
minimal [14]. Beside GPS, PPP AR has been extended to GLONASS [15–17], BeiDou Navigation
Satellite System (BDS) [18,19], Galileo [20,21], and multi-GNSS [22].

As to the functional models used for PPP, the dual-frequency ionospheric-free (IF) combination is
routinely employed (e.g., in the above-mentioned research). However, with emerging BDS and Galileo,
as well as the modernization of GPS and GLONASS, various types of multi-frequency observables
become available [23]. The choice of optimum combinations then becomes practically difficult given the
diversity of equipment [24]. In addition, the IF combination will amplify the measurement noise level
by a factor of about 3, which will degrade the performance of the position solution. As a result, the PPP
model based on uncombined measurements, in which the individual signal of each frequency is treated
as an independent observable, has drawn increasing interest in the GNSS community [25]. Its efficiency
has already been confirmed in terms of convergence time and precision for single-frequency PPP [26],
multi-GNSS PPP [27], as well as PPP-RTK [28,29]. Moreover, this approach has been tested effectively
for ionospheric modelling [30,31], differential code bias (DCB) estimation [32,33], and low earth satellite
orbit determination [34].

Compared to the well-developed IF PPP model, the uncombined PPP model, called uncombined
PPP in the sequel, requires more investigation, especially in the case of multi-frequency processing
and ambiguity resolution. First, how to model and constrain the ionospheric delay has a crucial
impact on performance using the uncombined PPP. For example, it has been demonstrated that a
white noise model is not adequate to capture the characteristics of the ionospheric delay. The external
constraints developed from the ionospheric products, such as the IGS global ionosphere maps, are also
not accurate enough to completely separate the ionospheric effects from the ambiguity parameters [25].
The influence of the ionospheric effects on the ambiguity fixing therefore must be reduced. Second,
the method to deal with the DCB errors is more problematic with the uncombined PPP [35] than
the dual-frequency IF PPP, since the latter can cancel out the DCB biases. The problem of partial
assimilation of the code bias (DCB) into phase bias (FCB) should also be carefully considered. Third,
the uncombined PPP approach was proposed to deal with multi-GNSS and multi-frequency signals,
so a generalized FCB estimation and AR method [36], which is extendable to dual-, triple-, and multi-
frequency, should be proposed.

Li et al. [37] verified the feasibility of the uncombined PPP AR with refined ionospheric models.
The ionospheric delay was constrained from a priori spatial-temporal information and ionospheric
products. The GPS dual-frequency ambiguities were fixed sequentially in the forms of wide-lane
(WL)/narrow-lane (NL), which followed the convention of IF PPP AR. Gu et al. [38] further testified
the uncombined PPP AR with BDS triple-frequency observations. The extra-wide-lane (EWL) and WL
ambiguities were successfully fixed, whereas the B1 ambiguities were kept as float values. In addition,
the performance was further limited by the satellite-induced multipath effects [39]. Li, Zhang, Ge,
and Schuh [36] proposed a unified FCB estimation and PPP AR method, which is extendable to
multi-frequency uncombined PPP. The FCBs on each frequency were directly estimated from the raw
float ambiguities derived from triple frequency observables. The model showed a great potential for
multi-frequency uncombined PPP AR, although its DCB strategy may not be optimal. The satellite
DCBs, together with the receiver DCB, were estimated as unknowns, and as a result the number of
unknown parameters was increased. Given that the satellite GNSS DCB product is currently available
on a routine basis [40], it would be beneficial to make use of these products. In addition, validating
the method with Galileo observations is of interest considering the recent and rapid development
of Galileo.

The aim of this study is to develop a unified modeling strategy for multi-frequency and
multi-GNSS uncombined PPP AR. The unified model is able to generate consistent FCB products
and perform PPP AR for multi-frequency PPP. The proposed approach will be first described, and its
effectiveness will be verified with Galileo and BDS triple-frequency observations collected from the
globally distributed Multi-GNSS EXperiment (MGEX) stations. The estimated FCB are assessed with
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respect to residual distributions and standard deviations, followed by an evaluation of the performance
improvements in Galileo and BDS triple-frequency PPP AR. Finally, the results are summarized, and
an outlook for future research is presented.

2. Methodology

The proposed uncombined PPP mode will be first described in this section, followed by a
description of our FCB estimation strategy. With the obtained FCB products, the uncombined PPP AR
algorithm at the user end is then elaborated.

