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Abstract: Remote sensing technology in recent years has been regarded the most important source
to provide substantial information for delineating the flooding extent to the disaster management
authority. There have been numerous studies proposing mathematical or statistical classification
models for flood mapping. However, conventional pixel-wise classifications methods rely on the exact
match of the spectral signature to label the target pixel. In this study, we propose a fully convolutional
neural networks (F-CNNs) classification model to map the flooding extent from Landsat satellite
images. We utilised the spatial information from the neighbouring area of target pixel in classification.
A total of 64 different models were generated and trained with a variable neighbourhood size of
training samples and number of learnable filters. The training results revealed that the model trained
with 3 × 3 neighbourhood sized training samples and with 32 convolutional filters achieved the best
performance out of the experiments. A new set of different Landsat images covering flooded areas
across Australia were used to evaluate the classification performance of the model. A comparison of
our proposed classification model to the conventional support vector machines (SVM) classification
model shows that the F-CNNs model was able to detect flooded areas more efficiently than the SVM
classification model. For example, the F-CNNs model achieved a maximum precision rate (true
positives) of 76.7% compared to 45.27% for SVM classification.

Keywords: flood mapping; remote sensing; convolution neural network application; contextual
classification

1. Introduction

Every year, flood incidents are accountable for huge impacts on social well being and economic
infrastructure all over the world. Mapping flooding extent during a flood event has become a key tool
needed to assist various private and government disaster management departments (local and state
government emergency departments, and environmental groups) in mitigating, responding to and
recovering from flood disasters [1–3]. Although these organizations seek different types of quantitative
and qualitative information, their primary requirement is rapid acquisition of maps showing the extent
of flood affected areas to plan relief work efficiently.

Traditionally, localised flood mapping was based on man-made ground surveys that requires
skilled people to analyse [4]. However, with advancements in airborne technology, it is possible to
conduct an aerial survey of extensive flooded areas for ground truth collection as we have observed in
the studies by Damian Ortega-Terol et al. [5] where the authors proposed a low-cost aircraft-based
survey that can help in classification for detection of large woody debris along a segment of Jucar
River in Spain. In [3], the authors proposed a low-cost aerial photogrammetry method by combining
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a reduced cost passive sensors on board an ultra-light aerial platform to obtain precise topographic
data from digital aerial images for flood hazard assessment in the upper basin of Adaja River in Spain.
The aerial observation is, however, difficult for a flood event over a large geographical area since it
requires enough time and resources [4,6]. Moreover, the adverse weather conditions could also be
a hindrance for the aerial survey. With the advancement in on-board space-borne sensors, it has been
possible to acquire flood data over large geographical areas from satellite images [2].

However, satellite imagery poses difficulties when it comes to information extraction, in particular,
from multispectral images covering flooded areas because of the mixture of land and flood water
components. The mixture of spectral properties of flood water and other land components in pixels
makes visual classification difficult [7]. Most of flood mapping methods follow either of two approaches.
The first approach is developing hydraulic or hydrologic models for mapping flooded areas, and the
second approach is applying classification algorithms for mapping flooded areas. Flood inundation
modelling is a complex hydrodynamic process that may contain large uncertainties [3,8]; for this reason,
many researchers in their studies have proposed methods to improve over the flooding inundation
modelling, as for example, in [3], where the authors proposed an integrated methods of geomatics and
fluvial hydraulics to improve the information about flood behaviour.

Processes of accessing required ancillary data for hydraulic or hydrologic modelling is time
consuming and can cause difficulty to obtain the rapid information during a flooding event. Numerous
studies in recent years have proposed automated or semi-automated classification methods of flood
mapping. These classification algorithms are based on statistical learning algorithms either assigning
a label to each pixel (flood or non-flood) or determining the fractional coverage of each components
present in a pixel [9]. Pixel-wise classification methods apply either rule-based thresholding methods
or supervised machine learning models [10]. Rule-based classification methods usually generate
image-specific threshold values to distinguish the water pixels from non-water pixels. Approaches like
two-band water indices [11,12], and multi-band indices [13–15] are commonly adopted as rule-based
methods using band algebra. In addition, statistical methods like principle component transform
(PCT) [16] and independent component analysis (ICA) [17] have been applied for detecting the changes
in information components between pre and post flood images of a region to identify flooded areas.
The efficiency of the aforesaid methods depends on the identification of an optimum threshold which
depends on a number of environmental factors like spatial resolution of the satellite image, presence
of shadow and mixed pixels as stated by Pierdicca et al. [18]. Moreover, the optimal threshold values
are required to be calibrated when mapped area on the ground changes [10] Therefore, it limits the
generalisation ability of the rule-based methods for flood mapping.

Recently, with the availability of high spatial and spectral data, images are able to contain more
complex details of land features; therefore, more sophisticated machine learning methods may be
required to extract flooded information from those images. The most commonly adopted approach
in this category is support vector machines (SVM) [19]. Artificial neural networks (ANN) is also
considered a popular technique for mapping the spatial extent of floods due to their ability of handling
multiple input data sources in the classification process as Kia et al. [20] have demonstrated. Studies
like [7,21] applied decision tree classifiers for enhanced flood extent mapping. These classification
methods provide high accuracy levels for localised flooding events, however, they lack generalisation
ability and, hence, are not suitable for using multiple image applications. The performance of pixel-wise
supervised classification models depends on sufficient and representative training samples especially
while studying floods in a complex landscape. Compared to SVMs and decision tree classifier, ANN
methods are more popular due to its easy adaptability and generalisation nature, but the model
training is time consuming.

