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Abstract: Data saturation in optical sensor data has long been recognized as a major factor that causes
underestimation of aboveground biomass (AGB) for forest sites having high AGB, but there is a lack
of suitable approaches to solve this problem. The objective of this research was to understand how
incorporation of forest canopy features into high spatial resolution optical sensor data improves
forest AGB estimation. Therefore, we explored the use of ZiYuan-3 (ZY-3) satellite imagery, including
multispectral and stereo data, for AGB estimation of larch plantations in North China. The relative
canopy height (RCH) image was calculated from the difference of digital surface model (DSM) data at
leaf-on and leaf-off seasons, which were extracted from the ZY-3 stereo images. Image segmentation
was conducted using eCognition on the basis of the fused ZY-3 multispectral and panchromatic
data. Spectral bands, vegetation indices, textural images, and RCH-based variables based on this
segment image were extracted. Linear regression was used to develop forest AGB estimation
models, where the dependent variable was AGB from sample plots, and explanatory variables
were from the aforementioned remote-sensing variables. The results indicated that incorporation of
RCH-based variables and spectral data considerably improved AGB estimation performance when
compared with the use of spectral data alone. The RCH-variable successfully reduced the data
saturation problem. This research indicated that the combined use of RCH-variables and spectral
data provided more accurate AGB estimation for larch plantations than the use of spectral data alone.
Specifically, the root mean squared error (RMSE), relative RMSE, and mean absolute error values were
33.89 Mg/ha, 29.57%, and 30.68 Mg/ha, respectively, when using the spectral-only model, but they
become 24.49 Mg/ha, 21.37%, and 20.37 Mg/ha, respectively, when using the combined model with
RCH variables and spectral band. This proposed approach provides a new insight in reducing the
data saturation problem.

Keywords: aboveground biomass estimation; data saturation; ZY-3 data; canopy height; larch plantations

1. Introduction

Remote sensing-based aboveground biomass (AGB) estimation has obtained great attention in the
past three decades because of the unique characteristics of remote sensing technologies in providing
land surface features and the requirement of understanding the spatial patterns and dynamics of AGB
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(see review papers [1–6]). AGB includes aboveground living mass such as trees, shrubs, and vines [1].
Forests play important roles in global change and ecosystem functioning, and forest AGB accounts for
the largest proportion of terrestrial ecosystems. Therefore, it is necessary to understand the spatial
patterns and dynamics of forest AGB in a timely manner [5]. A large number of publications are
involved in the studies of exploring different data sources and modeling algorithms for improving
forest AGB estimation [7–10].

Landsat imagery may be the most common data source for AGB estimation, especially at
local and regional scales [7,10–12]. As summarized by Lu et al. [5], the modeling variables can be
pixel-based (e.g., spectral bands, vegetation indices, transformed images), spatial-based (e.g., textures,
segmentation images), and subpixel-based (e.g., fractional images). Previous studies have confirmed
that a combination of spectral and spatial features is effective for forest AGB estimation, especially for
the forest sites with complex forest stand structures [7,12], whereas for the forest sites with relatively
simple forest stand structures, for instance, successional forest in the Brazilian Amazon, spectral
signatures play more important roles than spatial features [13,14]. Previous studies also show that
Landsat data are especially valuable for the AGB estimation of successional forests in the Amazon
basin, but are not suitable for primary forests because spectral signatures cannot effectively reflect the
small difference of forest stand structures, although their AGB may be considerably different [12,15].
Similar conclusions were also obtained in subtropical regions [7,16]. This situation is often called data
saturation. In order to reduce the data saturation problem, different approaches may be used, such
as stratification of forest types and/or topographic factors, or incorporation of different kinds of data
sources, such as optical and radar or lidar [7,8].