2.1. Uncombined PPP Float Ambiguity Model

In the classic GNSS dual-frequency PPP, the first-order ionospheric delay is eliminated by the
formation of the IF combination [2]. In the uncombined PPP model, the ionospheric delay is directly
estimated. For a satellite s observed by receiver r, the corresponding raw pseudo-range and carrier
phase observation equations can be expressed as [41]{

Ps
r, f = ρs

r + dtr − dts + dT + a f ·dIs
r,1 + Dr, f − Ds

f + εPf

Φs
r, f = ρs

r + dtr − dts + dT − a f ·dIs
r,1 + λ f

(
Ns

r, f + Br, f − Bs
f

)
+ εΦ f

(1)

where the subscript f = (1, 2, 3, · · ·) refers to a specific carrier frequency, superscript s refers to a
specific satellite; ρs

r indicates the geometric distance between the satellite and receiver; dtr and dts are
the clock errors of receiver and satellite; dT is the slant tropospheric delay; dIs

r,1 is the slant ionospheric
delay on the first carrier frequency and a f = λ2

f /λ2
1 is the carrier frequency-dependent factor; Dr, f

and Ds
f are the receiver and satellite specific code hardware delays; λ f and Ns

r, f are the wavelength in
meter and integer ambiguity in cycle; Br, f and Bs

f are the receiver-dependent and satellite-dependent
uncalibrated phase delays; εPf and εΦ f are the pseudo-range and carrier phase measurement noise,
respectively. Note that the higher-order ionospheric effects are neglected, as they have limited influence
on the performance of ambiguity resolution [42].

Another important difference between the IF PPP and the uncombined PPP model is the strategy
to deal with the DCB. The DCB is not of concern in IF PPP as the IF combination is also used for
precise clock generation, which implies that the DCB could be fully absorbed by other parameters
or simply cancelled out in the IF PPP [43]. But this is not the case in the uncombined PPP, especially
with multi-frequency observations. Conventionally, precise orbit and clock products from the IGS
analysis center are used to remove satellite orbit and clock errors. During the generation of precise
clock products, the pseudo-range IF hardware delay bias Ds

IF = a2
a2−1 Ds

1 −
1

a2−1 Ds
2 is assimilated into

the clock offset dts in accordance with the IGS analysis convention. After applying the GNSS precise
satellite clock products, Equation (1) can be rewritten as{

Ps
r, f = ρs

r + dtr − dts
pre + dT + a f ·dIs

r,1 + Dr, f − Ds
f + Ds

IF + εPf

Φs
r, f = ρs

r + dtr − dts
pre + dT − a f ·dIs

r,1 + λ f

(
Ns

r, f + Br, f − Bs
f

)
+ Ds

IF + εΦ f

(2)

This linear system is rank-deficient due to the DCB parameters. For dual-frequency uncombined
PPP processing, the singularities can be eliminated by a re-parameterization process. This is
accomplished based on the fact that the DCB parameters can be separated into satellite-related,
receiver-related, and frequency-related parts, and therefore can be fully absorbed, respectively,
by satellite clock, receiver clock, and ionospheric parameters [31]. This method is efficient for
dual-frequency processing but becomes complicated when facing multi-frequency observations. It is
also possible to estimate these DCB parameters in advance. This is typically done by employing a
network of receivers and imposing a zero-mean constraint. This option is complicated and not suitable
for single receivers. In our study, we propose estimation of the receiver DCB and correction of the
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satellite DCB with existing multi-GNSS DCB products [40]. Taking triple-frequency observations as an
example, the correction equation can be deduced as [35]

Ps
r,1 = ρs

r + dtr − dts
pre + dT + a1·dIs

r,1 −
1

a2−1 DCBs
12 + εPf

Ps
r,2 = ρs

r + dtr − dts
pre + dT + a2·dIs

r,1 −
a2

a2−1 DCBs
12 + DCBr,12 + εPf

Ps
r,3 = ρs

r + dtr − dts
pre + dT + a3·dIs

r,1 − DCBs
13 −

1
a2−1 DCBs

12 + DCBr,13 + εPf

(3)

where DCBs
12 = Ds

2 − Ds
1, DCBr, 12 = Dr,2 − Dr,1, and dtr = dtr + Dr,1. The DCBs

12 and DCBs
13 can be

obtained from multi-GNSS DCB products, while DCBr,12 and DCBr,13 are estimated as daily constant
parameters. Similarly, the phase equations can be rewritten as