Furthermore, the interspersion of flood water with different ground cover types is often associated
with high spectral variations of flood water pixels, which is difficult to take into account by pixel-wise
classification methods. In the remote sensing literature, pixels that represent a mixture of spectral
properties of different class types are termed as mixed pixels [22]. Spectral unmixing models like
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indices-based spectral unmixing [23], multiple end-member spectral mixture analysis (MESMA) [7],
linear spectral unmixing [24] and Gaussian mixture model [25] are adopted for estimating the
proportion of partial inundation from mixed pixels. Previously, we investigated linear spectral
unmixing on extended support vector machines (u-eSVM) [26,27] to extract proportions of flood water
from both pure pixels (pixels containing flood water) and mixed pixels. Later in [28], we proposed
a Bayesian approach to enhance the previous classification results using u-eSVM by representing the
probability values of flooding of each pixel instead of representing the flood fractional coverage of
each pixel in the flood classification map.

In remote sensing, the object-based approach has also been proposed to deal with the problem of
the complex spectral nature of flood waters in image processing [29,30]. Object-based classifiers utilize
image spectral and spatial properties such as mean texture, shape and scale of an object to perform
the classification. However, the use of these properties by themselves is not enough for flood extent
mapping. The reason is because flood water is usually spread onto the other land cover types, creating
inter-class spectral similarity alongside the intra-class spectral heterogeneity. Moreover, in a satellite
image, a considerable amount of the recorded signal of each pixel originates from the surrounding
area represented by that pixel [31]. In this context, the spectral information from neighbourhood pixels
may offer great benefits over classic pixel-wise methods to distinguish pixels with similar spectral
nature and assign them into appropriate classes [32].

Contextual classification is common in pattern recognition and computer vision. In remote
sensing, using contextual spectral information offers an opportunity for studying flooding extent using
neighbouring information. Recent developments in deep neural networks have shown the capability
of convolutional neural networks (CNNs) to automatically learn image features utilising contextual
information by a stack of learnable convolutional filters [33]. A recent work has applied convolutional
neural networks for flood mapping by learning the change detection from a set of pre and post disaster
aerial images [34]. The study demonstrated efficient classification using CNN methods, but it was
limited to a single type of image with RGB channels for training the model. Nogueira et al. [35] in their
study proposed four deep network architecture based on dilated convolutions and deconvolutions
layers to distinguish between flooded and non-flooded areas from high resolution remote sensing
images. The study outperforms all baseline methods by 1% in terms of Jaccard Index for flooding
detection in a new location (unseen by the model network during training). The proposed method did
not attempt to distinguish flood water and permanent water surfaces. Gebrehiwot et al. [36] used the
pre-trained a VGG-based fully convolutional neural network model for flood extent mapping using
unmanned aerial vehicles images. The classification results showed the model could get a precise level
of classification accuracy with more than 90% accuracy value compared to 89% accuracy value of SVM
classification but the study was limited to using RGB images.

In spite of the recent studies on convolutional neural network methods for detecting flooded
areas, studies investigating the context-based fully convolutional neural networks (F-CNNs) on
multispectral satellite images utilising six-image bands are not well documented in the literature as per
our knowledge. Furthermore, no studies have attempted to apply convolutional neural networks to
distinguish flood water from permanent water bodies using satellite images. Considering those facts,
our proposed work makes use of contextual pixel information for semantic segmentation or pixel-wise
detection of flooded areas. The idea of using training sample patches is adopted for utilizing the
neighbouring-spectral properties to distinguish three class labels, namely: flood water class, permanent
water class and non-water class. Areas are defined as flood-water class if they are normally dry but
show presence of water during a flood event. Areas with frequent observation of water bodies are
considered as permanent-water. Generally, water holes, river channels (containing seasonal or all
season water), lakes and ponds are considered as permanent-water. Areas that remain always dry
are labelled as non-water. Considering the limitation of the multispectral sensors of not being able to
penetrate the vegetation cover to detect areas underneath, our proposed model does not address this
scenario in the current approach.
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In summary, the main objectives of this study are to: (1) develop a fully convolutional neural
network model architecture that automatically detects flooded areas from multispectral remote sensing
images; (2) to provide an empirical study that reveals the best architecture choice along with the
best choice of neighbourhood size that produces consistent results of detecting flooded areas; (3)
utilise the contextual spectral information of pixels to solve the problem of low accuracy of pixel-wise
classification methods by not considering the pixels relation with its neighbouring pixel’s spectra for
flood mapping.

The rest of the paper is organized as follows. Methodology and data processing are presented in
Section 2. Section 3 presents the experiment results. Section 4 presents the discussion and Section 5
concludes the paper by summarizing the main findings and proposing future work.

2. Methodology and Data Processing

Our proposed classification methodology involves three distinct stages: Image pre-processing,
training-validation and classification. Figure 1 represents the flowchart of the methodology we applied
in this work.

General Methodology
Input Images

Landsat images 

Image to image registration 

WOfS reference images

Normalization of pixel’s 

intensity values of input images
Image pre-

processing

Train samples 

generation

Training the classification 

model

Training the 

classification 

model

Performing 

classification 

and error 

estimation

Validating model’s 

classification performance

Performing classification on test images

Error estimation comparing with 

corresponding WOfS reference images

Validation samples 

generation

Test samples 

generation

Testing model’s 

classification performance

Selecting best performing 

model

Sample patches generation for each class 

types correspond to the labels obtained from 

reference image.

Figure 1. An overview of the stages of our proposed method of flood mapping.
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2.1. Stage 1: Image Pre-Processing

The first stage involves registration of Landsat train images with corresponding reference images,
preparation of initial dataset and from the initial dataset, selection of samples to develop train,
validation and test set.

2.1.1. Landsat Data Collection

To train our proposed model we required a large dastaset which covers spectral properties of
the three target class types. To the best of our knowledge, there is no publicly available large training
databases of the flood water, permanent water and non-water class types for Australia. We have,
therefore, tried to incorporate remote sensing images from various sources that helps to generate
a training dastaset.