Optical sensor data with high spatial resolution have also been used for forest AGB estimation
in recent years [17–21]. However, high spatial resolution images have not been extensively applied
in practice. This may be attributable to the following three factors: (1) different canopy densities,
shadows cast by tall trees, and different conditions of grass/shrubs and soils under canopy may
considerably influence the spectral signatures, resulting in large spectral variation of forest canopies,
and even tree crowns, thus further resulting in a poor relationships between AGB and spectral variables;
(2) inconsistency of spatial resolution and the sizes of AGB sample plots. During fieldwork, AGB were
often obtained from the plots with size of 20 by 20 m or larger, whereas the high spatial resolution
satellite images such as QuickBird, Pleiades, WorldView, and ZiYuan-3 (ZY-3) have cell sizes as high
as 0.5 by 0.5 m (for panchromatic band) to 6 by 6 m (multispectral bands), resulting in difficulty in
directly relating AGB at plot level to the spectral value from the high spatial resolution image; (3) data
saturation in high spatial resolution optical sensor data is also an important factor resulting in poor
forest AGB estimation. Although previous research has not explored the exact saturation values
for high spatial resolution images, some research indeed examined Landsat images with which the
saturation values can be 100–150 Mg/ha, depending on forest types [7].

Lidar has been regarded as the best data source for AGB estimation because of its unique
advantage in providing tree (or canopy) height, which is highly related to AGB [22–27]. Also, the use
of height-relevant variables reduces the data saturation problem commonly existing in optical sensor
data. However, in reality, extensive application of lidar for AGB estimation is still very limited because
of the difficulty in obtaining lidar data for a specific site and the consideration of cost and labor.
Current lidar data are mainly airborne-based for some experimental sites, implying the difficulty and
cost in collection of this kind of data. Since satellite stereo images such as ALOS PRISM (advanced
land observing satellite-panchromatic remote-sensing instrument for stereo mapping), QuickBird,
Worldview, and ZY-3 are available, effectively using the stereo image for AGB modeling will be an
important research topic [18,28–31], but has not been extensively explored yet. Because the satellite
stereo image can only provide DSM (digital surface model), it is difficult to extract object height value
without the use of DEM (digital elevation model) or DTM (digital terrain model) data. Therefore,
previous research has mainly explored the combination of lidar-based DEM and stereo-based DSM to
calculate canopy height, and then calculate AGB [17,32,33].
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Although the data saturation problem has long been recognized as an important factor that
results in poor forest AGB estimation using optical sensor data [7,12,16], this problem cannot be
solved without incorporation of height-relevant variables in the AGB estimation models. With the
advantages of lidar in providing tree height features, lidar-based AGB estimation does not have the
data saturation problem [25,26]; however, lidar data are not available for most of the study areas,
especially in a large area. Since satellite stereo images are available, DSM data can be extracted from the
stereo images [30,34]. For deciduous forest, we can assume that the DSM at leaf-on season represent
the canopy height, and the DSM at leaf-off season represent DEM; thus, the canopy height can be
obtained from the difference of DSM data between leaf-on and leaf-off seasons. Therefore, we can
assume that incorporation of stereo-based variables and optical multispectral bands reduce the data
saturation problem, thus improving AGB estimation performance for deciduous forests. This research
attempts to explore the possible solution in reducing the data saturation problem in optical sensor
data through incorporation of stereo data into spectral signatures. The research will be valuable for
better understanding the potential solutions to reduce data saturation problem in AGB modeling for
deciduous forests, especially beneficial for predicting forest AGB spatial distribution in temperate
climate regions where deciduous forests are extensively distributed.

2. Materials and Methods

2.1. Study Area

The study area is the Wangyedian Experimental Forest Farm, located in the southwest of Harqin
Banner, Chifeng city, Inner Mongolia Autonomous Region, and at the junction of three provinces—Inner
Mongolia, Hebei, and Liaoning (see Figure 1). The study area has a total area of about 500 km2