Φs
r, f = ρs

r + dtr − dts
pre + dT − a f ·dIs

r,1 + λ f Ns
r, f + εΦ f (4)

where the ambiguity can be re-parameterized as
Ns

r, f = Ns
r, f + br, f − bs

f
br, f = Br, f − Dr,1/λ f
bs

f = Bs
f − Ds

IF/λ f

(5)

and the estimable parameters are

X =
[

x y z dtr dT Is
r,1 Dr,12 Dr,13 Ns

r,1 Ns
r,2 Ns

r,3

]
(6)

Compared with the model in Li, Zhang, Ge, and Schuh [36], the structure of the unknown
parameters, except (x, y, z), is different, due to the different strategies of DCB correction. In Li, Zhang,
Ge, and Schuh [36], the dual-frequency DCBs are absorbed by other parameters, whereas the third
frequency DCBs are estimated. In this study, the satellite DCBs for all the three frequencies are corrected
with existing DCB products [40] and the receiver DCBs are estimated. Consequently, our ionospheric
parameters will not be biased by DCBs, which is beneficial for ionospheric modelling. In addition,
for single stations with n observable satellites, the number of DCB parameters to be estimated in
their model is n, while it is 2 in our model. The degree of freedom of our model is larger, which
could increase the redundancy and robustness of the positioning solutions. The estimated ambiguity
parameter is a combination of the integer ambiguity, the corresponding code hardware delays, and the
uncalibrated carrier phase delays at both receiver and satellite ends. In order to recover its integer
property, these biases, i.e., satellite FCB bs

f and receiver FCB br, f , must be accounted for. Normally,
the receiver FCB is not of concern as it can be eliminated when performing single differences of
observations between satellites. The satellite FCB, however, must be estimated at the server end and
broadcasted to the users.

2.2. FCB Estimation Strategy

In dual-frequency IF PPP, the float ambiguity is usually decomposed into WL/NL forms in order
to recover the integer property [7]. This is partly because the IF combination of L1/L2 ambiguities
is in essence not an integer. Another reason is that the WL ambiguities possess a relatively longer
wavelength and are less correlated, therefore can be easily fixed. For uncombined PPP AR, it is
also important to form combinations of raw ambiguities. On the one hand, the estimated raw float
ambiguities are strongly correlated. On the other hand, the raw float ambiguities are quite sensitive
to unmodeled ionospheric errors [25]. Therefore, the combinations with longer wavelength and
lower ionospheric delay are preferred. The coefficients must be integers in order to preserve the
integer nature of ambiguities. In addition, these combinations should be independent to avoid
rank-deficiency. While the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method can
be used to automatically search for the optimal linear combinations of ambiguities [36,44], the classic
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extra-/wide-lane ambiguities (EWL/WL) were found to perform equally well and were used in our
work to simplify the algorithm. For triple-frequency observations, it is easy to find two optimal
combinations, e.g., one EWL and one WL combination or two WL combinations. The searching
of the third combination, however, is much more difficult. From the systematic investigation of
triple-frequency combinations, it is found that (4, −3, 0) is a good compromise between ionospheric
reduction and noise amplification [36]. Concerning the properties of the above combinations shown in
Table 1, they are denoted as NL/WL/EWL without specific explanation herein. In addition, they are
used for both BDS and Galileo triple-frequency observations for simplicity Ns

r,LC1
Ns

r,LC2
Ns

r,LC3

 =

 4 −3 0
1 −1 0
1 0 −1


 Ns

r,1
Ns

r,2
Ns

r,3

 (7)

Substituting (5) into the above system produces the basic model for estimating FCBs. Since they
have the same structure, a general expression can be formulated as

Rs
r,LC = Ns

r,LC − N̂s
r,LC = dr,LC − ds

LC (8)

for all linear combinations, Ns
r,LC denotes the float combined ambiguities; N̂s

r denotes the integer part
of Ns

r,LC; dr,LC and ds
LC denotes the receiver and satellite FCBs; Rs

r,LC represents the FCB measurements.
For each linear combination, a set of equations in the form of (8) can be generated, based on a network
of reference stations. Suppose that there are n satellites tracked by m reference stations, the system of
equations can be expressed as

R1
1,LC
...

Rn
1,LC
...

R1
m,LC
...

Rn
m,LC


=



N1
1,LC − N̂1

1,LC
...

Nn
1,LC − N̂n

1,LC
...