Recently, large remote sensing dastasets with low to medium spatial resolutions have been made
available by scientific organizations around the world. Among them, Landsat images have most
frequently been used for flood-related research due to their continuous observation of large areas with
identical scene coverage. For example authors in studies- [11–14,16,17,19] used multispectral images
obtained from Landsat sensors for mapping inundated areas. We have used Landsat-5 Thematic
Mapper data that covers 2011 Queensland and New South Wales floods for our experiments. These
images are distributed by the United States Geological Survey. Labels acquired from corresponding
reference dastaset are utilized to generate training samples for each class. The dastaset is a collection
of 14 images representing flooded areas captured during 2011 Queensland and NSW flood events and
permanent water bodies from different parts of Australia of similar time period. The events of 2011
Queensland and NSW floods were selected as they are one of the most widespread and long duration
flood occurrences in recent years in Australia. The footprints of the selected Landsat images with their
appropriate spatial locations are shown in Figure 2.

Figure 2. Footprints of the selected Landsat-5 TM images: A single band (Band-5) of each selected
Landsat-5 images is overlaid on the Google Earth map based on their location.
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Landsat-5 TM image consists of six reflective bands (bands 1–5 and band 7) with 30-m spatial
resolution and one thermal band (band 6) with 120-m spatial resolution. The thermal band was
re-sampled to 30-m spatial resolution to the downloaded version. Landsat-5’s reflective bands cover
from the visible to infrared portions of electromagnetic spectrum. The details of the data characteristics
are listed in Table 1.

Table 1. Landsat-5 Thematic Mapper Image Specification.

Specification Description

Revisit Time 16 Days

Spatial Resolutions 30 m (Reflective bands)
120 m (thermal band)

Spectral Channels/Bands

Reflective bands:
1. Visible Blue (0.45–0.52 µm); 2. Visible Green (0.52–0.60 µm);
3. Visible Red (0.63–0.69 µm); 4. Near Infrared (0.76–0.90 µm);
5. Short wave Infrared (1.55–1.75 µm); 7. Mid Infrared (2.08–2.35 µm)
Thermal band:
6. Thermal (10.40–12.50 µm)

Scene Size (Size of an image) 170 km × 185 km

Sensors Thematic Mapper

2.1.2. WOfS Reference Data Collection

It is difficult to obtain a precise map of flooding extent as the extent of flood water during a flood
event may change daily, and due to the adverse weather conditions during floods, it is difficult to
acquire the ground truth data. There are few aerial field images obtained from the news archives as
shown in Figure 3 display the extensive Queensland and New South Wales Flooding during 2011.
However, considering the lack of ground truth data to evaluate the accuracy of the classification
model, we considered to use published reference data as an approximated representation of the real
flood extent that help to validate of our experiment. In a recent study conducted by Geoscience
Australia [37], a comprehensive mapping of surface water for all of the Australia has been made for the
first time. This involves analysis of temporal Landsat data covering the period of 1987–2014. The study
has provided a series of confidence level maps of water presence covering Australia with a spatial
resolution of 30 m. The water summary map was created by using a regression tree classification model.
The aim of this web service is to develop a better understanding about where the waters are present
throughout the years (permanent water features), where they are infrequently observed (intermittent
water features), where flooding has been occasionally noticed and where there is no-water presence at
all. The resultant water summary map was validated and filtered by using a number of independent
variables from ancillary data. Probability scores were used as a predicted values of the independent
factors. The ancillary dataset includes MrVBF (Multi-resolution Valley Bottom Flatness) product
derived from the SRTM DSM (Shuttle Radar Topographic Mission Digital Surface Model), slope
derived from the SRTM DSM, open water likelihood model-based surface water information across
all of Australia from 1999 to 2010, The Australian hydrological features and the Australian statistical
geography standard data [37]. The WOfS data achieves an overall accuracy of 97% with 93% correct
identification of areas containing water [37]. The confidence percentage of water observation in pixels
in the water summary dastaset has been utilized to get the labels for flood-water, permanent-water
and non-water pixels.
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(a) (b)

(c) (d)

Figure 3. Aerial Images from different sources showing different flood affected regions of Queensland
and NSW Flood, 2011. (a) Southern Queensland town of Theodore during 2011 floods [38]. Photo
was taken by Jackie Jewell; (b) State Library of Queensland during 2011 floods [39]; (c) Lockyer Valley
Region, Queensland, Australia during 2011 floods [40]; (d) Brisbane River flooding at Goodna during
2011 floods [41].

2.1.3. Image Registration

We used Matlab Image Processing toolbox for performing the image registration. The second
order polynomial geometric mapping transformation followed by control-point mapping function [42]
were applied to implement the image registration process. The registration process helps to align each
reference image with its corresponding Landsat image at pixel level which is required to generate the
training samples. The 6 reflective channels/bands (visible bands: 1, 2 &3 and Infrared bands: 4, 5 & 7)
were used for analysis.

We performed the similar image registration steps for Test images and the corresponding reference
images obtained from the WOfS water confidence maps. After registration, we selected subsets of
flooded areas from the Landsat Test images and used similar latitudinal and longitudinal extension to
crop the corresponding areas from reference images.

2.1.4. Data Normalization

Minmax normalization was performed on geo-referenced images before adding them to the network.
Normalization is a step of data pre-processing which is required in the field of data mining. This method
helps to scale the values to fall within same specific ranges and may contribute to enhancing the accuracy
of the machine learning algorithms like, artificial neural networks and clustering classifiers [43]. In our
study, normalization helps to remove different range of of spectral reflectance values present in images.