with a distance of about 28 km north–south and 30 km east–west. By the end of 2016, forest cover
accounted for about 93% of the total study area with a total stock volume of 1.52 million m3. This
region has undulating topography with an elevation range of 500–1890 m. The climate belongs to
temperate continental monsoon, having four distinct seasons: dry and windy in spring, rainy with high
temperatures in summer, early frost in fall, and cold with little snow in winter. The average annual
temperature is between 3.5 ◦C to 7 ◦C and the average annual precipitation is about 400 mm [35,36].
The dominant forest types include coniferous plantations (e.g., larch (Larix principis-rupprechtii and Larix
olgensis), Scots pine (Pinus sylvestris), and Chinese pine (Pinus tabuliformis)) and secondary broadleaf
forests such as Mongolian oak (Quercus mongolica), birch (Betula dahurica, Betula platyphylla), and aspen
(Populus davidiana) [37]. On the basis of our previous research on forest classification, larch plantation
in this farm has an area of 133.89 km2, accounting for 26.8% of the study area (see Figure 1c) [38].

Larch is a deciduous tree species in the genus Larix, of the family Pinaceae. With their cold-tolerant
merit among coniferous tree species, larch is found in the plain of northernmost boreal zones and
in the mountains of the temperate zones. A variety of Larix species including Larix gmelinii, Larix
olgrnsis var. changpaiensis, Larix kaempferi, Larix principis-rupprechtii, and Larix sibirica grow naturally
and are artificially cultivated, particularly in the northeast, north, and southwest China [39,40]. Larch
plantation is one of the dominant forest types in the northeast [41] and is an important resource
of timber production, providing a large amount of commercial timber products, as well as playing
an important role in the forest ecosystem due to their high photosynthetic capacities and carbon
fixation [42,43]. Therefore, the updating of larch forest AGB estimate in a timely manner is valuable for
better understanding the carbon dynamics of larch plantations.
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Figure 1. The study area: (a,b) the location of the study area in North China, (c) larch spatial distribution
and surveyed sample locations.

2.2. The Strategy of Forest Biomass Estimation using ZiYuan-3 Multispectral and Stereo Data

The framework of this research is illustrated in Figure 2, including (1) data preparation, covering
collection of field inventory data for calculation of AGB at sample plot level, collection of multitemporal
ZY-3 images and preprocessing, extraction of DSM from ZY-3 stereo images at different dates, collection
of the extracted larch plantations from ZY-3 data [38], and image segmentation using eCognition;
(2) extraction of potential variables such as vegetation indices and textural images from the fused
multispectral data, and calculation of forest canopy features on the basis of the difference of bi-temporal
DSM data; (3) selection of variables using stepwise regression and development of AGB estimation
models based on different scenarios; and finally (4) evaluation of the modeling results and prediction
of AGB distribution of larch plantations in the study area.

2.3. Data Preparation

The datasets used in this research are described in Table 1. Fieldwork was conducted in
September/October 2017. Sample plots with a size of 25 by 25 m were allocated on the basis of the
predefined rules—representative of the specific forest types, within the same forest site without crossing
any different land cover types, away from the forest boundaries, and representative of different forest
age groups. The coordinates for each plot were recorded. For each plot in the larch plantations,
topographic factors (e.g., slope, aspect) and plantation age were recorded, and diameter at breast
height (DBH) and tree height for individual trees were measured. A total of 24 plots were measured,
and their spatial distribution is illustrated in Figure 1c.
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Table 1. A summary of data sets used in research.

Datasets Description Date of Data Collection

Field survey data

A total of 24 sample plots were collected
with an aboveground biomass (AGB) range
of 51.83–175.59 Mg/ha, average AGB of
114.58 Mg/ha, and standard deviation of
41.36 Mg/ha.

September/October 2017

ZiYuan-3 (ZY-3) data

ZY-3 data covered (1) four multispectral
bands (three visible bands and one
near-infrared band) with 5.8 m and (2)
stereo imagery—nadir-view image with 2.1
m and backward and forward views with
3.5 m spatial resolution. After image
preprocessing, the Gram–Schmidt tool was
used to integrate multi-spectral and
panchromatic data to produce a new dataset
with a spatial resolution of 2 m. This fused
image was used to produce a segmentation
image using eCognition software [38].

Two seasonal images: one ZY-3 image
was acquired on 9 February 2015 with a
sun elevation angle of 31.44◦ and
azimuth angle of 163.06◦; another ZY-3
image was acquired on 20 September
2017 with a sun elevation angle of
44.22◦ and azimuth angle of 148.18◦.