N1
m,LC − N̂1

m,LC
...

Nn
m,LC − N̂n

m,LC


=



1 · · · 0 −1 · · · 0
...

...
...

...
. . .

...
1 · · · 0 0 · · · −1
...

...
...

...
...

...
0 · · · 1 −1 · · · 0
...

...
...

...
. . .

...
0 · · · 1 0 · · · −1


=



d1,LC
...

dm,LC
d1

LC
...

dn
LC


(9)

where LC stand for the linear combinations (LC1, LC2, LC3, · · ·). The obtained system is singular on
both sides of the equations. For the left side, N̂s

r,LC can be determined by rounding Ns
r,LC, assuming that

the float ambiguities are precisely estimated. For the right side, one arbitrarily combined FCB should
be set to zero. For all the linear combinations, we always set the combined FCB of the last satellite to
zero, i.e., G32/E30/C14. Note that the FCB measurements Rs

r,LC from different stations may differ
with ±1 cycle. This is due to the rounding process and can be adjusted with the strategy described
in Xiao, Sui, Heck, Zeng, and Tian [9]. In this way, the system of equations can be solved. With the
obtained combined FCB, we are able to calculate the FCB of the raw L1/L2/L3 carrier frequency ds

1
ds

2
ds

3

 =

 4 −3 0
1 −1 0
1 0 −1


−1 ds

LC1
ds

LC2
ds

LC3

 (10)

The transformation from combined FCBs to raw FCBs is important, as it provides more flexibility
to the users. With the raw FCBs, users are able to choose their own linear combinations of observations,
formulate the corresponding combined FCB, and conduct PPP AR. This representation allows
interoperability if the server and user sides implement different AR methods. In addition, the raw
FCB is suitable for the State Space Representation (SSR) of Radio Technical Commission for Maritime
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services (RTCM) [45], where one phase bias per phase observable is broadcasted instead of making
specific combinations.

Table 1. Properties of GPS, Galileo, and BDS triple-frequency linear combinations.

GNSS Coefficients Wavelength [meter] Ionospheric Delay [cycle] Noise [cycle]

GPS
(4, −3, 0) 0.114 0.150 5.0
(1, −1, 0) 0.862 −0.283 1.414
(1, 0, −1) 0.751 −0.339 1.414

Galileo
(4, −3, 0) 0.108 −0.017 5.0
(1, −1, 0) 0.751 −0.339 1.414
(1, 0, −1) 0.814 −0.305 1.414

BDS
(4, −3, 0) 0.114 0.120 5.0
(1, −1, 0) 0.847 −0.293 1.414
(1, 0, −1) 1.025 −0.231 1.414

2.3. Uncombined PPP AR at the User End

Similar to dual-frequency IF PPP AR, single differencing across satellites must be firstly performed
in order to remove receiver FCBs. Then the single-differenced ambiguities from different carrier
frequencies are combined, as has been done during FCB estimation Nm,n

r,ijk1

Nm,n
r,ijk2

Nm,n
r,ijk3

 =

 i1 j1 k1

i2 j2 k2

i3 j3 k3


 Nm,n

r,1
Nm,n

r,2
Nm,n

r,3

 (11)

where Nm,n
r = Nm

r − Nn
r is the single-differenced ambiguity between satellites m and n. Based on the

coefficients (i, j, k), the FCB for the specific combined ambiguity can also be formed. Note that the
linear combinations are not necessary to be the same as that in FCB estimation, although the three
combinations mentioned above are strongly recommended. In our experiments, we have used the
same combinations as in FCB generation for uncombined PPP AR.

Usually, the EWL/WL float ambiguities can be directly fixed by the rounding approach after the
correction of FCB [7], and the NL float ambiguities are fed into the LAMBDA algorithm to search for
correct integers [44]. However, in our study, the LAMBDA is used for each combination, regardless of
its property, which simplifies the design of the algorithm. In addition, if not all the float ambiguities
can be fixed by the LAMBDA method, partial ambiguity resolution can be employed [46,47]. It is
found that the searching and fixing of ambiguities for the combination with longer wavelengths (e.g.,
EWL/WL) is quite fast. When the integer ambiguities for one combination are resolved and validated,
a tight constraint can be reconstructed. The number of constraints accumulate as the process repeats
for all linear combinations. Afterwards, the constraints are imposed on the raw ambiguities, and yields
the AR solution. Note that the ambiguities in IF PPP AR must be sequentially fixed in the order of
WL/NL. An IF ambiguity is constrained only when both its WL and NL ambiguities are fixed, while
the linear combined ambiguities in our study can be fixed and constrained independently.