2.1.5. Train, Validation and Test Sample Patches Generation for Model Design

The Last step in stage-1 is to generate model’s input data of pixel-patches that were used to
prepare train, validation and test sets and also assign the appropriate label to each sample. These
sample-patches are utilised by the F-CNNs model during training process to obtain the underlying
pattern in the training data [44]. This experiment considers spectral information from neighbouring
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pixels surrounded by the target-pixels into the classification process and to incorporate contextual
information, so we chose small patches of pixels from the input images to generate the train and test
sample sets. The class label of the pixel located at the centre of a patch was used as the class type for
that particular patch. Pixels surrounding the centre pixel were used to determine the neighbouring area
for information extraction. We generated eight different sets with varying neighbourhood sizes and
preferred to apply odd numbers for the neighbourhood size to obtain a specific centre pixel location.
Each training sample patch is generated based on a specific neighbourhood (N) size. Figure 4 displays
the structure of a training sample extracted from Landsat data with N-11 size. Samples with N-1 size
actually refers to single pixels used as samples. Model training with pixel-wise samples helped us to
evaluate context-based classification performance with conventional pixel-wise classification process.

Reference Image

Landsat Image

Normalisation
Generation of  
pixel patches

Generation of  
pixel patches

Image-to-image  
registration

Single training pixel- patch  
structure (11 x11 x 6)

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 7

11 columns

6 channels

Each patch  consists of six  channels 
(except  thermal channel 6)

Input Images

Training Patches

Reference Image Patches

Figure 4. The workflow for the generation of a training sample. Geometric correction and data
normalisation is followed by generation of training sample patches. For training samples with
neighbourhood size 11 × 11 (N-11), each training sample consists of 11 rows, 11 columns and six
channels or bands (Channel 1, 2 and 3 represents red, green and blue; channel 4 represents near-infra
red, channel 5 represents middle-infrared and channel 6 represents short-wave infra-red).

2.2. Stage 2: Model Building and Training

The second stage involves generation of train, validation and test sets, building the model
architectures and training the models. Testing the performance of trained models on test set helped us
to determine the optimum model architecture for the classification task.

2.2.1. Deep Network Structure

Convolution neural networks can be regarded as trainable feed-forward multi-layered artificial
neural networks that comprise of multiple feature extraction stages [36,45]. Each of the feature
extraction stage was consist of convolutional layers with learnable filters, pooling layers and activation
functions or non-linearity layers [36].

Our proposed fully convolutional neural networks (F-CNNs) consist of three convolutional
layers. The training samples from Landsat images and their corresponding label image samples were
uploaded to the proposed model network to train the model. Each layer applies a convolutional
operation on the input image using learnable filters and passing the output feature maps to the next
convolutional layer [36]. The first two convolutional layers (L1,L2) are designed using kernels (a set
of learnable filters) of size 3 × 3. The dimensions of each filter allows the network to slide across the
entire width and height of the local region and generates pixel-wise probabilities for each class based
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on the contextual information. The network takes pixel-patches (target pixel is at the centre of each
patch) as input instead of single pixel. Filters of the last convolutional layers help the convolutional
layer to learn patterns of the input training data of different class types. Each kernel gave the weight
for each class label. Therefore, to keep the number of output feature maps of the last convolutional
layer equal to the number of classes, the size of the filters in the last layer matched to the height and
width of the input feature maps. The size (length × height) of the output feature maps generated by
convolutional layers depends on the number of pooling and strides and the size of convolutional
filters [46]. Assuming Y and X be the heights and width of the inputs to the convolutional layer, S be
the stride and P be the padding, Equations (1) and (2) explain how the height and width of the outputs
of each convolutional layer is determined.

(Y − 3 + 2P)
S

+ 1 (1)

(X − 3 + 2P)
S

+ 1 (2)

Equations (1) and (2) could be explained with referring Figure 5.
Figure 5 represents a F-CNNs model architecture using 32 filters of (3 × 3) size and each sample

patch in the input data represents a (11 × 11 × 6) multidimensional matrix. Please refer Figure 6 for
details about the dimension of input and output feature maps for the model illustrated in Figure 5.

We developed various designs of our proposed F-CNNs classification model by changing the
number of filters used in each of the first two convolutional layers. The number of filters in each layer
varies from 2 to 256 in powers of 2, and therefore, eight possible choices (2, 4, 8, 16, 32, 64, 128 and 256
filters) for each layer. In practice, that would lead to 64 possible permutations for (L1,L2).

In addition, with the aim of identifying the best neighbourhood size of training sample-patches
for extracting contextual information using Landsat images, we experimented with 8 sets of training
samples (one at a time) of eight different neighbourhood sizes (N), these are 1 × 1 (N-1), 3 × 3 (N-3),
5x × 5 (N-5), 7 × 7 (N-7), 9 × 9 (N-9), 11 × 11 (N-11), 13 × 13 (N-13) and 23 × 23 (N-23). Combined
with 64 different choice of kernel numbers for L1 and L2, this would lead to (eight different training
sets × 64 =) 512 possible variety of model architectures to test. Therefore, we reduced the number
of combinations to make the process time permissible. We have used only eight combination filters
between L1 and L2 by keeping the number of filters in both layers constant. As for example, considering
number of filters is 64, both L1 and L2 layers use 64 filters for convolution. That results (8 × 8 =)
64 different model architectures. The best performing model was selected from those possible 64
choices based on the training, validation and test performances. No zero-padding was used because
the models in this experiment were designed to perform a classification task and hence, there is no
need to preserve the spatial size of objects during training.

Figure 5. Overview of the proposed Fully Convolutional Neural Network architecture. The neural
network consist of three convolutional layers. First two convolutional layers contain 32 filters each with
size 3 × 3 each. The last layer replaces the fully connected layer with a convolutional layer containing
three filters with size 1 × 1 and a softmax regression function to obtain class label probability for
each pixel.
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Convolution 
Layer 1

Input 

Output 

(None, 11, 11, 6)

(None, 5, 5, 32)

32 Kernels of 3 x 3 
dimensions

32 Kernels of 3 x 3 
dimensions

3 Kernels of 7 x 7 
dimensions

INPUT IMAGE
(11 x 11 x 6)

Convolution 
Layer 2

Input 

Output 

(None, 9, 9, 32)

(None, 7, 7, 32)

Classification 
Input 

Output 

(None, 7, 7, 32)

(None, 1, 1, 3)

Feature Maps 
showing probability 
distributions of 
Each of the three 
class types

Figure 6. Overview of the process flow for an architecture with (L1,L2) = (32,32) trained with N-11.
Filters and feature maps are shown as well as input and output data sizes at each layer.