Larch classification image

The larch classification result was
developed from ZY-3 data using support
vector machine (SVM)—user’s and
producer’s accuracy of 79.7% and 94.8%.

Details were provided by Xie et al. [38].

Digital surface model (DSM) data

The DSM data were extracted from ZY-3
stereo images in February and September,
independently. This research directly used
the results for calculation of relative canopy
height (RCH) after post-processing of the
bi-temporal DSM data.

Details were provided by Xie et al. [38].

In general, allometric equations are often used to calculate individual tree AGB using field
measurements of DBH and tree height [25,44]. However, in reality, tree height measurement is often
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difficult, especially in mountainous regions. Therefore, the DBH-only models are often used for AGB
estimation [44]. In this research, we conducted a comparative analysis of AGB estimates using the
allometric equations with DBH-only models and using both DBH and tree height, finding high AGB
differences for the similar DBH size within the same plot or among different plots. This was because the
measure of tree height has high uncertainties from visual estimation by different persons. Therefore,
this research selected a DBH-only equation (Equation (1)) to calculate the AGB of an individual
tree [44,45].

logY = 1.977 + 2.451logD, R2 = 0.971 (1)

where Y is AGB (unit: Mg) for a single tree, and D is the DBH–diameter at breast height (cm). The AGB
of all trees within the same sample plot (25 by 25 m) were summed up as AGB amount at plot level,
then converted to AGB at the hectare level (i.e., Mg/ha).

In previous research, Xie et al. [38] detailed the preprocessing of ZY-3 images (e.g., atmospheric
and topographic correction), extraction of DSM from ZY-3 stereo images, fusion of multispectral
and panchromatic data into a new data set using Gram–Schmidt fusion approach, as well as forest
classification; thus, we will not repeat this here. Those data sources were directly used as inputs in this
research. The image segmentation was conducted using eCognition software on the basis of the fused
multispectral imagery with 2 m spatial resolution. The shape weight and compact weight were set as
0.2 and 0.5, and the scale of the segment was set as 250 after a substantial number of adjustments on
the basis of the analysis of patch sizes of larch plantations. The segmentation image was further used
to extract different variables from the fused ZY-3 multispectral data and DSM for AGB modeling.

2.4. Extraction of Potential Variables

2.4.1. Extraction of Spectral and Spatial Features

Vegetation indices can reduce the impacts of environmental conditions and have been proven
valuable in improving AGB estimation, especially for the forest types with relatively simple stand
structure [7,13]. The vegetation indices based on the available spectral bands in the ZY-3 multispectral
imagery were summarized in Table 2.

Table 2. Vegetation indices used in the research.

Vegetation Indices Equations

Differenced vegetation index (DVI) NIR − Red
Infrared percentage vegetation index (IPVI) NIR/(NIR + Red)

Normalized difference vegetation index (NDVI) (NIR − Red)/(NIR + Red)
Normalized difference greenness index (NDGI) (Green − Red)/(Green + Red)

Normalized difference water index (NDWI) (Green − NIR)/(Green + NIR)
Ratio vegetation index (RVI) NIR/Red

Re-normalized difference vegetation index (RDVI) (NIR−Red)/
√

NIR + Red
Visible-band difference vegetation index (VDVI) (Green−Red)+(Green−Blue)

Green+Red+Green+Blue
Optimized soil adjusted vegetation index (OSAVI) (NIR − Red)/(NIR + Red + 0.16)

Ratio of near-infrared (NIR) band to blue band NIR/Blue

In addition to spectral features, texture is another important variable in AGB estimation [5,7,8].
The gray-level co-occurrence matrix (GLCM) is a commonly used measure for extracting textural
images [46]. Previous research on extracting textures required the determination of a suitable window
size, specific spectral band, and texture measure, resulting in a large number of potential textural
images [47]. However, not all these textural images are needed for AGB modeling. Therefore, it
is critical to identify proper textural images that have a strong relationships with AGB but weak
relationships between these textural images [7]. In fact, it is hard to identify an optimal window size
and texture measure because of the different patch sizes of land covers. In order to avoid the selection
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of a window size, we extracted textures on the basis of the segmentation image, which was developed
using eCognition based on the fused ZY-3 multispectral imagery. Eight texture measures—mean,
standard deviation, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation [46]
were used to calculate textures on the basis of different spectral bands and segmentation image.