3. Results and Discussion

In this section, the data and processing strategy is described, followed by an analysis of the
quality of triple-frequency FCB estimation. We further convert the combined FCB to raw FCB on each
carrier frequency in order to characterize their properties. The generated FCBs are used to evaluate the
performance of triple-frequency PPP AR solutions.
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3.1. Data and Processing Strategy

The International GNSS Service (IGS) established the MGEX in order to prepare operational
services for new and upcoming GNSS [23]. The MGEX network comprises over 220 MGEX stations,
as of October 2017. The daily observations from 7 September–27 October 2017—in total 51 days—were
collected. About 200 stations were used for Galileo FCB estimation, of which 160 stations provide
E1/E5a/E5b triple-frequency observations. About 150 stations were used for BDS FCB estimation, of
which 60 stations provide B1/B2/B3 triple-frequency observations. Figure 1 shows the geographic
distribution of the MGEX stations with Galileo and BDS triple-frequency observations. These data
provide almost full and continuous tracking of Galileo and BDS signals.
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Figure 1. Geographic distribution of the selected MGEX stations with Galileo (represented by empty
circles) and BDS (represented by solid triangles) triple-frequency observations.

In the processing, the E1/E5a/E5b were used for Galileo, while B1/B2/B3 were used for BDS.
Data from GPS L1/L2 was also used to test the efficiency of the proposed approach in the case
of dual-frequency observations, while the L3 was excluded due to inter-frequency clock bias [48].
The cut-off elevation angle was set to 10◦, while the float ambiguities with an elevation below 30◦

or with standard deviation (STD) larger than 0.1 m were removed for FCB estimation. It is noted
that the BDS satellite-induced code multipath effects were corrected for inclined geosynchronous
orbit (IGSO) and medium earth orbit (MEO) satellites, according to Wanninger and Beer [39], while
geostationary orbit (GEO) satellites were excluded from the processing. The third-generation BDS
satellites, which were no longer affected by such effects [49], were also excluded due to no public data.
Throughout the processing, MGEX precise products provided by Deutsches GeoForschungsZentrum
(GFZ) [50] were used. The satellite phase center offsets and variations were corrected according to
the IGS antenna file. Since the antenna correction values for the third frequency, i.e., E5b and B3,
were not available, we simply used that of the second frequency, i.e., E5a/B2. It is demonstrated that
the satellite antenna characteristics of the third carrier frequency were quite similar to those of the
second carrier frequency [24]. However, it is a compromised strategy considering the precision of
phase measurements. We have downweighed the observations of the third frequency by a factor of 4,
compared with that of the first and the second carrier frequency. As for the receiver antenna phase
center offsets and variations, the correction values for GPS were employed for both Galileo and BDS,
in accordance with the principle of orbit and clock generation [51]. For the combined GPS, Galileo,
and BDS processing, the system related weighting ratio of GPS, Galileo, and BDS code observations
was assumed to be 1:1:3, while the precision of the phase observations was assumed to be at the same
level [52]. The detail of the used software and processing standards can be found in [9,21].

3.2. FCB Residual Distributions

The performance of PPP AR depends on the quality of the FCBs, which can be indicated by the
posterior residuals. In general, a highly consistent FCB estimation can be expected if the residuals are
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close to zero. Figures 2–4 present the distributions of the posterior residuals after FCB estimation for
Galileo, BDS, and GPS, respectively. The subfigures refer to the different linear combinations.
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Figure 2. Distributions of posterior residuals of Galileo FCB for different linear combinations.
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Figure 4. Distributions of posterior residuals of GPS FCB for different linear combinations.

In general, all the histograms are symmetric and nearly centered at zero, following Gaussian
distributions. These results indicate a good consistency between the input float ambiguities and
the generated FCBs, which prove the efficiency of the proposed FCB estimation strategy. However,
the characteristics of residuals differ with respect to the combinations and systems.
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For all the systems, the residuals of linear combinations with larger wavelengths are smaller.
For example, the residuals of the NL combination with wavelength of around 10 cm, are larger than
those of the other two combinations, i.e., WL/EWL. The reason is that the combination with smaller
wavelength is susceptible to errors. An exception is that the BDS WL residuals are larger than that of
NL. The reason is not clear, and we suspect that it may be related to the satellite induced multipath
effect [39].