In deep neural networks, to reduce the dimensionality of the feature maps, pooling is introduced
in between convolutional layers [45]. Due to the small size of network and small number of object
categories (class types) using of pooling layers may cause loss of information by shrinking the size of
the feature maps and therefore, we did not use any pooling layer in our proposed networks.

Activation functions is introduced to add the non-linearity to the networks. These functions help
to decide whether the information received by the neuron is relevant or it should be discarded [36].
We used a Rectified Linear Unit or ReLU function after the first and second convolutional layers.
We selected this function as it is used almost in every convolutional neural network models [36,47].
A softmax regression classification [48] function was used in the last convolution layer to estimate
the probabilities for each class label in the input image. For each pixel, the class label with highest
probability was determined as the final label of that pixel in the output image. The model was trained
using categorical cross entropy loss function.

The total number of epochs/iterations was set to 2000. Although increasing the number of
epochs may lead to improvements in training accuracy, we found that this number of epochs provided
a good compromise between training time and accuracy. Stochastic gradient descent with Adam
optimization algorithm was used by the model for fine tuning the hyper parameters. ADAM was
developed by Diederik P. Kingma and Jimmy Lei Ba [49]. According to the authors, Adam is based on
adaptive moment estimation [49]. The algorithm combines the advantages of AdaGrad and RMSProp
optimization methods to deal with sparse gradients and noisy data respectively.

2.2.2. Training and Testing during Model Design

Training and test sets were prepared for each different neighbourhood size separately.
Consequently, eight sets of training and test data were prepared for training the convolutional model.
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For each set, we consider a 90–10% ratio for dividing the input dastaset into train and test sets. The
test set was not involved in the process of model training. This set was used to assess the classification
performance of the trained model. The training set further were subdivided into train and validation
set with a 80–20% ratio. Each training set covers a total of 4.50 million random selected samples
(1.50 million training samples for each class type).

2.2.3. Validation during Model Design

A validation set is also required in this process which helps to assess the generalisation ability
of the trained model on validation dastaset. If the validation performance is deteriorating while the
training performance is improving over the epochs, the model assumes to be not well trained and has
a very low generalisation ability. In deep learning terms it is called overfitting [44]. The training stage
ended after 2000 iterations and finally the trained network was applied on test samples to generate
classification outputs.

2.2.4. Selecting Best Performing Model

By investigating the training performances, we observe that in each combination-case the model
achieved highest accuracy within the first 500 epochs and after that started overfitting. Therefore, we
have only taken the training and validation performances for the first 500 epochs of the model for
visualisation. Strong overfitting of the model using N-9, N-11, N-13 and N-23 training sets made us
discard those four neighbourhood sizes for further investigations. By evaluating the test performance
of the model to predict about the test samples helped us to determine the generalisation ability of
the model and we were able to decide the optimum number of convolutional filters to be used in the
model that performs best on Landsat data and the optimum size of the neighbourhood window for
training sample patches.

2.3. Stage 3: Performing Classification and Error Estimation

The third and final stage of the methodology is to test the model over different Landsat
images covering flood events across Australia. To compare the context-based F-CNNs classification
performance with pixel-based conventional classification method, we chose the pixel-based SVM
(support vector machines) classifier. SVM classifier was proposed by Vapnik [50]. SVM classifier works
to find out the the optimum hyperplane to separate the class representative pixels from one class to
another and mapped them.

We have calculated and analysed different validation coefficients from the confusion matrix to
evaluate the performance of flood mapping. A confusion matrix is a N × N matrix where N refers
to the number of class labels being predicted. The coefficients include precision, recall and false
negative rates.

To evaluate the model’s classification performances on each test images for detecting flooding
extent we calculated the ‘precision’ (P) and the ‘Recall’ (R) values.The P index or positive predictive
value of a particular class type refers to the percentages of correctly predicted positive cases among the
total of the predicted positive cases. The R or hit rate measures the model sensitivity rate, that is it
refers to the percentages of the positive cases that are correctly predicted by the model. To calculate
the P and R from each classification result, we calculated the true positive (refers to pixels correctly
classified as flood water), the false positive (refers to permanent water or non-flooded pixels erroneously
classified as flood water) and the false negative (refers to flood water pixels that are missed) [51] from
each classification output. The calculation of P and R are showin in Equations (3) and (4), respectively.

P =
TruePositive

TruePositive + FalsePositive
(3)

R =
TruePositive

TruePositive + FalseNegative
(4)



Remote Sens. 2019, 11, 2331 12 of 25

To have a comparative evaluation of the classification performance of context-based F-CNNs
model with pixel-wise F-CNNs and SVM classifiers, we estimated the ‘overall accuracy’ (OA). The OA
is estimated by dividing the total number of true positives or correctly classified pixels by the total
number of classified pixels [52]. Assuming M be the total number of pixels in the error matrix or sum
of row elements of the error matrix, Xdi be the sum of column elements or total number of accurately
classified pixels and N be the total number of class types, the OA can be calculated as described
in Equation (5) [53]. Moreover, to obtain a clear idea of the classification accuracy in detecting the
extent of inundation we estimated the number of accurately predicted flooded pixels for context-based
F-CNNs, pixel-wise F-CNNs and SVM classifiers.

OA =
∑N

i=1 Xdi
M

(5)

3. Results

This section has two parts: first, we present the results of the training, validation and test
performance during model design and the optimum model selection based on performance evaluation
on validation and test dastasets. Secondly, we tested the optimal model to detect flooded extent using
different Landsat images showing floods from different dates.

3.1. Training, Validation and Test Performances during the Model Design

Due to the space limitations we only report on the best performing models out of the possible 64.
Figures 7 and 8 list the training and validation performances of model networks with training sample
sets of N-1, N-3, N-5 and N-7.