2.4.2. Extraction of Forest Canopy Features on the Basis of Bi-Temporal Digital Surface Model Data

In this research, we selected two seasonal ZY-3 stereo images (i.e., February and September) to
extract DSM data (see details in [38]). For the February DSM image (leaf-off season), the minimum
filtering approach using window sizes from 3 × 3 to 23 × 23 pixels were tested to produce DEM
datasets, whereas for the September DSM image (leaf-on season), the maximum filtering approach
using window sizes from 3 × 3 to 23 × 23 pixels were tested to produce DSM datasets. It was assumed
that for deciduous forests such as larch plantations in this research, the minimum DSM in leaf-off

season can be regarded as bare ground elevation, and the maximum DSM in leaf-on season can be
regarded as surface elevation. Therefore, the relative canopy height (RCH) can be extracted using
Equation (2):

RCH = DSMmax(September)−DSMmin(February). (2)

Because of the strong relationship between AGB and canopy height, it is crucial to accurately
extract the canopy height for the development of AGB estimation models. Therefore, the relationships
between RCH from different window sizes (i.e., from 3 × 3 to 23 × 23 pixels) and AGB amount were
examined to identify an optimal window size to extract the RCH image. Finally, on the basis of the
selected RCH image for larch plantations, forest canopy features were calculated from this RCH image
using the GLCM based on the segmentation image.

2.5. Selection of Variables and Development of Biomass Estimation Models

Although many approaches, such as machine learning algorithms, are used for AGB
estimation [5,10], linear regression is still a common approach and has been proven to provide
good prediction performance [10]. We used linear regression to establish AGB estimation models
on the basis of two scenarios: (1) combination of spectral and spatial variables; and (2) combination
of spectral, spatial, and forest canopy features, in order to understand whether the incorporation
of forest canopy features into spectral and spatial data can reduce the data saturation problem in
AGB estimation.

The stepwise regression analysis was used to identify the variables for AGB estimation modeling.
Because the number of variables was greater than the number of sample plots, correlation analysis
was first examined to explore the relationships between potential variables and AGB and between
potentially explanatory variables. Only the variables having significant relationships with AGB but
weak relationships with other explanatory variables were selected. The coefficient of determination
(R2) and adjusted R2 were used to evaluate regression models. Meanwhile, the standardized Beta
coefficients (Beta) were used to explain the relative importance of the selected variables in the regression
model. A larger absolute Beta value indicates more importance of this variable in the model.

2.6. Evaluation of Modeling Results and Application of the Developed Model for Prediction of
Biomass Distribution

The evaluation of modeling results is required for understanding the AGB estimation performance.
In most case studies, the sample plots are randomly separated into two groups: modeling samples and
validation samples [5,10]. However, collection of a sufficient number of samples for modeling and
validation is often difficult because of the labor and cost, as well as accessibility. In order to solve this
problem, an alternative is to divide the sample plots into k folds (here k is the number of sample plots)
and use cross-validation for the model evaluation, that is, k-1 folds are used for model calibration and
the remaining one fold is used for model validation, and this process is iterated for k times. In this
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research, we used the leave-one-out cross-validation for calculating correlation coefficient (r), root
mean squared error (RMSE), relative RMSE (RMSEr), and mean absolute error (MAE) to assess the
models’ prediction performance [16]. The higher r value and lower RMSE, RMSEr, and MAE values
indicate better modeling performance. Meanwhile, the relationship between predicted AGB and
reference data, as well as their residuals, were examined. The finally developed AGB estimation model
was used to predict AGB spatial distribution of the entire study area.