When comparing the residuals from multi-GNSS, it is found that the Galileo WL/EWL
outperformed those of GPS and BDS. As discussed in Xiao, Li, Sui, Heck, and Schuh [21], the signal
of Galileo possesses a better performance of multipath suppression, which may explain the results.
For the NL, the residuals of GPS are the smallest, which is reasonable as the accuracy of the GPS PPP
float solution is the highest.

Furthermore, the results are also different from that of IF PPP, in which the performance of WL
is worse than that of the NL. The residuals of WL/NL in the uncombined PPP model are almost
comparable in terms of root mean square (RMS) and distributions. The possible reason is that the
WL ambiguities are directly formed from raw ambiguities in uncombined PPP, while it is derived
from MW combinations in IF PPP. The noise of MW combinations is larger as code measurements are
employed. In addition, the sample rate of WL FCB is 15 min in uncombined PPP, while that of IF PPP
is 24 h. The larger sample interval may also increase the residuals.

3.3. FCB Time Series

For real time applications, another question of interest is the temporal stability of the FCB
estimates. It would be possible to predict the FCB if they are stable over time. Figures 5–7 present the
time series of FCBs for Galileo, BDS, and GPS, respectively.
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DoY 255, 2017.

In general, all the time series of FCB are quite stable over time. The fluctuations between adjacent
sessions are smaller than 0.05 cycles, which indicates that the 15 min interval is sufficient for FCB
estimation. When comparing the results from different linear combinations, it is found that the
time series of NL FCB are noisier than those of WL/EWL FCB. The NL FCBs, possessing a smaller
wavelength of about 10 cm, are susceptible to errors. The EWL shows extremely small variations over
time, with a standard deviation of 0.01 cycles, as presented in Figure 8. For all the three systems, the
raw FCBs are much noisier than that of the combined FCB (Figure 9). The raw FCBs, also having
smaller wavelengths around 20 cm, are susceptible to ionospheric residuals, while it is eliminated or
decreased by linear combinations in combined FCB. The average STD of combined FCB is around 0.03
cycles, while that for raw FCB is around 0.10 cycles. It is easier to predict the combined FCB, especially
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for the EWL/WL FCB. A lower update rate could be used to reduce the burden of communication.
In this manner, it would be more efficient to broadcast combined FCB for real time applications.
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When comparing the results from multi-GNSS, it can be seen that the STDs of Galileo EWL/WL
FCBs are smaller than those of GPS and BDS, while that of the Galileo NL FCB is worse than GPS and
BDS. The better quality of Galileo EWL/WL FCBs is likely attributed to the multipath suppression
of Galileo signals, while the worse quality of Galileo NL FCB is due to the poor precision of satellite
orbit and clock product. From Figure 9, it is found that the STDs of Galileo raw FCBs are smaller than
that of GPS and BDS, regardless of combinations for most of the days. The smaller STDs facilitate the
prediction of FCBs, which indicates a promising future for real time applications.

3.4. Triple-Frequency PPP AR

In order to validate our FCB estimates, as well as to assess the performance of triple-frequency
PPP AR, 11 days from DoY 250 to 260 in 2017 of MGEX network stations are processed in static PPP
AR mode. The 24 h observations are divided into eight three-hour sessions. The positional biases of
BDS-only and Galileo-only PPP float solutions and AR solutions are presented in Figures 10 and 11.
The positional biases are calculated with respect to the 24-h static GPS/Galileo/BDS combined PPP
solutions. The statistics of all the sessions in the 11 days are provided in Table 2. Note that the number
of sessions for BDS is smaller than that of Galileo due to the regional BDS IGSO/MEO constellation.
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Figure 10. Convergence performance of BDS triple-frequency PPP float and AR solutions based on 804
3-h sessions under 68% confidence level.
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Table 2. Accuracy comparison of Galileo and BDS triple-frequency float and AR solutions (unit: cm).

System No. Solution East North Up

BDS 804
float 3.70 1.83 6.12
AR 1.88 1.13 4.31

Improv. 49.2% 38.3% 29.6%

Galileo 5805
float 2.15 1.00 2.99
AR 0.86 0.71 2.36

Improv. 60.0% 29.0% 21.1%

It can be seen that the convergence time is significantly shortened by ambiguity resolution,
especially for the east component. For Galileo triple-frequency observations, it takes 64.5 min for float
solutions to converge to three-dimensional 10 cm accuracy, while that for AR solutions is only 56.0 min,
corresponding to an improvement of 13.2%. For BDS triple-frequency observations, the corresponding
numbers are 121.5 min, 97.0 min, and 20.2%, respectively. In addition, it can be seen that with the
current constellation, the performance of Galileo already outperforms that of BDS, both in terms of
float PPP and PPP AR.