By observing the graphs in Figures 7 and 8 some comments can be made:

(1) N-1 training samples are the representative of pixel-wise training samples and the graphs exhibit
highest accuracy (80%) of the model on training and validation data using N-1 training samples
with 2 learnable filters in the convolutional layers (the yellow and blue coloured curves in
Figure 7a). Increase in the number of learnable convolutional filters results decrease in model’s
accuracy of the model using N-1 data.

(2) Graphs in Figure 7b shows that the model’s performance improves drastically with the highest
level of accuracy increases to 92% using 32 learnable filters. But the overall performance of the
F-CNNs model using N-1 sample set increases from 80% but compared to the performance of
N-3, N-5 and N-7, moves down to the lowest accuracy (84%) level.

(3) The graphs in Figure 8 shows that the range of loss value remains constant (0.40–0.35) for N-1
training and validation data and the increase in filter numbers does not have any effect.

(4) From the accuracy and loss graphs it can be outlined that the model performed with highest
accuracy (95%) and lowest loss (0.20) values with N-3 samples (orange and violet coloured graph).

(5) The F-CNNs model does not achieve the highest validation accuracy with N-5 and N-7 dastasets
as we can see a deterioration of model’s validation performance compared to model’s training
accuracy and loss results corresponds with N-5 (green and cyan coloured graphs) and N-7 (red
and dark brown coloured graph) sample sets. For example, in Figure 8b the loss values recorded
during model’s performance on N-7 validation dastaset (dark brown coloured graph) rises to
0.5 and shows a tendency of increasing at the 500th epoch where as the training loss (the red
coloured curve) tends to decrease below 0.20. Similar trends can be observed for the accuracy
graphs in Figure 7b.
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(a) Training and validation accuracy plots
for F-2 convolutional filters
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(b) Training and validation accuracy plots
for F-32 convolutional filters

Figure 7. Training and validation accuracy plots of model networks with combinations of different
numbers of convolutional filter and different sets of training sample. The number of learnable filters
used to the model is specified as ‘F-number’ in every sub-caption. TA and VA in legends denote
training accuracy and validation accuracy.
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(a) Training and validation loss plots
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(b) Training and validation loss plots
for F-32 convolutional filters

Figure 8. Training and validation loss plots of model networks with combinations of different numbers
of convolutional filter and different sets of training sample. The number of learnable filters used to the
model is specified as ‘F-number’ in every sub-caption. TL and VL in legends denote training loss and
validation loss. Neighbourhood size is depicted as (N).

Approximately, it required 24 h to perform the training process using High Performance
Computing Server. We did not use GPU for the training process.

Overall, the analysis of the graphs of accuracy and loss plots reveals that the model is susceptible
to ‘overfit’ or poor performance outside the training dastasets while increasing the neighbourhood size
of sample patches. It is also evident that the model performs better both on training and validation data
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using context-based information than per-pixel information. On the whole, it can be seen that the model
trained well using N-3 training sample patches and persistently performed well on validation dastaset.

Besides the training and validation performance evaluation, the evaluation of the F-CNNs
performance of test sample patches have also done to decide the optimum model architecture. The main
purpose of the evaluation of model’s performance on validation and test set was to choose the optimum
model based on its generalisation ability [36]. The test accuracy and loss rates are listed in Tables 2
and 3 respectively.

Table 2. Accuracy Rate of model networks using various number of learnable filters on N-3, N-5 and
N-7 dastaset.

Filter No. N-1 Test Accuracy N-3 Test Accuracy N-5 Test Accuracy N-7 Test Accuracy

2 0.61 0.33 0.86 0.86
4 0.80 0.88 0.87 0.88
8 0.74 0.91 0.89 0.89
16 0.73 0.91 0.90 0.90
32 0.76 0.92 0.90 0.90
64 0.77 0.92 0.89 0.90

128 0.78 0.92 0.89 0.90
256 0.78 0.92 0.85 0.90

Table 3. Loss Rate of model networks using various number of learnable filters on N-3, N-5 and
N-7 dastaset.

Filter No. N-1 Test Loss N-3 Test Loss N-5 Test Loss N-7 Test Loss

2 0.89 1.09 0.41 0.43
4 0.70 0.32 0.35 0.33
8 0.73 0.24 0.29 0.28

16 0.67 0.21 0.26 0.24
32 0.6 0.19 0.28 0.24
64 0.57 0.19 0.55 0.24
128 0.54 0.19 0.78 0.24
256 0.53 0.19 0.41 0.25

The observations from test performance evaluation are listed below:

(1) Accuracy and loss test rates show that the F-CNNs model also performs worst while trained with
N-1 sample set.

(2) The F-CNNs model trained with N-3 sample patches performs best on the test samples with 32
learnable filters in first two feature extraction layers.

(3) It is also evident that adding more filters to to the model with 32 learnable filters does not have
any effect on model’s test performance proving that the model achieves its optimum level of
performance. Therefore, we have finally selected 32 learnable filters as best choice for L1 and L2
convolutional layers and N-3 as best size of neighbourhood window for this study.

3.2. Evaluation of Classification Performance of the F-CNNs Model on Test Images

For classification test, instead of using the entire Landsat image scene, we selected a subset of the
area covering locations of flooding. The test images were not a part of training the model networks.
We selected six different Landsat image-subsets showing flood occurrences on different dates and
locations for the quantitative assessment of classification performance. The details of the Landsat test
images are listed in Table 4.
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Table 4. Details of Test Images.