3. Results

3.1. Analysis of the Role of Relative Canopy Height in Reducing Data Saturation Problem

The relationships between AGB and RCH images from different window sizes were examined,
and it was found that the RCH image using the window size of 9 × 9 pixels provided the best result.
Thus, this RCH image was used for extraction of forest stand features using GLCM. The examples
in Figure 3 indicate that RCH has good linear relationships with AGB without the data saturation
problem. However, different window sizes had various relationships between RCH and AGB, and the
window size of 9 × 9 pixels provided the highest R2 value when compared with any other window
sizes (Figure 3). The spatial distribution of RCH in Figure 4 indicates that most of pixels in this study
area had RCH values between 10 and 30 m.
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3.2. Analysis of Biomass Modeling Results

The selected variables for AGB modeling indicated that when the potential variables were based on
spectral bands, vegetation indices, and textural images, only one variable—the red spectral band—was
selected for AGB estimation using the linear regression approach. However, when multiple source data
such as forest canopy features and spectral-derived variables were used, three variables—RCH, StdRCH,
and red spectral band—were finally selected in the linear regression model (Table 3). The modeling R2

and adjusted R2 values in Table 3 indicated that the combination of canopy features and spectral band
considerably improved the modeling performance when compared with the red spectral band alone.
The F-test results indicated that the linear regression models were statistically significant, and Beta
values showed that the spectral band still played an important role in AGB modeling, but also that the
variables relating to forest stand structure (RCH and StdRCH) had significant roles in AGB modeling.

Table 3. Biomass estimation modeling results.

Data Regression Models R2 AdjR2 F-test Beta

Spectral data 263.855−0.555SBRed 0.59 0.57 34.73 −0.769

Combination of spectral
and stereo data

−13.475−0.487SBRed + 2.594RCH
+ 5.147StdRCH

0.78 0.75 23.99 −0.708 0.314 0.279

Note: SBRed: spectral red band; RCH: relative canopy height; StdRCH: standard deviation based on RCH image.
R2: the coefficient of determination from the linear regression models; AdjR2: adjusted R2; Beta: standardized
Beta coefficients.

The evaluation of modeling results using r, RMSE, RMSEr, and MAE also indicated a considerable
improvement through the incorporation of RCH features into spectral signature (Table 4). For example,
because of the use of RCH features in AGB modeling, the correlation coefficients between AGB reference
data and estimates increased from 0.616 to 0.825, implying an improvement in model prediction
performance. The RMSE and MAE reduced from 33.89 (Mg/ha) and 30.68 Mg/ha) to 24.49 (Mg/ha) and
20.37 Mg/ha, respectively, and RMSEr decreased from 29.57% to 21.37%, implying that RCH indeed
played an important role in reducing AGB estimation errors.

Table 4. A summary of evaluation results.

Data r RMSE (Mg/ha) RMSEr (%) MAE (Mg/ha)

Spectral data 0.616 33.89 29.57 30.68

Combination of spectral and stereo data 0.825 24.49 21.37 20.37

r: correlation coefficient between AGB reference data and estimates; RMSE and RMSEr: root mean squared error
(Mg/ha) and relative RMSE (%), respectively; MAE: mean absolute error.

The scatterplots using the estimated AGB and corresponding reference data (Figure 6(a1 vs b1))
showed a better linear relationship using the RCH-based features (Figure 6b1) than using the spectral
band alone (Figure 6a1). Although the residual figures (Figure 6(a2 vs b2)) looked similar, the absolute
values were considerably different, especially for the samples with large residual values. For example,
Figure 6a2 shows that two samples had residual values of over 60 Mg/ha, and another two samples had
over 40 Mg/ha, whereas Figure 6b2 shows that only one sample had residual value of over 40 Mg/ha.
A similar situation was that two samples had residual values near −60 Mg/ha, and four samples close
to −40 Mg/ha in Figure 6a2; in contrast, only three samples were near −40 Mg/ha in Figure 6b2. This
situation shows that use of RCH features indeed considerably improved AGB estimation performance.