From Table 2, it can be seen that PPP ambiguity resolution was able to enhance the accuracy for
all the three components. The improvements of (east, north, up) components for positioning with BDS
are (49.2%, 38.3%, and 29.6%), while that for positioning with Galileo are (60.0%, 29.0%, and 21.1%).
The performance of BDS is worse than that of Galileo for both float and AR solutions. The worse
performance of the BDS solution is likely ascribed to the incomplete convergence, which is due to the
IGSO/MEO constellation and the limited number of observable satellites.
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The additional signals are expected to further enhance the performance of PPP AR, as has been
discussed in previous research [36,38,53]. Therefore, we also conduct an experiment to investigate the
benefit of the third frequency observations in addition to dual-frequency ones. The strategy is that the
ambiguities of the dual-frequency observations, i.e., B1/B2 and E1/E5a, are resolved to integers, while
the ambiguities from the third frequency observations are kept as float values. This is accomplished by
deleting the third column and row of the matrix in Equation (10). Then the results are compared to
that of resolving the ambiguities of all the three-carrier frequencies. It is found that the improvements
of positional error and convergence time are minimal. The positional improvements for Galileo are
1.8%, 2.3%, and 1.7%, while that of BDS are 8.0%, 5.0%, and 7.8%, for east, north, and up components,
respectively. The possible reason could be: (1) the third frequency observations coming from the
same satellites as the dual-frequency observations, will not improve the geometry of satellites, i.e.,
the DOP value. Compared with new observations from new satellites or other GNSS, its contribution
to the model strength is insignificant; (2) the third carrier frequency E5b of Galileo is very close to
the second one E5a, which implies the contribution of E5b is almost negligible when E1/E5a WL
ambiguities are resolved. For BDS, the contribution of B3 is slightly larger than that of E5b, as its
carrier frequency difference with respect to the B2 is larger; (3) the third frequency observations have
been down-weighted due to lack of antenna corrections, which may also degrade the contribution of
the third frequency.

4. Conclusions

A unified model for multi-frequency PPP AR based on raw uncombined observations is proposed,
which simplifies the concept of phase biases for AR. No assumption is made on the method used
to determine FCB on the server end, which implies that the generated FCB from multi-frequency
observations could be flexibly used, such as for dual- or triple-frequency ones. It is demonstrated that
the model is extendable to dual- and triple-frequency observations.

To verify its efficiency, we processed 51 days of Galileo and BDS triple-frequency observations
collected from globally distributed MGEX stations. The estimated FCB shows a good consistency with
the input float ambiguities. The RMS of Galileo FCB residuals is 0.05 cycles, while that of BDS is 0.08
cycles. It is also observed that the residuals are smaller for the combinations with larger wavelengths.
The results indicate that there may exist ionospheric errors, and combinations are required to reduce its
influence. The average STD of combined FCB is around 0.03 cycles, while that for raw FCB is around
0.10 cycles. To reduce the communication with servers for real time applications, it would be more
efficient to broadcast linear combined FCB. The performance of triple-frequency PPP AR is assessed
with 11 days of data in three-hour sessions. Compared with the float solutions, the positional biases
of AR solutions are significantly improved. The improvements of ENU components for positioning
with BDS are 49.2%, 38.3%, and 29.6%, while those for positioning with Galileo are 60.0%, 29.0%, and
21.1%. These results demonstrate the efficiency of the proposed FCB estimation approach, and that the
triple-frequency PPP AR can bring an obvious benefit to the float solution.

When comparing triple-frequency PPP AR with that of dual-frequency, it is found that the
contribution of the third frequency observations is minimal. The insignificant improvement of the
third frequency observable may be due to its limited contribution to satellite geometry and the
narrow deployment with respect to the second carrier frequency. Nevertheless, adding the third
frequency increases the reliability since it is observed that the number of successful sessions is
increased. The proposed model is also applicable to GPS triple-frequency observations, provided that
the inter-frequency clock biases are accounted for, which will be investigated in the future.
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