Image No. Name of the Sensor Date (year/month/day) Path-Row Location

1 Landsat-8 Operational Land Imager (OLI) 2017/04/04 91-76 Rockhampton, Queensland, Australia

2 Landsat-5 Thematic Mapper (TM) 2011/01/21 92-80 Dirranbandi,Queensland, Australia

3 Landsat-5 Thematic Mapper (TM) 2011/03/26 92-79 Balonne River, Queensland, Australia

4 Landsat-5 Thematic Mapper (TM) 2011/03/28 99-79 Yelpawaralinna Waterhole, Queensland, Australia

5 Landsat-5 Thematic Mapper (TM) 2008/03/04 106-69 Daly River Basin, Darwin, Australia

6 Landsat-5 Thematic Mapper (TM) 2011/01/16 89-79 Brisbane River, Queensland Australia

For the test image classification using the SVM, 1000 pixels from each class were randomly selected
as the training samples. To match with the characteristics of the training samples of F-CNNs model,
the training samples of the SVM classifier consists of normalised data and samples were collected
from the Landsat images which used as input image in our proposed F-CNNs model. The mixture
of spectral information from different images incorporates the spectral variation of class types in the
training samples. The classification results are listed in Figure 9. The corresponding accuracy measures
are listed in Figures 10 and 11. By observing the classified images in Figure 9 few important points can
be summarised:

• The classification results show that our proposed model is able to detect flood pixels compared
to SVM classifier. The accuracy measures in Figure 10a for Test-1 shows that the recall rate of
flood water class is 81.7% which means that the classification model able to detect 81.7% flooded
pixels accurately. Compared to F-CNNs, the conventional SVM classification only detects 23.8%
(Figure 10b) flood pixels accurately. Much of the flooded pixels are classified as land or non-water
by SVM classifier which lowers down the precision rate of non-water class to 49.6%.

• Similarly, for Test-2 (Figure 10c) and Test-5 (Figure 11c) we have also observed that the F-CNNs
model able to obtain 95.4% and 76.95% of recall rates respectively compared to only 0.10% and
26.36% of recall rates by the SVM classification method.

• Both the classification model fails to detect the permanent water from Test-1 image. While F-CNNs
model detect permanent-water pixels as flood water (Figure 9(C-1)), SVM classifier misclassifies
a considerable amount of flood water pixels and permanent water pixels (Figure 9(D-1)) as
non-water class.

• The classification results (Figure 9(C-2,D-2)) of Test image-2 (Figure 9(A-2)) show that the F-CNNs
model distinguishes between flood water and permanent water areas with 95.4% recall rate for
flooded area detection (Figure 10c) while SVM classifier classifies the entire flooded areas as
permanent water features and achieved as low as 0.10% recall rate (Figure 10d).

• Both the classification methods on Test-5 achieved with an overall accuracy less than 50%.
However, the overall accuracies obtained by F-CNNs model ( 45.14%) is higher than the overall
accuracy obtained by SVM classifiers (10.60%).

• However, the F-CNNs model does not able to achieve more than 70% overall accuracy level for
every classification tasks, but it is clear from the results that the model is able to distinguish flood
water from permanent-water features that the SVM classification method is not able to obtain as
we observed in Figures 9(D-2) and 9(D-6).

• Accuracy level of non-water area detection from all test images for both the classification
method are showing more than 50% accurately classified pixels except for Test-6 where the
SVM classification results show (Figures 9(D-6) and 11f) all the non-water pixels are misclassified
as flood waters.

• The overall classification performance also show that F-CNNs model achieves classification
accuracy higher than SVM classifiers except in case of Test- 3 classification performance where
overall accuracies of both the classifiers are more or less similar (overall accuracy 57.71% for
F-CNNs classifier and 58.34% for SVM classifier).
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Finally, the processing time of the SVM classifier is also another important factor which
makes the SVM classifier lagging behind the F-CNNs classification model. The processing time of
SVM-classification method for test-1 and test-2 images are 0.45 h and 2.86 h and F-CNNs took 1.05 min
and 3 min respectively. The experimental results and accuracy measures therefore, indicates that the
application of neighbouring information with fully convolutional neural networks approach can be
applied on a more generalised basis compared to conventional pixel-based classification methods.
The model also able to distinguish between flood water and permanent water if there is enough
spectral variability exists between these two class types.

Figure 9. Cont.



Remote Sens. 2019, 11, 2331 18 of 25

Figure 9. Classification results of F-CNNs and SVM classification models. Cells-(A1–A6) showing
the original Landsat test images. Cells-(B1–B6) showing the labelled images from the reference
data. Cells-(C1–C6) showing the classification results of context-based F-CNNs model. Cells-(D1–D6)
showing the classification results of pixel-based SVM model.
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Figure 10. Confusion matrices of Test image 1, Test image 2 and Test image 3 classification results by
F-CNNs and SVM: Confusion matrix listed the accuracy measures.
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(c) Test 5 Confusion Matrix: F-CNNs classification (d) Test 5 Confusion Matrix: SVM classification
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Figure 11. Confusion matrices of Test image 4, Test image 5 and Test image 6 classification results by
F-CNNs and SVM: Confusion matrix listed the accuracy measures.

4. Discussion

The aim of this paper is to propose a base-line architecture of a fully convolutional neural network
classification model using neighbourhood pixel information for mapping the extent of flooded areas
as well to distinguish flooded areas from permanent water bodies. In our knowledge, before no
convolutional neural networks model was trained to map flooded areas by classifying multispectral
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images with more than 4-spectral bands. This approach was trained with a set of training samples
collected from different images covering flood water, permanent water and non-water training samples.
The trained model was applied on six different Landsat flood images of Australia and these test data
are independent to the training set. To compare the performance of the proposed model we also used
the conventional SVM classification method to classify those test images. For comparison purpose we
selected a random sample of 1000 pixels for each of the class types from the similar input images that
we used for training sample selection of F-CNNs classification model.

The training, test and validation experiments for model design determined optimal model
architecture with 32 learnable convolutional filters or the classification purpose. The evaluation
of model’s performance on validation and test set also determined the optimal neighbourhood size of
training sample patches to 3 × 3 pixels.