A comparison of the AGB prediction results (see Figure 7) indicated that the AGB estimation
model using RCH features provided a much greater number of pixels with AGB values of greater than
140 Mg/ha compared with using spectral red band alone, implying the important role of RCH features
in reducing data saturation problem in the optical sensor data.
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4. Discussion

4.1. The Role of Spectral and Spatial Features in Biomass Estimation

Previous studies have proven that incorporation of spectral and spatial features improved AGB
estimation performance [7,8,10]. However, this research showed that the red band from ZY-3 data
with 2 m spatial resolution, instead of vegetation indices or textures, was selected in AGB estimation
models for larch plantations in North China. This conclusion is consistent with previous studies on
secondary forests in the tropical forest ecosystem [12] and forest plantations such as pine and Chinese
fir in subtropical forest ecosystems, which have relatively homogenous forest canopy structures [7].
Although spatial information is much richer in ZY-3 imagery with 2 m spatial resolution than in
Landsat imagery with 30 m, the texture variables with improved spatial features were not included
in the AGB estimation models. The possible reason may be that AGB is a composite attribute that
is related to crown size, tree height, DBH, and tree density, but high spatial resolution features in
the optical sensor data cannot effectively capture the attributes of forest stand structure. The lack
of shortwave infrared (SWIR) band in ZY-3 image is another shortage for AGB estimation because
previous research has shown that the variables, including SWIR bands, have stronger relationships
with AGB than other spectral bands [7,12,13].

4.2. Potential Solution to Reduce the Data Saturation Problem in Optical Sensor Data

Previous research has shown that different forest types have various data saturation values.
For example, utilizing Landsat Thematic Mapper (TM) imagery, pine forest and mixed forest have
AGB saturation values of over 150 Mg/ha, and Chinese fir and broadleaf forests have relatively
lower saturation values at 143 Mg/ha and 123 Mg/ha, respectively, in western Zhejiang Province, a
subtropical region in China [7,8,10]. This research indicates that on the basis of ZY-3 multispectral
image, larch plantation in North China has an AGB saturation value of about 110 Mg/ha. Data
saturation in optical sensor data is a serious problem that results in AGB underestimation. In order
to improve AGB estimation, one critical issue is to reduce the data saturation problem. Although
stratification of forest types and topography can improve AGB estimation [7,10], they cannot solve the
data saturation problem. Current optical sensor data can only provide the land surface information,
that is, horizontal features, and cannot capture vertical information. Therefore, effectively employing
the forest stand features such as canopy height is critical in reducing the data saturation problem,
as shown in this research.

4.3. The Role of Forest Canopy Features in Improving Biomass Estimation

Since tree height or canopy height is strongly related to AGB without the data saturation problem,
height-based variable has been regarded as the best data source for AGB estimation [5,48]. In reality,
lidar data are mainly captured through airplanes or unmanned aerial vehicles (UAV), implying that
this kind of data is not always available for a specific study area, considering the cost and labor. An
alternative is to use satellite stereo images for extracting DSM [28,34,38]. However, one DSM image
cannot directly extract canopy height data without use of DEM or DTM data. Previous studies used
the combination of stereo and lidar data, in which stereo image was used to produce DSM, and lidar
data were used to produce DTM [17,32,33,49,50]. Because no lidar data are available in this research,
we used two DSM images from leaf-off and leaf-on seasons to produce canopy height data. However,
a direct comparison of RCH and height measure was not conducted because of the following reasons:
(1) the RCH image from the difference of leaf-on and leaf-off DSM images is not a real canopy or tree
height; (2) our measured tree height data were mainly visually estimated by field surveyors, resulting
in large uncertainties in height values and low reliability for canopy height calculation. Although
we are not sure the accuracy of the extracted RCH result, this research indicated its effectiveness in
obtaining the canopy height information for deciduous forests, a similar conclusion as previously
indicated [21].
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As more satellite stereo data are available, incorporation of stereo image and optical sensor
data will provide new data sources for better AGB estimation. In recent years, UAV has become an
important means of acquiring high spatial resolution images, including lidar, stereo, hyperspectral,
and multispectral images in typical sites [21,51,52]. The UAV lidar or stereo data will be valuable for
accurately mapping forest AGB distribution at the local scale [21]. Since ground survey is expensive
and sometimes inaccessible for remote mountainous regions, UAV and satellite stereo data will play
an important role in providing spatial distribution of AGB in the future. This research proved the
potential of using stereo images in improving AGB estimation of larch plantations. This is especially
valuable for deciduous forest AGB estimation.