The F-CNNs classification method obtains higher overall accuracies compared to SVM classifier
on test images except Test- 3 where accuracies obtained from both the classifiers are almost equal
(57.71% for F-CNNs classifier and 58.34% for SVM classifier). When focusing on detecting the extent of
flooding, it can be stated that our proposed model is able to detect flooded areas more accurately than
by the SVM method as, we have observed that for test image-1 about 81.7% of flood water pixels are
successfully retrieved by the F-CNNs model compared to only 23.8% by the SVM classification model.

Our proposed method also shown to be able to distinguish flooded area and permanent water
areas with 95.4% and 85.3% of detection rate for flood water and permanent water bodies respectively.
However, from the classification results it is evident that the method is dependent on the distinctive
spectral properties of those two class types. As we can observe in the classification results of test
image-1 (Figure 9a) that due to the turbid color of the river and the flooded area the F-CNNs model
misclassified the permanent water bodies as flood. To examine the spectral distinctiveness of flood
water and permanent water class, a feature space plot was generated by using few randomly selected
samples of flood water and permanent water class from Test image-1. It is an established fact that the
spectral characteristics are more distinctive for water features in the infrared wavelength region and
beyond [52]. Therefore, few randomly collected class samples of channel-4, channel-5 and channel-7
(infrared bands) were selected from the Test image-1 and plotted on a 3D graph plot in Figure 12. The
graph clearly shows that the flood water and the permanent water samples are overlapping with each
other in the infra-red spectrum region.

Figure 12. The scatter plot of class samples from test image-1 on a 3D graph. The axis represents
channel-4, channel-5 and channel-7. The graph shows that even in the infrared region the spectral
properties of flood water and permanent water are overlapping.
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Therefore, incorporating spectral properties are not enough to separate these two features and to
overcome this issue further research work includes ancillary data like altitude information from SRTM
Digital Elevation Model into the classification process.

Additionally, from the accuracy measures in Figure 9 it is also observed that the model may have
a tendency to falsely classified the non-water pixels as flood water due to the similar spectral similarity
but the percentages of such miss classification is very less for F-CNNs model.

In Australia, flooding is the most frequently occurring natural hazards which affects the
community. The problem of flooding is critical in Queensland and New South Wales as every year
these two states experience a series of scattered flooding events [54]. It is therefore, important to
obtain a flooding extent map during real-time flood events. The Australian disaster management
organisations relies on different classification, hydrologic and hydraulic models for detecting flooded
areas. Generally, the selection of using a model depends on data availability [55]. Long processing
time and computational efficiency is required to obtain flooding extent by using conventional machine
learning methods which is not desirable during the flooding emergency. Our aim therefore to propose
a model that can be able to produce flood maps with minimum required time and using data that are
freely accessible. Moreover, due to the lack of generalisation ability the conventional machine learning
classifiers are required to be retrained before using on a new flooding image to detect the extent of
inundation. Compared to the conventional classification methods, our proposed methods are more
generalised in nature and therefore, able to detect flooded areas from freely available Landsat images
as we have already shown in our test experiments. The classification F-CNNs classification model
requires minimum processing time which is sometime less than a minutes using a desktop computer
with 64-bit operating systems and 16 GB RAM. The software (latest JetBrains PyCharm Community
Edition) required to run the classifier is also freely available to download. Our proposed model does
not require any permanent water mask image to separate the permanent water bodies from flooded
areas. Therefore, we believe that our proposed method is able to provide a solution to obtain rapid
flood extent maps for an efficient relief work. Our propose context-based optimal convolutional neural
networks model with 32 learnable filters in each layer is a base model and therefore, does not able to
produce high accuracy for every test experiments but definitely showing more accurate classification
compared to conventional classification methods that are based on single spectral information. We are
currently working on the application of elevation data with the spectral information to detect the class
types more accurately as well as to detect flooded areas obscured by clouds or vegetation cover.

5. Conclusions

This study presents a novel approach of using neighbourhood information of pixel spectral
properties into an advanced machine learning model with optimal architectural design for mapping the
flooding extent from multispectral Landsat images. Our study also addresses the problem of separating
flood water from permanent water features which has not been investigated in flood mapping [35,36].
In this paper, we prepare a base-line fully convolutional neural network model (F-CNNs) to perform
the classification method. To obtain the best performing model, we investigated the architecture design
by changing the number of convolutional filters used in the first two convolutional layers. In this study,
we have also investigated the effectiveness of different sizes of training neighbourhood windows
for incorporating the contextual information to train the classification model. The FCNNs model
performed best with 32 learnable filters and it is observed that 3 × 3 size of neighbourhood sample
patches is ideal for using the F-CNNs model on Landsat images.

To evaluate the performance the F-CNNs model by comparing with the performance of traditional
pixel-based classification methods, we choose the conventional pixel-based support vector machines
on the test images. The classification results shows that our proposed model was able to detect flooded
areas and separate flood water features from permanent water features; however, the accuracy varies
depending upon distinguishable spectral information present in the test image. For images with
almost similar spectral characteristics of flood and permanent water features, the model misclassified
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permanent water pixels as flood water. However, overall, the experimental results showed that the
F-CNNs model is more efficient to map flood extent areas with a recall rate of more than 70% in few
test experiments compared to the conventional SVM classification results with less than 30% recall
rate for flooded area detection. The accuracy of measures also proved that the F-CNNs model can
be applied to extract flooded areas from any Landsat images covering floods in Australia due to its
generalisation ability.

Further research work involves: 1. Using the elevation information from the SRTM DEM to define
rules to separate flood water from permanent water features; 2. Incorporation of the DEM image into
the classification process to refine the prior probability generated by the F-CNNs model and in this
way the misclassified pixels or false positives can be correctly labelled; and 3. The method also helps
to detect flooded areas obscured by cloud cover and vegetation cover. Finally, we also aim to test this
model in artificially created images covering different possible situations based on real-time flood
scenarios and in the current results to refine the labels of the misclassified pixels.
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