4.4. Implication of Using Multiple Data Sources in Biomass Estimation

Previous studies have indicated the difficulty in using optical sensor data for forest AGB
estimation [5,16]. In order to improve estimation performance, different approaches, such as
stratification of forest types and topographic factors, and use of machine learning algorithms, are
explored [7–10]. However, these approaches have limited improvement, and cannot solve the
fundamental problems of overestimation and underestimation. Overestimation occurs when AGB is
small, whereas overestimation occurs when AGB reaches a certain value such as 120 Mg/ha for most
of forest types [7]. For a forest site with small AGB, its canopy is often not dense enough to cover
the ground; thus, grass, shrubs, and bare soils under the canopy have considerable influence on the
surface reflectance, resulting in high uncertainty in AGB estimation when only optical sensor data are
used [5]. In contrast, for a forest site with very high AGB, data saturation becomes the major problem,
resulting in AGB underestimation, as optical sensor data can only capture the canopy features without
information of vertical features such as tree heights [7]. In order to improve AGB estimation, it is
critical to incorporate different data sources, especially the canopy height relevant variables into AGB
modeling [17,18,52]. This research shows that incorporation of surface feature (red spectral band),
vertical feature (canopy height: RCH), and canopy structure (standard deviation of RCH) considerably
improved AGB estimation, including the improvement of over- and under-estimation problems. This
implies the importance of using different data sources in AGB modeling.

AGB is affected by many factors including soil conditions (e.g., soil structure, organic matter,
soil fertility, soil moisture), topographic factors (e.g., elevation, aspect), and human-induced activities
(different forms of management such as selective logging). Current AGB estimation models are mainly
based on remotely sensed data without taking ancillary data into account [5]. More research should be
explored to identify key variables from different data sources and develop suitable models that can
effectively include different kinds of variables. However, different source data have various quality
problems and spatial resolutions—there is a trade-off on how to use different data sources in forest
AGB modeling. More research is needed to explore effective incorporation of remote sensing-derived
products into the process-based ecosystem models for better understanding of the spatial distribution
and dynamics of forest AGB.

5. Conclusions

This research explored the incorporation of ZY-3 multispectral and stereo imagery for AGB
estimation of larch plantations in North China. The RCH was developed from the difference of
bi-temporal DSM data that were extracted from leaf-on and leaf-off ZY-3 stereo images. A comparative
analysis of AGB estimation results indicated that (1) ZY-3 spectral data alone cannot effectively predict
AGB distribution of larch plantations, in particular, the data saturation problem resulted in serious
AGB underestimation when forest AGB was greater than 150 Mg/ha; (2) the RCH based on bi-temporal
DSM data can reduce the data saturation problem of spectral data. Incorporation of spectral and RCH
variables considerably improved AGB estimation performance when compared with spectral data
alone. RMSE and RMSEr were reduced from 33.89 Mg/ha and 29.57%, respectively, using the spectral
data alone, to 24.49 Mg/ha and 21.37%, respectively, using the RCH-based combination. This research
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provides a feasible way to accurately predict AGB at high spatial resolution for deciduous forests
using the combination of spectral and stereo images. As stereo images are available from different
satellite sensor data, the approach used in this research will be valuable for regional AGB estimation
for deciduous forests. Because AGB is related to tree species, DBH, tree height, age, and tree density,
effective incorporation of different data sources (optical, lidar, radar, stereo) into the AGB modeling
procedure will be an important research trend in near future. As airborne or space-borne lidar and
satellite stereo data are easily available, combination of these data sets will be valuable in improving
AGB estimation.
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